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ABSTRACT

Alkylation of diketopyrrolopyrroles (DPPs) is a pexful tool for increasing the solubility and
processability of these pigments. Moreover, alkgtatontributes to solid state packing and
structural ordering of DPPs. In this study, théuahce of the alkylation and solubilization
side group engineering to DPPs on the thermal atidab properties was systematically
investigated. Two series (each containing 3 dexigatN,N'-, N,O'- andO,O'-substituted
examples) of alkylated DPPs by 2-ethylhexyl anglattemantyl substituents were
synthesized. Separation of all formed DPP derieatiwas accomplished in order to perform
an in-depth study of their physicochemical progsitDSC measurements revealed that the
O-substitution caused a decrease in the thermalistadd DPP derivatives. On the contrary,
an ethyladamantyl side chain, as a rigid alicyslibstituent, contributed very effectively to
the increase of the melting point and thermal §tgbThe new results provide insights into

the development of DPP-alkylated regioisomers aed thermal and optical properties.

1. INTRODUCTION

In the past few decades, soluble organic semicdatkibave found a number of applications

in various fields of organic electronics, mainlyedo their convenient processability using
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common organic solvents and lower production costspared to their conventional
inorganic counterparts [1]. Organic semiconductimggerials, suitable for applications in
organic electronics should exhibit high absorptoefficients [2], high thermal and chemical
stability [2] and good charge transport properfgdsOne of the most attractive groups of
organic pigments are derivatives of 2,5-dihydrophai4,3-c]pyrrolo-1,4-dione (DPP) [4].
They have a considerable application potentialdarcost solution processable electronic
devices [5]. The fundamental DPP structure can béifred by conventional chemical
pathways, producing various derivatives exhibitilegired chemical and physical properties
[6]. Currently, there are a number of scientifipags showing examples of successful
application of DPP derivatives as functional higifprmance materials in dye-sensitized [7]
and bulk heterojunction solar cells [8], organ&dieffect transistors [9]-[13], organic light-

emitting diodes [14],[15], sensors [16] and bioseag17], fluorescence imaging [18].

In general, in order to achieve high performancenéabove-mentioned applications, the
conjugated length of the molecule has to be exenabich is possible either by
polymerization via direct arylation [19][20] or Itlye cross-coupling reactions on the side
aromatic rings of the DPP core [21],[22]. Most coomty, DPP derivatives are substituted by
thiophene-2-yl [23] groups at the 3 and 6 positidrieeN,N'-unsubstituted DPP derivatives
have good thermal stability and photostability[[Z3], but on the other hand they also are
poorly soluble in most common organic solvents tude strong intermolecular hydrogen
bonding between neighboring carbonyl-oxygen antafaenitrogen atoms [2]. Therefore, to
achieve high solubility of DPP derivatives, tHgN'-positions can be substituted with linear or
branched alkyl chains, which interrupt intermolecuiydrogen-bonds [26[N,N'-alkylation
ranks among the most important and common methiod®B substitution, which has
resulted in broader applications in the previousbntioned areas of organic electronics [6].

However, the disadvantage of alkylation of DPRsosr regioselectivity, which results in
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isolation ofO-alkylated side products in moderate yields [27kyfation is performed

through base-catalyzed nucleophilic substituti@actiens. The influence of the bases,
solvents and reaction conditions used on the dikylgrogress and regioselectivity has been
studied only rarely [28],[29]. However, two compiet anionsO~ andN™ on the lactam core
contribute to a drop in the regioselectivityMyN'-substitutions. Stas et al. [28] reported that
substitution of alkyl chains on oxygen atoms isgilae alongside with the nitrogen
heteroatoms due to the delocalization of the negatnarge between the two atoms of a
lactam group. Frebort et al. [30] already descritiedformation ofO-alkylated by-products,
but very few reports so far have investigated tloperties of thes®-alkylated derivatives

[31],[32].

We recently reported [33] synthesis and study el N,N-substituted DPP derivative
contained bulky ethyladamantyl groups. Substitutiad a significant impact on highly
ordered adamantane-induced molecular packing, wekmlited in exceptional ambipolar
charge transport of this new chromophore. Nevestiglthe synthesis of the new aforesaid
DPP derivative exhibited very low regioselectivatyN,N'-alkylation and thus, formation of

competitive by-products was largely observed.

Herein, to systematically study the effect of biang and bulky substituents on alkylation
regioselectivity and their binding position, thetiopl and thermal properties of all
symmetrical ,N'-; O,0'-) and asymmetricaN,0'-) DPP products were determined. The 2-
ethylhexyl chain was chosen as a branching substitior comparison with the aforesaid
bulky ethyladamantyl chains. The key was to isadditéhese products in quantities enabling
the systematic study of optical and thermal propernd to examine both the effect of the
alkyl chain character and the binding site in tiPOmolecule on these properties. Systematic
studies showed that asymmetrical derivatives terekhibit large Stokes shift which reduces

the reabsorption of the emitted luminescence. Maee®-substitution causes the



77 disappearance of carbonyl group and the substitwiiothe highly polar ketone group induces
78 electron cloud polarization, which is beneficial éog. the two-photon absorption [34].

