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Figure 1. Structures of the natural products, scabellones A (1) and B (2
sulfate 3 and chromenol 4, and related hydroquinone 5.
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Stirring 2-geranyl-6-methoxy-1,4-hydroquinone in pyridine/O2 or 2-geranyl-6-methoxy-1,4-benzoqui-
none in pyridine/N2 affords the dimeric meroterpenoid natural products, scabellones A–C in modest to
low yields and also identifies 2-methoxy-6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone (scabellone
E) as a new natural product. The corresponding reaction of the des-methoxy analogue, 2-geranyl-1,4-
benzoquinone in degassed pyridine for three days afforded the natural product cordiachromene A (15%
yield) and 6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone (12%), the latter being a likely biosynthetic
precursor to the marine meroterpenoid alkaloids, conicaquinones A and B.

� 2015 Elsevier Ltd. All rights reserved.
), quinol
Ascidians belonging to the genus Aplidium (Order Enterogona,
Family Polyclinidae) are known to produce a variety of bioactive
marine natural products.1 We recently described the isolation of
a series of meroterpenoid natural products including scabellones
A (1) and B (2), 2-geranyl-6-methoxy-1,4-hydroquinone-4-sulfate
(3) and 8-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-
benzopyran-6-ol (4) (Fig. 1) from a New Zealand collection of
Aplidium scabellum.2 Scabellone B was identified as a moderately
active antimalarial agent, making it of interest for structure-
activity relationship studies. The pseudodimeric structures of the
scabellones suggested that their biogenesis proceeds via dimerisa-
tion of hydroquinone 5 and/or quinone 6. In continuation of our
studies on the biomimetic synthesis of natural products,3,4 we
herein report on our investigations of bio-inspired coupling reac-
tions of 5 and 6 that afforded scabellones A–C, and which identified
the structurally-related 2-methoxy-6-(4-methylpent-3-en-1-yl)-
1,4-naphthoquinone (7, scabellone E) as a new natural product.

The combination of copper(I) chloride, pyridine and oxygen has
been reported to mimic metal-centred oxidase enzymes as
catalysts for the oxidation and coupling of phenolic compounds.5

Reaction of hydroquinone 5 with O2–CuCl–pyridine at room tem-
perature gave quinone 6 (26%) and 2-methoxy-6-(4-methylpent-
3-en-1-yl)-1,4-naphthoquinone (7)6 (1%), while the reaction
undertaken at 0 �C (ice bath) afforded 6 (24%), 7 (1%) and the
dimeric products, scabellone B (2) (3%) and C (1%) (Scheme 1).

The formation of naphthoquinone 7 under these reaction condi-
tions, albeit in very low yields, was surprising. Previous efforts to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tetlet.2015.02.024&domain=pdf
http://dx.doi.org/10.1016/j.tetlet.2015.02.024
mailto:b.copp@auckland.ac.nz
http://dx.doi.org/10.1016/j.tetlet.2015.02.024
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


(i)
5 2

O
MeO

O 6
O

O

MeO

7

+

3
5

8

1'

1

3

Scheme 1. Reagents and conditions: (i) CuCl, pyridine, O2, 0 �C, 30 min, 2 (3%), 6
(24%), 7 (1%).
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Figure 2. Structures of chromenol 8 and chroman 9 dimers and tectol 10.

O

O

R

O

O

R (i)
O

OH

R

+

11 R= H
12 R= prenyl
13 R= geranyl

14 R= H
15 R= prenyl
16 R= geranyl

17R = H
18R = prenyl
19R = geranyl

Scheme 3. Reagents and conditions: (i) degassed pyridine, N2, rt, 72 h, 14 (32%), 17
(2%); 15 (52%), 18 (7%); 16 (44%), 19 (1%).
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construct such functionalised naphthoquinones typically utilise a
Diels–Alder reaction between benzoquinone and a-cumene,7

though an earlier publication by Burnett and Thomson reported
that BF3 diethyl etherate effected the cyclisation of 2-methyl-5-
(3-methylbut-2-enyl)-l,4-benzoquinone to give chimaphilin.8 The
transformation of 5 into 7 can be considered biomimetic as the bio-
synthesis of 2-(4-methylpent-3-en-1-yl)anthraquinone (MPAQ)
has been shown to proceed via 2-geranyl-1,4-naphthoquinone9

and there are numerous reports in the literature of the co-isolation
of prenylated benzoquinones and the corresponding ring-closed
naphthoquinones.10 Indeed, with an authentic sample of naphtho-
quinone 7 in hand, re-examination of the extract fractions of Apli-
dium scabellum derived from our previous efforts to isolate
naturally occurring scabellones A–D led to identification of the
presence of the compound. Thus we have assigned the trivial name
scabellone E to 7.

