Tetrahedron Letters 56 (2015) 1486-1488

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Bio-inspired dimerisation of prenylated quinones directed towards the synthesis of the meroterpenoid natural products, the scabellones

Tetrahedror

Susanna T. S. Chan[†], Michael A. Pullar, Iman M. Khalil, Emmanuelle Allouche, David Barker, Brent R. Copp^{*}

School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1142, New Zealand

ARTICLE INFO

Article history: Received 21 October 2014 Revised 22 January 2015 Accepted 8 February 2015 Available online 13 February 2015

Keywords: Meroterpenoid Dimerisation Bio-inspired Marine natural product Scabellone

ABSTRACT

Stirring 2-geranyl-6-methoxy-1,4-hydroquinone in pyridine/ O_2 or 2-geranyl-6-methoxy-1,4-benzoquinone in pyridine/ N_2 affords the dimeric meroterpenoid natural products, scabellones A–C in modest to low yields and also identifies 2-methoxy-6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone (scabellone E) as a new natural product. The corresponding reaction of the des-methoxy analogue, 2-geranyl-1,4-benzoquinone in degassed pyridine for three days afforded the natural product cordiachromene A (15% yield) and 6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone (12%), the latter being a likely biosynthetic precursor to the marine meroterpenoid alkaloids, conicaquinones A and B.

© 2015 Elsevier Ltd. All rights reserved.

Ascidians belonging to the genus Aplidium (Order Enterogona, Family Polyclinidae) are known to produce a variety of bioactive marine natural products.¹ We recently described the isolation of a series of meroterpenoid natural products including scabellones A (1) and B (2), 2-geranyl-6-methoxy-1,4-hydroquinone-4-sulfate and 8-methoxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-(3) benzopyran-6-ol (4) (Fig. 1) from a New Zealand collection of Aplidium scabellum.² Scabellone B was identified as a moderately active antimalarial agent, making it of interest for structureactivity relationship studies. The pseudodimeric structures of the scabellones suggested that their biogenesis proceeds via dimerisation of hydroquinone **5** and/or quinone **6**. In continuation of our studies on the biomimetic synthesis of natural products,^{3,4} we herein report on our investigations of bio-inspired coupling reactions of 5 and 6 that afforded scabellones A-C, and which identified the structurally-related 2-methoxy-6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone (**7**, scabellone E) as a new natural product.

The combination of copper(I) chloride, pyridine and oxygen has been reported to mimic metal-centred oxidase enzymes as catalysts for the oxidation and coupling of phenolic compounds.⁵ Reaction of hydroquinone **5** with O_2 -CuCl-pyridine at room temperature gave quinone **6** (26%) and 2-methoxy-6-(4-methylpent**Figure 1.** Structures of the natural products, scabellones A (1) and B (2), quinol sulfate **3** and chromenol **4**, and related hydroquinone **5**.

3-en-1-yl)-1,4-naphthoquinone (**7**)⁶ (1%), while the reaction undertaken at 0 °C (ice bath) afforded **6** (24%), **7** (1%) and the dimeric products, scabellone B (**2**) (3%) and C (1%) (Scheme 1).

The formation of naphthoquinone **7** under these reaction conditions, albeit in very low yields, was surprising. Previous efforts to

^{*} Corresponding author. Tel.: +64 9 373 7599; fax: +64 64 373 7422.

E-mail address: b.copp@auckland.ac.nz (B.R. Copp).

[†] Current address: Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Building 562, Frederick, MD 21702, USA.