79  However,0,0'- andN,O'-substituted DPP derivatives have their drawbaslbstitution on

80 keto-group disturbs the crystalline organizatiothi@ solid state, which causes these materials
81 to have a paste-like consistency at room tempexg8i, and this makes their application in

82 the field of organic electronics rather doubtful.

83 However,0,0'- and asymmetricall,O'-substituted derivatives can be of interest noy onl
84 from a fundamental but also from a practical pointiew. Therefore, the main challenge of
85 the present paper is to improve the crystallinitgl hermal stability 0©,0'- andN,O'-

86 ethyladamantyl substituted DPP derivatives andgtigate in detail their yet unknown optical

87 properties.
88

89 2. EXPERIMENTAL SECTION

90 2.1.Materials
91 2-Thiophenecarbonitrile (99%), sodium, iron(llDlahde (>97%, anhydrousdert-Amyl
92 alcohol £99%),N,N-dimethylformamide (DMF, 99.8%, anhydrous), potasscarbonate
93  (99.99%, anhydrous), 2-ethylhexyl bromide (95%) dadterochloroform (99.96 atom % D)
94  were purchased from Sigma-Aldrich (now Merck) aretevused as received. Diisopropyl
95 succinate (98%) was purchased from Synthesiaahmtalso was used as received. 1-(2-
96 Bromoethyl)adamantane (98%) was purchased fromist@\CS Ltd. Acetic acid (99%),
97 isopropyl alcohol (p.a.), methanol (p.a.), tolu¢p&.) and chloroform (p.a.) were purchased
98 from PENTA Ltd. and were used as received. Separdly column chromatography was
99 carried out on a Silica Gel 60A (230-400 mesh, Sightdrich). All reactions were

100 performed in oven-dried apparatus, under argon spimere while magnetically stirred.

101
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2.2.Characterization

'H NMR spectra were recorded on a FT-NMR spectrontteker Avance 11l 300 MHz or

500 MHz in CDC}. Chemical shiftsd) are given in parts per million (ppm) relativetMS

as an internal reference. The melting point wasrdahed on a Kofler apparatus and the
temperature was not calibrated. Mass spectra wemded on a GC-MS spectrometer
Thermo Fisher Scientific ITQ 700 (DEP). Elementadlgsis was measured with an elemental

analyser Flash 2000 CHNS Thermo Fisher Scientific.

Thermogravimetry (TG) was conducted on a TA Inseatas Q5000IR (New Castle,
Delaware, USA) to analyze the stability of the datives and changes in mass before
degradation. A sample was placed on the Pt crustnieple holder and heated at 10 °C/min
from room temperature to 600 °C under a streamtadgen (ultra-high-purity) flow rate

40 mL/min. TG was used to analyze the thermal kttalbif the investigated materials.
Briefly, the TG record (dependence of mass on teatpee) was derived and onset of the
derivate was determined.

Differential Scanning Calorimetry (DSC) was conauatcbn a TA Instruments Q2500
(New Castle, Delaware, USA) equipped with an RCAarao analyze the physicochemical
properties of derivatives. The samples, typicaly 81g, were weighed to aluminum pans
(Tzero®), hermetically sealed and measured undéeam of nitrogen flow rate 50 mL/min.
The loading temperature was 30 °C. The followinggerature program was applied: heating
10 °C/min to temperature 50 °C below the degradaemperature determined using TG to
delete the thermal history of the sample. The samwals quickly (15 °C/min) cooled to
-90 °C and heated again at 10 °C/min. This cycle used to estimate the physicochemical

structure of the sample upon fast cooling. Thea sdmple was cooled slowly (3 °C/min) to
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-90 °C and heated again at 10 °C/min. This cycle used to estimate the physicochemical
structure of the sample upon slow cooling.
Both TG and DSC records were evaluated using TRI@BUniversal analysis software

provided by TA Instruments.

Solutions were prepared by diluting materials ihyaltous chloroform. The concentration of
materials was I0to 10° mol - dm®. Solutions were characterized in a quartz cuvette
(Herasil®, Heraeus Quarzglas Co.). Optical measengsnof thin films were performed on
quartz glass slides (Herasil® 102, Heraeus QuasZgta) which were pre-treated by
ultrasonic cleaning in the following baths: 1) Dgent Neodisher (Miele, Inc., NJ, USA)

10 min; 2) deionized (Milli-Q) water 20 min; 3) gpyl alcohol (a. p.) 10 min. Films were
deposited by spin-coating. The spin rate was 2p@0and the deposed material was
dissolved in chloroform. The final thickness oféay was in the range 50-100 nm.
Absorption spectra of samples were measured withrean Cary Probe 50 UV-VIS
spectrometer (Agilent Technologies Inc.). The fegmence spectra were recorded with a
Horiba Jobin Yvon Fluorolog. This apparatus equgopith integration sphere was also used
to determine the fluorescence quantum yield by labsonethod. The fluorescence lifetime

was measured with a Horiba Jobin Yvon Fluorocube.