Further experiments established pyridine as the only necessary
component for the formation of dimeric products. Thus stirring
hydroquinone 5 in pyridine under O2 at room temperature for
30 min yielded the dimeric products scabellone A (1) and B (2),
as well as chromenol 4, quinone 6, and naphthoquinone 7
(Scheme 2).

The corresponding reaction of quinone 6 in pyridine, degassed
and under nitrogen and stirred overnight, afforded scabellone A
(1) (9%) and chromenol 4 (10%), but only trace amounts of the
dimeric products, scabellone B (2), scabellone C, and dichromenol
811 (Fig. 2).

Extending this latter reaction to three days using degassed pyr-
idine afforded a complex mixture of products, from which chro-
menol 4 (5%) and naphthoquinone 7 (8%) were purified. The
generality of the transformation of quinone 6 into naphthoquinone
7 in pyridine was investigated using structurally simpler benzoqui-
none analogues 11, 12 and 13.4,12 In each case, stirring in degassed
pyridine at room temperature for three days afforded complex
mixtures, from which were isolated the corresponding chromenols
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Scheme 2. Reagents and conditions: (i) pyridine, O2, rt,
14 (32%)/15 (52%)/16 (44%)13 and naphthoquinones 17 (2%)/18
(7%)/19 (1%)14 (Scheme 3).

In the specific case of the reaction of 2-geranylbenzoquinone
12, in addition to cordiachromene A (15) and 6-(4-methylpent-3-
en-1-yl)-1,4-naphthoquinone (18), 2-geranyl-1,4-hydroquinone
(9%) was identified in the product mixture. This observation sug-
gested that quinone 12 was also an oxidant in the reaction, acting
to oxidise a naphthoquinone precursor. Repeating each of the reac-
tions of 11–13 with the addition of one equivalent of 1,4-benzoqui-
none as a sacrificial co-oxidant afforded slightly increased yields of
naphthoquinones 17–19 (3%, 12% and 9%, respectively). Intrigu-
ingly, in each of these reactions, production of the corresponding
chromenol 14–16 was suppressed. Trialing the addition of two
equivalents of 1,4-benzoquinone to the reaction of 12 gave no fur-
ther increase in the yield of naphthoquinone 18, but did lead to the
production of benzo[c]chromene-7,10-dione 2015 (Fig. 3) in 7%
yield. Naphthoquinone 18 represents the terpenoid core of conic-
aquinones A and B, natural products previously reported from
the Mediterranean ascidian Aplidium conicum.16

We have recently reported that the reaction of 12 with Et3N in
CH2Cl2 followed by overnight oxidation over silica gel afforded
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30 min, 1 (11%), 2 (3%), 4 (trace), 6 (1.5%), 7 (1.5%).
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Figure 3. Structure of benzo[c]chromene-7,10-dione 20.

1488 S. T. S. Chan et al. / Tetrahedron Letters 56 (2015) 1486–1488
dimers that could be elaborated into thiaplidiaquinones A and B,
which are cytotoxic thiazinoquinones also isolated from Aplidium
conicum.4 Using similar reaction conditions with quinone 6 affor-
ded only complex mixtures from which no individual products
could be purified.

It has been previously reported that phenyliodine(III) bis(tri-
fluoroacetate) (PIFA) can be activated with BF3.Et2O to promote
oxidative carbon–carbon bond formation.17 Using hydroquinone
5 as the starting material, reaction at 0 �C in dry acetonitrile
yielded only benzoquinone 6 and no oxidative coupling products.
However, when the temperature was decreased to �40 �C and
the solvent changed to dry CH2Cl2, chroman dimer 918 was formed
(62%) (Fig. 2). Repeating the reaction using chromenol 4 as the
starting material afforded dichromenol 8 (89%). While we and
others have found that reaction of the dichromenol tectol (10) with
chloranil effects ring closure to yield the 9,10-dihydropyrano-
benzo[c,f]chromene-1,4-dione natural product tecomaquinone I,3

efforts directed towards effecting a similar ring closure of 8 or 9
to yield scabellones C/D were unsuccessful.

In conclusion, we have achieved a bio-inspired synthesis of the
meroterpenoids scabellone A–C, finding that the reaction of 2-ger-
anyl-6-methoxy-1,4-hydroquinone in pyridine under O2 or 2-gera-
nyl-6-methoxy-1,4-benzoquinone in pyridine under N2 affords the
dimeric natural products in modest to low yields. The study also
identified 2-methoxy-6-(4-methylpent-3-en-1-yl)-1,4-naphtho-
quinone as a new natural product (scabellone E).
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