Scheme 1. Reagents and conditions: (i) CuCl, pyridine, O₂, 0 °C, 30 min, 2 (3%), 6 (24%), 7 (1%).

construct such functionalised naphthoguinones typically utilise a Diels–Alder reaction between benzoquinone and α -cumene,⁷ though an earlier publication by Burnett and Thomson reported that BF₃ diethyl etherate effected the cyclisation of 2-methyl-5-(3-methylbut-2-enyl)-l,4-benzoquinone to give chimaphilin.⁸ The transformation of **5** into **7** can be considered biomimetic as the biosynthesis of 2-(4-methylpent-3-en-1-yl)anthraquinone (MPAO) has been shown to proceed via 2-geranyl-1,4-naphthoquinone⁹ and there are numerous reports in the literature of the co-isolation of prenylated benzoquinones and the corresponding ring-closed naphthoquinones.¹⁰ Indeed, with an authentic sample of naphthoquinone 7 in hand, re-examination of the extract fractions of Aplidium scabellum derived from our previous efforts to isolate naturally occurring scabellones A-D led to identification of the presence of the compound. Thus we have assigned the trivial name scabellone E to 7.

Further experiments established pyridine as the only necessary component for the formation of dimeric products. Thus stirring hydroquinone **5** in pyridine under O_2 at room temperature for 30 min yielded the dimeric products scabellone A (**1**) and B (**2**), as well as chromenol **4**, quinone **6**, and naphthoquinone **7** (Scheme 2).

The corresponding reaction of quinone **6** in pyridine, degassed and under nitrogen and stirred overnight, afforded scabellone A (**1**) (9%) and chromenol **4** (10%), but only trace amounts of the dimeric products, scabellone B (**2**), scabellone C, and dichromenol **8**¹¹ (Fig. 2).

Extending this latter reaction to three days using degassed pyridine afforded a complex mixture of products, from which chromenol **4** (5%) and naphthoquinone **7** (8%) were purified. The generality of the transformation of quinone **6** into naphthoquinone **7** in pyridine was investigated using structurally simpler benzoquinone analogues **11**, **12** and **13**.^{4,12} In each case, stirring in degassed pyridine at room temperature for three days afforded complex mixtures, from which were isolated the corresponding chromenols

Figure 2. Structures of chromenol 8 and chroman 9 dimers and tectol 10.

Scheme 3. Reagents and conditions: (i) degassed pyridine, N₂, rt, 72 h, **14** (32%), **17** (2%); **15** (52%), **18** (7%); **16** (44%), **19** (1%).

14 (32%)/**15** (52%)/**16** (44%)¹³ and naphthoquinones **17** (2%)/**18** (7%)/**19** $(1\%)^{14}$ (Scheme 3).

In the specific case of the reaction of 2-geranylbenzoquinone 12, in addition to cordiachromene A (15) and 6-(4-methylpent-3en-1-yl)-1,4-naphthoquinone (18), 2-geranyl-1,4-hydroquinone (9%) was identified in the product mixture. This observation suggested that quinone 12 was also an oxidant in the reaction, acting to oxidise a naphthoquinone precursor. Repeating each of the reactions of 11-13 with the addition of one equivalent of 1,4-benzoquinone as a sacrificial co-oxidant afforded slightly increased yields of naphthoquinones 17-19 (3%, 12% and 9%, respectively). Intriguingly, in each of these reactions, production of the corresponding chromenol 14-16 was suppressed. Trialing the addition of two equivalents of 1.4-benzoquinone to the reaction of **12** gave no further increase in the yield of naphthoquinone **18**, but did lead to the production of benzo[c]chromene-7,10-dione **20**¹⁵ (Fig. 3) in 7% vield. Naphthoquinone 18 represents the terpenoid core of conicaquinones A and B, natural products previously reported from the Mediterranean ascidian Aplidium conicum.¹⁶

We have recently reported that the reaction of 12 with Et₃N in CH₂Cl₂ followed by overnight oxidation over silica gel afforded

Scheme 2. Reagents and conditions: (i) pyridine, O₂, rt, 30 min, 1 (11%), 2 (3%), 4 (trace), 6 (1.5%), 7 (1.5%).

Figure 3. Structure of benzo[c]chromene-7,10-dione 20.

dimers that could be elaborated into thiaplidiaguinones A and B, which are cytotoxic thiazinoquinones also isolated from Aplidium conicum.⁴ Using similar reaction conditions with guinone **6** afforded only complex mixtures from which no individual products could be purified.