2.3.Synthesis
The targeted molecules were synthesized accorditigetknown general procedure [35],[36].

The synthetic route and the molecular structuresllastrated in Scheme 1.
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1. Na
2. FeC] (cat.)

t-Amyl alcohol
102°C, 24 hod, Ar

1. K,CO,
2. R-Br

DMF
105°C, 2 hod, Ar

Th-DPP-1la R = 2-ethylhexyl; 41% Th-DPP-1b: R = 2-ethylhexyl; 18% Th-DPP-1c R = 2-ethylhexyl; 3%
Th-DPP-2a R = adamantylethyl; 36% h-DPP-2b: R = adamantylethyl; 2094 h-DPP-2¢ R = ethyladamantyl; 6%

Scheme 1Procedure for the synthesis of tRN'-; N,O'- andO,O'-alkylated DPP derivatives
2.3.1. Synthesis of 2,5-dihydropyrrolo[4,3-c]pyrrolo-1,46de molecules
Sodium (~1.3 equiv., 7.2 g, 313.2 mmol) was dissodlwntert-amyl alcohol (400 mL) heated
to reflux and with the addition of catalytic amowftron(lll) chloride. After dissolution of
all sodium, there was added in one portion 1.0weaiithiophene-2-carbonitrile (26.2 g,
240.0 mmol) and the reaction mixture was stirregdBfd min at reflux. Then, 0.65 equiv. of
diisopropyl succinate (31.6 g, 156.2 mmol) dissdliretert-amyl alcohol (80 mL) was
gradually added dropwise for 4 h and the mixture stared at reflux for 18 h. After that,
protolysis was performed by addition of dilutedtécacid to the reaction mixture cooled to
laboratory temperature. The mixture was refluxedsfb and then the heterogenic mixture
was filtered while hot and the filter cake was weskvith hot water and isopropyl alcohol.
The crude product was refluxed in methanol forahnd, after that, it was filtered while hot to

get a pure product.

Th-DPP: Dark purple solid (27.5 g, yield 59%). Meltingipo>400 °C,*H NMR (300 MHz,
DMSO-ds, ppm):o = 11.21 (s, 2H), 8.20 (d,= 3.01 Hz, 2H), 7.93 (d} = 3.04 Hz, 2H),
7.31-7.27 (m, 2H), Anal. calcd. forEigN,0,S,: C 55.98%, H 2.68%, N 9.33%, Found: C

55.42%, H 2.37%, N 9.71%.



167
168 2.3.2. Synthesis of the alkylated DPP derivatives

169 Anhydrous potassium carbonate (~5.3 equiv., 2/ gt mmol) was added to a solution of
170 Th-DPP (1.0 equiv., 1.0 g, 3.3 mmol in 45 mL of anhydr@dF) and the mixture was

171 heated to 60 °C and stirred for 1 h. Then, 3.50veqll.6 mmol) of alkyl bromideR—Br,
172  2-ethylhexyl bromide: 2.23 g; 1-(2-bromoethyl)adataae: 2.81 g) dissolved in anhydrous
173 DMF (20 mL) was gradually added dropwise for 30 .rdifter 20 min, the mixture was

174 heated to 105 °C and stirred for 2 h. Then, DMF diaslled off by vacuum distillation, the

175 solid material was suspended in methanol andditéo get a crude product.

176 Th-DPP-la Dark red crystal material (0.71 g, yield 41%) wds$ained after purification of
177 the crude product by column chromatography onasiiel (tolueneRk: = 0.26). Melting point
178 126 °C,*H NMR (300 MHz, CDC}, ppm, Fig. S1)8 = 8.88 (ddJ = 5.1, 2.7 Hz, 2H), 7.64
179 (dd,Jd=6.3, 3.9 Hz, 2H), 7.29 (dd,= 7.2, 1.2 Hz, 2H), 4.04 (m, 4H), 1.88 (m, 2H}Q-
180 1.24 (m, 16H), 0.92—0.85 (m, 12HfC NMR (125 MHz, CDGJ, ppm):d = 161.79, 140.44,
181 135.23, 130.48, 129.86, 128.41, 107.98, 45.89,3380.25, 28.39, 23.59, 23.05, 13.99,
182 10.50; Anal. calcd. for §H4oN20,S,: C 68.66%, H 7.68%, N 5.34%, Found: C 68.12%, H

183 7.47%, N 5.53%.

184 Th-DPP-1b: Purple waxy material (0.31 g, yield 18%) was oi#d after purification of the
185 crude product by column chromatography on silidg(tpéuene,R- = 0.36). Melting point —,

186 'H NMR (300 MHz, CDC}, ppm, Fig. S2)4 = 8.48 (d,J = 3.6 Hz, 1H), 8.19 (d] = 3.9 Hz,

187 1H), 7.68 (ddJ = 4.1, 1.6 Hz, 1H), 7.50 (d,= 3.2 Hz, 1H), 7.26 (dd = 4.3, 1.2 Hz, 1H),

188  7.20 (d,J = 3.5 Hz, 1H), 4.52 (m, 2H), 3.94 (m, 2H), 1.79 @hl), 1.38-1.23 (m, 16H), 0.91—
189  0.85 (m, 12H);°C NMR (125 MHz, CDCJ, ppm):d = 166.38, 161.73, 149.62, 142.46,

190 138.73, 134.82, 131.63, 131.49, 130.09, 128.96,2B2827.96, 114.30, 111.15, 72.45, 45.54,

191 39.37, 39.13, 31.26, 30.76, 30.29, 29.70, 29.091@&4.12, 23.62, 23.03, 14.01, 11.28,
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10.51; Anal. calcd. for §gH40N20,S,: C 68.66%, H 7.68%, N 5.34%, Found: C 68.21%, H

7.54%, N 5.12%.

Th-DPP-1c Dark purple waxy material (0.06 g, yield 3%) vaddained after purification of
the crude product by column chromatography onasiiel (tolueneR- = 0.68). Melting point
—,*H NMR (300 MHz, CDC}, ppm, Fig. S3)s = 8.04 (dd,) = 4.9, 2.4 Hz, 2H), 7.55 (dd,=
6.3, 3.9 Hz, 2H), 7.18 (dd,= 5.7, 3.3 Hz, 2H), 4.55 (m, 4H), 1.82 (m, 2HH4-1.29 (m,
16H), 0.98-0.83 (m, 12H}’C NMR (125 MHz, CDGJ, ppm):6 = 147.72, 147.10, 138.53,
129.01, 124.49, 123.99, 119.16, 39.51, 31.46, 3@231, 29.08, 23.01, 14.08, 11.27; Anal.
calcd. for GoH4oN20,S,: C 68.66%, H 7.68%, N 5.34%, Found: C 68.34%, $38%, N

5.60%.

Th-DPP-2a Violet crystal material (0.75 g, yield 36%) wast@ined after purification of the
crude product by column chromatography on silidatpéuene/chloroform 3/1R- = 0.60)
and the following recrystallization in toluene waldition ofn-heptane. Melting point

321 °C,'H NMR (500 MHz, CDC, ppm, Fig. S4)s = 8.91 (dJ = 3.8 Hz, 2H), 7.64 (d] =
4.9 Hz, 2H), 7.27 (dd] = 6.0, 5.0 Hz, 2H), 4.14-4.11 (m, 4H), 1.99-1.82 §H), 1.75-1.72
(m, 7H), 1.68-1.65 (m, 19H), 1.53-1.51 (m, 3HE NMR (125 MHz, CDCJ, ppm):é =
161.28, 140.13, 135.23, 130.57, 129.69, 128.57.811043.23, 42.30, 37.72, 37.11, 32.22,
28.63; El /z] 624.89, Found 624.97, Anal. calcd. fo§s844N20,S,: C 73.04%, H 7.10%, N

4.48%, S 10.26%, Found: C 73.15%, H 7.08%, N 4.42%).38%.

Th-DPP-2b: Dark violet solid material (0.41 g, yield 20%) svabtained after purification of
the crude product by column chromatography onasijel (toluene/chloroform 3/1,

Re = 0.65). Melting point 210 °CH NMR (300 MHz, CDCJ, ppm, Fig. S6)5 = 8.42 (dJ =
3.9 Hz, 1H), 8.25 (d] = 3.8 Hz, 1H), 7.69 (dd = 5.9, 4.1 Hz, 1H), 7.49 (dd,= 5.6, 4.1 Hz,
1H), 7.27 (dJ = 3.2 Hz, 1H), 7.24-7.17 (m, 1H), 4.67-4.63)( 7.8 Hz, 2H), 4.06—4.00 (m,

2H), 1.98 (m, 6H), 1.75-1.67 (m, 26H), 1.62—1.53 &i); °C NMR (125 MHz, CDJ,
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ppm):d = 166.15, 161.35, 149.43, 142.41, 138.76, 133.29,65, 131.48, 130.02, 129.78,
128.91, 128.23, 113.87, 111.44, 66.79, 43.34, 42832, 42.27, 37.43, 37.09, 37.05, 32.20,
32.01, 28.67, 28.61; Anal. calcd. foggH44N-0O-S,: C 73.04%, H 7.10%, N 4.48%, Found: C

72.81%, H 7.01%, N 4.57%.

Th-DPP-2c Dark violet solid material (0.12 g, yield 6%) walstained after purification of
the crude product by column chromatography onasijiel (toluene/chloroform 3/1,

R = 0.95). Melting point 221 °CGH NMR (300 MHz, CDC}, ppm, Fig. S7)8 = 8.05 (dJ =
4.5 Hz, 2H), 7.55 (d] = 5.5 Hz, 2H), 7.19 (dd} = 8.1, 1.1 Hz, 2H), 4.69-4.65 (m, 4H), 1.98
(m, 4H), 1.70-1.64 (m, 24H), 1.54 (s, 4H), 1.3461(®, 2H);**C NMR (125 MHz, CDG),
ppm):o = 147.52, 146.96, 138.29, 129.09, 124.43, 123.98,92, 42.50, 36.88, 31.89, 31.39,
30.05, 28.45; Anal. calcd. forsgH44N20.S,: C 73.04%, H 7.10%, N 4.48%, Found: C

72.96%, H 6.99%, N 4.51%.