It has been previously reported that phenyliodine(III) bis(trifluoroacetate) (PIFA) can be activated with BF₃.Et₂O to promote oxidative carbon-carbon bond formation.¹⁷ Using hydroquinone **5** as the starting material, reaction at 0 °C in dry acetonitrile vielded only benzoquinone **6** and no oxidative coupling products. However, when the temperature was decreased to $-40 \,^{\circ}\text{C}$ and the solvent changed to dry CH₂Cl₂, chroman dimer **9**¹⁸ was formed (62%) (Fig. 2). Repeating the reaction using chromenol 4 as the starting material afforded dichromenol 8 (89%). While we and others have found that reaction of the dichromenol tectol (10) with chloranil effects ring closure to yield the 9,10-dihydropyranobenzo[*c*,*f*]chromene-1,4-dione natural product tecomaquinone I,³ efforts directed towards effecting a similar ring closure of 8 or 9 to yield scabellones C/D were unsuccessful.

In conclusion, we have achieved a bio-inspired synthesis of the meroterpenoids scabellone A-C, finding that the reaction of 2-geranyl-6-methoxy-1,4-hydroquinone in pyridine under O₂ or 2-geranyl-6-methoxy-1,4-benzoquinone in pyridine under N₂ affords the dimeric natural products in modest to low yields. The study also identified 2-methoxy-6-(4-methylpent-3-en-1-yl)-1,4-naphthoquinone as a new natural product (scabellone E).

Acknowledgment

We acknowledge the University of Auckland for funding.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.02. 024. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. Zubia, E.; Ortega, M. J.; Salva, J. Mini-Rev. Org. Chem. 2005, 2, 389–399.
- Chan, S. T. S.; Pearce, A. N.; Januario, A. H.; Page, M. J.; Kaiser, M.; McLaughlin, R. 2. J.; Harper, J. L.; Webb, V. L.; Barker, D.; Copp, B. R. J. Org. Chem. 2011, 76, 9151-9156.
- 3. Cadelis, M. M.; Barker, D.; Copp, B. R. Synlett 2012, 2939-2942.
- 4. Khalil, I. M.; Barker, D.; Copp, B. R. J. Nat. Prod. 2012, 75, 2256-2260.