3. RESULTS AND DISCUSSION

3.1. Thermal properties

The TG record of the sampld-DPP-1a(Fig. S8,Supplementary Informatipmesulted in a
slow mass loss (5%) up to 289 °C, where the degadprocesses started accompanied by
an intensive mass loss. Consequently, upon botlafasslow cooling, the DSC record (Fig.
S8) showed two endothermal peaks, which can héwtd to the melting of crystalline
structures. The comparison of lower temperatur&gpehowed that they had similar onsets
around 53 °C, but they differed in the enthalpies,the slow-cooled sample gave 12 J/g,
which was higher than the 10 J/g of the fast-coskuple. The second peaks were
comparable, their enthalpies were around 56 J/gasdts at 118 °C. This revealed formation
of two distinct crystalline structures, while thgstallites melting at lower temperatures were
affected by the cooling regime. We assume thattystallites in sampl&éh-DPP-laare
formed from 2-ethylhexyl chains. Longer linear Alic chains have a high tendency to form

10
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packed structures, but their substitution may iediacmation of several stable forms
energetically close to each other (i.e. crystaltractures with similar melting temperatures)
[37],[38]. An asymmetric analog to the sample DPP-1ais the sampl&@h-DPP-1b which
showed slightly lower degradation temperature &t 27 (Fig. S9). The DSC record showed
only step transition after fast and slow coolinguard 23 °C which was attributed to the glass
transition. However, an endothermal peak with ththapy of 40 J/g was observed around
30 °C, which started simultaneously with the rurs{fheating cycle) that is normally used for
deleting the thermal history of the sample. Theotimekmal peak was not observed in the
subsequent run. The sample was stored at 20 °@harekperiment was repeated after 9 days,
and the peak was observed again, at the same tatugewith enthalpy 34 J/g. An attempt to
induce the crystallization at 10 °C for 30 minufi@ted (Fig. S9). This means that the
crystallization of sampl&h-DPP-1bis a slow process with kinetic constants in owfer
several days. Unlike thEn-DPP-1lasample,Th-DPP-1b contains 2-ethylhexyl chains
asymmetrically bound tbl- andO-atoms, which apparently influence the kinetics of
recrystallization. Furthermore, the symmetricll\N'- substituted sampléh-DPP-1a

indicates the presence of two types of crystallidsle the asymmetricalli{,O'-substituted
Th-DPP-1brevealed only one type of crystals. This indicdled the crystallites are formed
predominantly from 2-ethylhexyl bound on tNeatom, while theD-substitution does not
support the formation of crystals. Accordingly, tiigh temperature melting in the sample
Th-DPP-lawould be caused by larger crystals of 2-ethylhexyins probably composed of

chains from adjacent molecules.

The TG record of thél,N'-ethyladamantyl symmetrically substituted samiteDPP-2a
showed the degradation around 368 °C, but it wasgated by a negligible mass loss of 0.3 %
(Fig. S10). The mass loss can be attributed togbielual mass loss of either moisture or the

residual content of some ethyladamantyl-based irtypumn the DSC records (Fig. S10), the

11
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fast cooling resulted in a glass transition arolia8 °C, followed by cold crystallization at
163 °C with enthalpy 36 J/g and melting at 320 @ wnthalpy 76 J/g. This means that fast
cooling initiated only partial crystallization di¢ melted sample. The slow cooling resulted in
glass transition at 133 °C followed by cold crylstation at 186 °C with enthalpy 30 J/g
followed by melting. In this case, however, the tingl occurred in two steps, one started at
274 °C with enthalpy 13 J/g and the second stat&90 °C with enthalpy 29 J/g. Between
these two endothermal peaks no exothermal was\wgbé@recrystallization), therefore the
melting corresponded to two distinct crystallinerdons in a sample. Hence, the sample
Th-DPP-2aresponded to a difference in the cooling ratetbigssin the glass transitions and
crystallinity degree. The stability of the asymmnetily substituted sampleh-DPP-2b

showed degradation at 264 °C (Fig. S11). The D$Grde(Fig. S11) showed a glass
transition at 113 °C upon fast cooling, which sdfto 110 °C upon slow cooling. The
heating segment applied for deleting the thermstbhy showed an exothermal peak with
onset 250 °C, probably corresponding to degradatibiile the consequent heating runs did
not show any melting process in the temperaturgaaised. We conclude that in comparison
to the sampld@h-DPP-2a asymmetrical substitution hampers the formatibtie crystals,

and the structure has the tendency to remain inm@moas rather than crystalline form, which
is less stable. The TG record of Bg'-symmetrically substituted samplé&-DPP-2c

showed a continuous decrease in mass from 100 26Q6C (mass loss around 20%) while
above 250 °C the rate of mass decrease acceleratatie sample was degraded (Fig. S12).
For this reason, the correct temperature of theadiegion could not be determined using TG.
The DSC showed an endothermal process, probablyngn&lith onset at 221 °C overlaid by
an intensive exotherm at 246 °C attributed to ddafran of the melt (Fig. S12). We conclude
thatO,0'-substitution results in formation of significantgss stable derivatives in

comparison tdN,N'-substitution.
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Table 1 Summarized thermal properties of the materiatienimvestigation.

Compound DSC g me:tmg Sty ety Il | emitE cryst%cl)lli(ziation Sl I I-Drgé degr-lz;\%ation
°C °C J/g °C J/g °C °C °C °C
first heating 55 6 118 56 150 289
Th-DPP-1a | after fast cooling 55 10 118 56 15(
after slow cooling 53 12 118 56 15(
first heating 30* 40* 180 270
Th-DPP-1b | after fast cooling 23 20 0,04 18(
after slow cooling 23 22 0,02 18d
first heating 321 94 330 8 133 6 360 368
Th-DPP-2a | after fast cooling| 123 320 76 163 36 360
after slow cooling] 133 274 13 300 29 186 30 360
first heating 210 62 250 264
Th-DPP-2b | after fast cooling| 113 207 2 157 1 250
after slow cooling] 110 250
first heating 200** n.d.
Th-DPP-2c | after fast cooling| 36 221** 200
after slow coolingl 29 200

**when extended to 300°C melting occurred at 22i6dwed by degradation around 246°C
*started simultaneously with experiment
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3.2.Optical properties
The optical properties of DPP materials were stlidiesolution as well as in thin spin-casted

films to investigate the effects given by the positand the type of solubilization group

substitution.
12 ¢ L AL B r T ]
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1,0 —PL - - -
zosf ] - ]
7] N .
g r -
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Fig. 1. Absorption and fluorescence spectra of studied Di$2®lved in chloroform.

Table 2: Optical parameters of solutions determined frororiscence and absorption measurements.

Substitution | Aagsmax[MM]  Anssedge[NM]  ApL [NM] QY [%] 7[ns] Egopt [€V]
Th-DPP-1a 547 569 563 63+6 6.05 +0.01 2.23
Th-DPP-1b 533 602 602 0.8+05 0.63+0.02 2.16
Th-DPP-1c 505 598 - - 0 Not det.
Th-DPP-2a 549 572 562 65+5 6.07 £0.01 2.23
Th-DPP-2b 533 602 598 0.7+0.5 0.65+0.02 2.16
Th-DPP-2c 505 598 731 Not det.  0.32 +0.05 2.05

Absorption and fluorescence emission spectra argreuized in Fig. 1. We observed that
the major influence on the optical properties Hegosition of the substitutiobNN'-; N,O'-
andO,0'-) rather than the type of the solubilization groEfhyladamantyl and 2-ethylhexyl

solubilization groups provided similar spectra ahusion. Quantitative parameters describing
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the optical properties of solutions are summarinefiable 2. Absorption maximum is shifted
with the change of substitution position: whNéN'-substituted DPPs has a maximum at
approximately 548 nm\,O'-substituted derivatives has a maximum at 533 nd(30'- at
505 nm (see spectra on Fig. 1). These shifts sedra mainly the consequence of
suppression of electron transition to lower vilmatmodes in excited state in the case of

N,O'- andO,O'-derivatives (zero phonon transitions are supphsse

The position of the alkyl group also has a majdlueance on fluorescence emission spectra
(see Fig. 1). The emission maximumNyN'-derivatives was at 563 nm. Emission maximum
of N,O'-derivatives was bathochromically shifted to 600. Emission spectrum &,0'-
derivative has resolved vibronic structure in casitto absorption/excitation spectrum. This
is probably because the excited molecule is maegslthan in the ground state. A clear
emission spectrum @,O'-substituted derivatives was found only in the aafse

ethyladamantyl-substituted DPP with a maximum & @i3.

The photoluminescence quantum yields (PLQY) drap wubstitution irO-position
dramatically. WhileN,N'-derivatives have relatively high fluorescence duanyields about
60 %,N,O'-derivatives showed PLQY only of about 1%. The PL&YD,O'-derivatives was
found to be too small for quantitative evaluatidhe fluorescence quantum yield relates to
the fluorescence lifetime, which was found fN'-derivatives to be about 6 ns, O’

derivatives 0.6 ns and f@,O'-derivatives only 0.3 ns.

The intersection point of emission and absorptxcitation spectra can be used to provide
information about the HOMO-LUMO differend®, oo« This quantity was found to be 2.23 eV
for N,N'-derivatives, 2.16 eV forN,O'-derivatives and 2.05eV foiO,0O'-derivatives,
respectively. These values are very close and pmaside other evidence of the above-
mentioned hypothesis about suppressed electrositicars from the ground state to the
excited state with the lowest vibration energyha tase oO-substituted derivatives.
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Next, thin films from studied DPPs were characetiz’repared films were annealed at

different temperatures, from 50 to 300 °C with eraents of 50 °C. The changes in the

layers’ quality (morphological as well as possitégyradation) were studied by optical spectra

measurements. Absorption and fluorescence specast@ast and annealed films are

summarized in plots on Fig. 2. The determined apparameters are summarized in

Table 3. In contrast to solutions, a strong imdiche alkyl substitution position as well as

the kind of substituents on the absorption and siomsspectra was observed.