- 5. Kametani, T.; Ihara, M.; Takemura, M.; Satoh, Y.; Terasawa, H.; Ohta, Y.; Fukumoto, K.; Takahashi, K. J. Am. Chem. Soc. 1977, 99, 3805–3808.
- 6. Data for **7**: $R_f(CH_2Cl_2)$ 0.57; IR v_{max} (ATR) 1683, 1652, 1609, 1243 cm⁻¹, ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 8.04 (1H, d, J = 8.0 \text{ Hz}, H-5), 7.90 (1H, d, J = 1.6 \text{ Hz}, H-6),$ 7.51 (1H, dd, J = 8.0, 1.6 Hz, H-8), 6.14 (1H, s, H-2), 5.12 (1H, m, H-3'), 3.90 (3H, s, 3-OCH₃), 2.77 (2H, t, J = 7.5 Hz, H₂-1'), 2.35 (2H, td, J = 7.5 Hz, H₂-2'), 1.67 (3H, s, H₃-6'), 1.53 (3H, s, H₃-5'); ¹³C NMR (CDCl₃, 100 MHz) δ 185.3 (C-1), 180.0 (C-4), 160.6 (C-3), 150.0 (C-7), 133.6 (C-8), 133.2 (C-4'), 132.0 (C-8a), 129.1 (C-4a), 126.9 (C-5), 126.1 (C-6), 122.6 (C-3'), 109.7 (C-2), 56.4 (3-OCH₃), 36.3 (C-1'), 29.3 (C-2'), 25.6 (C-6'), 17.7 (C-5'); (+)-HRESIMS m/z 271.1322 [M+H]⁺ (calcd for C₁₇H₁₉O₃, 271.1329).
- 7. Gordaliza, M.; Miguel del Corral, J. M.; Castro, M. A.; Mahiques, M. M.; Garcia-Gravalos, M. D.; San Feliciano, A. Bioorg. Med. Chem. Lett. 1996, 6, 1859–1864.
- 8 Burnett, A. R.; Thomson, R. H. J. Chem. Soc. C 1968, 857-860.
- 9 Furumoto, T.; Hoshikuma, A. Phytochemistry 2011, 72, 871-874.
- 10. Sunassee, S. N.; Davies-Coleman, M. T. Nat. Prod. Rep. 2012, 29, 513-535.
- 11. Data for **8**: R_f (MeOH/CH₂Cl₂, 1:9) 0.63; IR (ATR) v_{max} 3446, 2929, 1583, 1443, 1198 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.55 (2H, s, H-7), 5.89 (2H, d, J = 9.9 Hz, H-4), 5.58 (2H, d, J = 9.9 Hz, H-3), 5.08 (2H, t, J = 7.1 Hz, H-3'), 4.55 (2H, s, OH), 3.88 (6H, s, OCH3-10), 2.12 (4H, m, H2-2'), 1.76 (2H, m, H2-1'a), 1.67 (2H, obscured, H₂-1′b), 1.66 (6H, s, H₃-5), 1.57 (6H, s, H₃-6), 1.43 (6H, s, H₃-9); ¹³C NMR (CDCl₃, 125 MHz) δ 150.0 (C-8), 148.2 (C-6), 136.5 (C-8a), 132.0 (C-3, 4'), 124.2 (C-3'), 122.0 (C-4a), 120.4 (C-4), 105.8 (C-5), 100.3 (C-7), 77.9 (C-2), 56.3 (C-10), 40.4 (C-1'), 26.0 (C-9), 25.8 (C-5'), 22.8 (C-2'), 17.7 (C-6'); (+)-HRESIMS [M+H]⁺ 547.3065 (calcd for C₃₄H₄₃O₆, 547.3054).
- (a) Mehta, G.; Pan, S. C. Org. Lett. 2004, 6, 811-813; (b) Mehta, G.; Pan, S. C. Tetrahedron Lett. 2005, 46, 5219–5223.
- Spectroscopic data observed for 14-16 agreed with those previously reported 13. in the literature: (a) Pelter, A.; Hussain, A.; Smith, G.; Ward, R. S. Tetrahedron 1997, 53, 3879-3916; (b) Kim, I. K.; Park, S. K.; Erickson, K. L. Magn. Reson. Chem. 1993. 31, 788-789.