1.2

1.2

B
\

T 0 [ N T I
F ——0 Th-DPP-1a E : Th DPP-1b 5\
%\ 1.2 1.0 : M«,MAWM 1.0-— \
B 08 F
.8
g
o
z
2
R7)
=
2 -
8 E
£ 04F i
= - .
2 . \\ \*w‘,‘\—.
O'OE\I./.I...%.FH 4
400 500 600 700 800 4 500 600 700 800
Wavelength (nm) Wavelength (nm)

400

700
Wavelength (nm)

500 600 800

Fig. 2. Optical spectra of thin films annealed at differemmhperatures. The curves marked by O are
spectra of as-cast films.

Table 3: Optical parameters of thin films.

as cast film annealed film
Substitution Ans max [NM] Amssedge[PM]  ApL [NM] | Aagsmax [NM]  Angs edge[NM] Ap [nm]
Th-DPP-1a 508 613 696 510 613 695
Th-DPP-1b 518 671 732 562 672 5
Th-DPP-1c 508 622 509 621 5
Th-DPP-2a 566 600 691 593 608 588
Th-DPP-2b 541 623 740 547 633 -
Th-DPP-2¢ 506 730 627 =750
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One of the most significant differences betweent2dbexyl and ethyladamantyl
derivatives is the thermal stability of the layérke films prepared from 2-ethylhexyl
derivatives annealed already at low temperaturgtsnoegrity and over 150 °C vanished from
the substrate (evaporated). This is consistent fivithngs from thermal characterization,
which showed that the melting point of 2-ethylhedgtivatives is up to 120 °C while
ethyladamantyl substituted materials were meltadraperatures over 200 °C. Thus films
from ethyladamantyl derivatives had better therstalbility. In optical spectra this process
was observed as a decrease of signal intensityF{ge@). Layer quality changes were also
observed by optical microscopy and the temperatahgced changes were documented by

photos (see thBupplementary Informatiotig. S13-Fig. S14).

The decrease in the fluorescence intensity offth®PP-1aderivative and of both,O'-
substituted derivatives (see spectra in Fig. pyeslominantly a result of the films’ integrity
losses during annealing, but a contribution of mwoler packing changes cannot be excluded.
The fluorescence intensity of a layer from Tte DPP-2aderivative unequivocally increased
after annealing, thus the fluorescence quantuna yigls increased. This can be evidence for a

longer excitons lifetime as result of higher molecwrder.

Thin films fromO,O'-derivatives were not fluorescent as follows framves in the plot
on Fig. 2, which correspond to the background siffoen the fluorimeter without the
fluorescence signal. This result was expectedearctntext of the weak fluorescence of

solutions.

Looking at the absorption and emission spectravalsade, we can observe significant
differences between the studied materials’ behamiogaction to thermal annealing. As cast
films from Th-DPP-1lashows spectra with significantly lower zero phom@msition

intensity resulting in maximum shifted hypsochroatiiz comparing to the diluted solution.
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This shift is typically assigned to H-aggregatidhermal annealing has little influence to the
shape of the spectrum. On the other hand, the ptiimoof as-casth-DPP-2ais similar to

the diluted solutions but changes dramatically ugamealing. The annealed films showed
significant bathochromic shift revealing strongemmholecular interactions induced by the
ethyladamantyN-substitution. These interactions can be the reémodmigh charge carrier

mobilities observed in our previous work [33].

In the case of botN,O'-substituted derivative§ b-DPP-1b andTh-DPP-2b) the optical
spectra have a shape which at first sight suggestd evidence for J-aggregation. Their as-
cast films have a very similar position of absaptE 530 nm) and emissior (735 nm)
maxima and in the case of the absorption maxinsaptactically the same as for the solutions
(533 nm). This implies that molecules in films haveather individual character, without
strong interactions. However, the absorption spectof film from theTh-DPP-1b derivative
has an absorption edge at 671 nm, while the fiomftheTh-DPP-2b derivative has an
absorption edge at only 623 nm. The absorptiontenisesolution were 600 nm for both
derivatives. The extending of the absorption barfidros to longer wavelengths is evidence
of intermolecular interaction, which seems to beersignificant in the case of the
2-ethylhexyl derivative h-DPP-1b. Observation of the thin films’ structure in ojatic
microscopy (see Fig. 3) revealed that the frestaaslayer from the 2-ethylhexyl derivative
(Th-DPP-1Db) is crystalline, while the layer from the ethylatntyl derivative Th-DPP-2b)
seems to be amorphous. Intermolecular interactionadecules in films is also manifested by
the emission maxima position, because in the cblleng, they are in comparison with the

solution bathochromically shifted by approximat&B0 nm.

Thermal annealing had practically no effect ondptical spectra shape of films from
ethyladamantyl-substituted derivatives. The radmeorphous character of th@-DPP-2b

material was also confirmed by thermal charactddmaln the case of thEh-DPP-1b
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derivative, thermal annealing caused a relativeeage of absorption peak intensity at longer
wavelengths, and thus the absorption spectrum afteealing at 150 °C has a more
J-aggregation-like character. The film during aringaat all temperatures was at least
particularly melted according to the picture frontrascopy (see th8upplementary
Information Fig. S13Fig. S14). Thus, possible structural changes wbahexplain the
observed changes in spectra, took place in theandlduring solidification. At temperatures

higher than 150 °C the film was destroyed.

The absorption maxima positions of as-cast thimdiprepared fror®,O'-derivatives are
very near to solutions=(505 nm). The presence mftintermolecular interactions in films
can be deduced only from the bathochromic shiéthsorption edges. In the case of
Th-DPP-1cderivative, the shift of absorption edge is onlyak, but in the case of
Th-DPP-2cthe absorption edge is even 120 nm shifted in @sisqn with the solutions.
While the overall spectra shape of the 2-ethylhasytast film suggests that the molecules in
the films keep a considerably individual charadtee, film of the ethyladamantyl derivative
seems to be at least partially ordered. The phota bptical microscopy confirms the
crystalline structure of the layer from this maaéfsee Fig. 3). It should be noted that the
2-ethylhexyl derivative has a waxy character, thisrather more liquid than solid (see
photos on Fig. 4 and thermal characterization)s Bixplains the observed weak
intermolecular interaction in the spectra. The fleszence emission was not found in both
cases as was already reported. Thermal annealihg icase of the 2-ethylhexyl derivative
caused only layer destruction which is in good agrent with TGA data. It is a consequence
of the degradation of the material and the low melpoint (see pictures in the
Supplementary Informatignin the case of the ethyladamantyl derivaiiveDPP-2¢, the
thermal annealing above 150 °C caused the absorgpiectrum to have the J-aggregation

character with a maximum at 627 nm. However, waigpect to the results from thermal
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characterizations, which show that this derivahas low thermal stability, it cannot be
guaranteed that the new order of material afteealimg is not the result of co-crystallization
of the original material and degradation produttese changes after annealing at

temperature above 200 °C are results of re-cryzsitbn from more or less melted matter.

Th-DPP-1a Th-DPP-1b Th-DPP-1c
- -
Th-DPP-2a Th-DPP-2b Th-DPP-2¢

Fig. 3. Thin films directly after spin-casting depositi(as-cast).

Th-DPP-1a Th-DPP-1b Th-DPP-1c

+ oy

Th-DPP-2a Th-DPP-2b Th-DPP-2c

Fig. 4. Pictures of the studied materials from optical wscopy. While most of the materials are
crystalline,0,0'-ethylhexyl derivativelrh-DPP-1cis waxy.
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4. CONCLUSION

In summary, we have synthesized and subsequentgtigated two series of alkylated DPP
derivativesN,N'-, N,O'- andO,O'-substituted by 2-ethylhexyl and ethyladamantylichalt

can be summarized that according to the observecabppectra and the films’ pictures from
optical microscopy, the 2-ethylhexyl group enhanbesfilms’ crystallization, especially in
the case of asymmetrical substitutioNij®'-positions. On the other hand, derivatives
alkylated by ethyladamantyl chains showed bettdeoif the substitution was symmetrical in
O,0'-positions. This observation is in good agreemdtit the found low glass transition
temperatures (20—40 °C) in both cases.

Thermal measurements also revealed that substitititheO-position leads to worse
thermal stability of materials. Next, it can beewthat the ethyladamantyl side group gave
the materials a higher melting point and betterrtta stability than 2-ethylhexyl, as was
confirmed by all presented methods (TG and DSC).

The used solubilization groups and substitutiontjmss have a significant influence on
thin films’ consistency and stability. Results frahis work can prove valuable especially in
the design and fabrication of organic electrical aptoelectrical devices, which requires high

molecular order of material as well as structutalbgity.
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2. Thermal analysis
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615 3. Optical properties
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618 Fig. S13.Thin film pictures from optical microscopy aftezgbsition and annealing for 2-ethylhexyl
619 substituted DPP derivatives.
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Highlights
* Two series of asymmetrically substituted DPP derivatives were synthesized.

* Optica properties (both in solution and thin layers) and thermal properties (TGA and
DSC analyses) were comprehensively studied for al prepared DPP derivatives.

» Effects of alkyl chain character and binding position in DPP molecule were
investigated.

» O-substitution caused a significant decrease in the thermal stability of DPP derivatives
compared with N-alkylated.

» Ethyladamantyl side chain as arigid aicyclic substituent contributed very effectively
to the increase of melting point and thermal stability compared to 2-ethylhexyl
substituted DPPs.
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