- 14. Data for 17: R_f (hexane/CH₂Cl₂, 1:2) 0.61; IR (ATR) v_{max} 2925, 1662, 1598, 1305, 822 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.98 (1H, d, J = 8.0 Hz, H-8), 7.89 (1H, d, J = 2.0 Hz, H-5), 7.55 (1H, dd, J = 8.0, 2.0 Hz, H-7), 6.94 (2H, s, H-2/H-3), 2.51 (3H, s, H₃-1'); ¹³C NMR (CDCl₃, 100 MHz) δ 185.4 (C-1/C-4), 145.1 (C-6), 138.8 (C-2), 138.5 (C-3), 134.6 (C-7), 131.8 (C-4a), 130.1 (C-8a), 126.8 (C-5), 126.6 (C-(a), 21.9 (C-1'). Data for **18**: *R_f* (hexane/CH₂Cl₂, 1:2) 0.72; IR (ATR) v_{max} 3682, 2923, 2866, 1664, 1601, 1304, 1055, 1033, 1012, 833, 754 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (1H, d, J = 8.0 Hz, H-8), 7.90 (1H, d, J = 2.0 Hz, H-5), 7.56 (1H, dd, J = 8.0, 2.0 Hz, H-7), 6.95 (2H, s, H-2/H-3), 5.13 (1H, m, H-3'), 2.78 (2H, t, J = 8.0 Hz, H₂-1'), 2.35 (2H, dt, J = 8.0, 7.5 Hz, H₂-2'), 1.67 (3H, s, H₃-5'), 1.53 (3H, s, H₃-6'); ¹³C NMR (CDCl₃, 100 MHz) δ 185.4 (C-4), 185.0 (C-1), 149.5 (C-6), 138.8 (C-2), 138.5 (C-3), 134.2 (C-7), 133.2 (C-4'), 131.8 (C-4a), 129.9 (C-8a), 126.6 (C-5), 126.2 (C-8), 122.6 (C-3'), 36.3 (C-1'), 29.3 (C-2'), 25.7 (C-5'), 17.7 (C-6'); (+)-HRESIMS $[M+H]^+ m/z$ 241.1225 (calcd for C₁₆H₁₆O₂, 241.1223). Data for **19**: *R*_f(hexane/CH₂Cl₂, 1:2) 0.68; IR (ATR) *v*_{max} 2922, 2856, 1666, 1601, 1303, 833 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.99 (1H, d, *J* = 7.9 Hz, H-8), 7.90 (H, d, *J* = 1.6 Hz, H-5), 7.56 (1H, dd, *J* = 7.9, 1.6 Hz, H-7), 6.94 (2H, s, H-2/H-3), 5.14 (1H, m, H-3'), 5.06 (1H, m, H-7'), 2.79 (2H, t, *J* = 7.5 Hz, H₂-1'), 2.36 (2H, q, *I* = 7.5 Hz, H₂-2'), 2.03 (2H, m, H₂-6'), 1.98 (2H, m, H₂-5'), 1.67 (3H, d, *J* = 1.0 Hz, H₃-9'), 1.59 (3H, s, H₃-10'), 1.53 (3H, s, H₃-11'); ¹³C NMR (CDCl₃, 100 MHz) δ 185.4 (C-4), 185.0 (C-1), 149.5 (C-6), 138.8 (C-3), 138.5 (C-2), 136.8 (C-4'), 134.2 (C-7), 131.8 (C-4a), 131.5 (C-8'), 129.9 (C-8a), 126.6 (C-5), 126.3 (C-8), 124.2 (C-7'), 122.4 (C-3'), 39.7 (C-5'), 36.3 (C-1'), 29.2 (C-2'), 26.6 (C-6'), 25.7 (C-9'), 17.7 (C-10'), 16.0 (C-11'); (+)-HRESIMS [M+Na]⁺ m/z 331.1673 (calcd for C₂₁H₂₄NaO₂, 331.1669). 15. Carbone, A.; Lucas, C. L.; Moody, C. J. J. Org. Chem. **2012**, 77, 9179–9189.
- Aiello, A.; Fattorusso, E.; Luciano, P.; Menna, M.; Esposito, G.; Iuvone, T.; Pala, 16. D. Eur. I. Org. Chem. 2003, 898–900.
- 17. Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Tetrahedron 2001, 57, 345-352.
- 18. Data for **9**: $R_{\rm f}$ (MeOH/CH₂Cl₂, 1:9) 0.56; IR (ATR) $\nu_{\rm max}$ 3462, 2937, 1606, 1442, 1220 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.52 (1H, s, H-7), 5.10–5.07 (1H, m, H-3), 3.86 (3H, s, OCH₃-10), 2.36–2.27 (1H, m, H₂-4a), 2.19–2.14 (1H, m, H₂-4b), 2.12–2.06 (3H, m, H₂-2' and H₂-1'a), 1.78–1.73 (2H, m, H₂-3), 1.67 (1H, m, H₂-4b) 1'b), 1.66 (3H, s, H₃-6'), 1.58 (3H, s, H₃-5'), 1.33 (3H, s, H₃-9); ¹³C NMR (CDCl₃, 75 MHz) δ 150.6 (C-8), 147.3 (C-6), 138.1 (C-8), 131.8 (C-4'), 124.3 (C-3'), 122.0 (C-4a), 108.7 (C-5), 98.2 (C-7), 75.8 (C-2), 56.1 (C-10), 39.9 (C-1'), 31.0 (C-3), 25.8 (C-6'), 24.4 (C-9), 22.6 (C-2'), 20.8 (C-4), 17.6 (C-5'); (+)-HRESIMS [M+H]⁺ 551.3367 (calcd for C₃₄H₄₇O₆, 551.3347).