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Abstract. Thioesculetin (TE) is a sulfur analogue of esculetin. The UV-Vis absorption maximum of TE at 470
nm shifted to 357 nm in the presence of oxidising agent such as m-chloroperoxy benzoic acid (m-CPBA). With
gradual increase in the m-CPBA concentration, the absorption band at 470 nm decreases while the band at 357
nm increases. The same system shows gradual increase in the fluorescence signal at 463 nm in the presence of
m-CPBA. The fluorescence signal was unaffected in the presence of common anions and metal cations. The
mechanism for optical signalling was due to the conversion of weakly fluorescent TE to fluorescent esculetin
through desulfurization reaction. 13C-NMR shows strong evidence in support of the chemical conversion of
TE to esculetin. TE may find applications to probe the redox environment in various chemical and biochemical
processes.
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1. Introduction

Coumarins are a class of benzopyran compounds that
exhibit exciting photophysical properties.1–6 These pro-
perties are sensitive to the surrounding solvent medium.
The medium dependent photophysical properties of
coumarin are often exploited to probe different physic-
ochemical processes in condensed media.7–21 To name
a few, investigation of solvatochromic properties,7–9

determination of the polarities of micro environments,
10,11 investigation of photoinduced electron transfer pro-
cesses,12–16 estimations of the solvent relaxation times,
etc.8–17,17–21 Coumarin derivatives are also known to
be very good sensors for various metal ions like,
Ca(II), Mg(II), Al(III), Cr(III), Fe(III), Ni(II), Cu(II),
Zn(II), Pb(II), Hg(II), and Ag(I).22–26 In the case of
anions, like fluoride, phosphate, cyanide, acetate or
benzoate, coumarin derivatives have served as good
chemosensors.22–24 The recognition mechanisms of
these chemosensors mainly involve photoinduced elec-
tron transfer, intramolecular charge transfer or fluores-
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cence resonance energy transfer. Apart from these pho-
tophysical processes, on application of mild chemical
stimulus, the probe molecule can be reversibly or irre-
versibly transformed to another chemical form. In such
cases the recognition is achieved by ‘on-off’/‘off-on’
fluorescence signalling or through ratiometric analysis,
where the probe molecule shows optical signalling in
distinct wavelengths before and after addition of chem-
ical stimulus.23 Coordination of coumarin derivatives
with metal ions or desulfurization under mild chemical
stimulus are the two processes where such type of recog-
nition is observed. It has been reported that the mild
chemical processes have advantages in terms of selec-
tivity and sensitivity. A large number of biochemical
processes occur continuously in the human body under
mild conditions and hence such probes find extensive
application in this regard.23,27

The functional analogue of coumarin, thiocoumarin
is an interesting molecule which acts as redox indica-
tor in the presence of various oxidants. In the presence
of oxidant, thiocoumarin is readily transformed to
coumarin.28,29 There is a distinct difference in the photo-
physical properties of coumarin and thiocoumarin.30,31
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Scheme 1. Structure of thioesculetin (TE).

Coumarin and thiocoumarin have absorption in dif-
ferent wavelength regions. Coumarins are generally
fluorescent but thiocoumarins are very weak fluo-
rophores. Chang and his group, have studied conversion
of different thiocoumarins to coumarins in the pres-
ence of various oxidising agents like hypochlorous
acid (HOCl), m-chloroperoxy benzoic acid (m-CPBA),
or trichloroisocyanuric acid.28,29,32 They have demon-
strated that during the conversion of the thioketone
group to ketone group, the fluorescence signal was
increased substantially. Also, they have shown that flu-
orescence signalling was less affected in the presence
of common interfering cations and anions. Apart from
being redox indicators, thiocoumarin derivatives were
also reported to show colorimetric and fluorescence sig-
nalling in the presence of trivalent gold ions.26 Excellent
selectivity for gold ions was achieved with the detec-
tion limit in the sub-micromolar level was reported.
Thioesculetin (TE) is a thiocoumarin derivative of 6,7-
dihydroxy coumarin commonly known as esculetin. The
chemical structure of TE is shown in Scheme 1. With
an aim to develop TE as a chemosensor in the presence
of the oxidant, we have reported the optical signalling
behaviour of TE in the presence of m-CPBA in this
manuscript. The probable mechanism of signalling has
been identified and the effect of interfering background
ions during flourescence signalling has been discussed.
Signalling behaviour has also been studied with other
oxidants like, hydroxyl radical, hydrogen peroxide and
superoxide radical.

2. Experimental

2.1 Chemicals and reagents

Esculetin and m-chloroperoxy benzoic acid (m-CPBA) were
purchased from Sigma Aldrich Chemicals. Lawesson’s
reagent was from Avra Synthesis Pvt. Ltd. India. All metal
salts, hydrogen peroxide and phosphate buffer were of ana-
lytical grade. Anhydrous toluene, ethyl acetate, methanol,
chloroform, petroleum ether, acetone were of synthetic grade.
Acetonitrile used was of HPLC grade. Water from Millipore
water purifier system was used for solution preparation and
freshly prepared solutions were used for experiments. The

solutions for absorption and fluorescence studies were pre-
pared in 10 mM phosphate buffer (pH 7) containing 10%
acetonitrile. Acetonitrile was added in the phosphate buffer
solution to overcome the solubility problem due to m-CPBA.
Fluorescence quantum yields of TE and esculetin were deter-
mined by relative method using Coumarin-1 laser dye as a
standard with a known quantum yield of 0.62 in acetonitrile.33

Hydroxyl and superoxide radicals were generated by radia-
tion chemical methods as reported in the literature.34

2.2 Instrumentation

FTIR spectra of the solid samples were recorded in KBr pel-
lets on a Bruker-Tensor 37 spectrometer. HRMS spectra were
recorded on Impact II Ultra-High-Resolution Time-of-Flight
Mass Spectrometer from Bruker Daltonik GmbH. 1HNMR
and 13CNMR were recorded on Bruker Ascend 500 NMR
spectrometer. Melting point was determined manually from
Buchi M-560 melting point apparatus. Steady state absorp-
tion and fluorescence spectra were recorded on JASCO V-650
spectrophotometer and JASCO FP-8500 spectrofluorometer,
respectively. For steady state irradiation, cobalt-60 radiation
source was used and the radiation dose was estimated by using
standard Fricke dosimeter.34

2.3 Synthesis of thioesculetin (TE)

A mixture of the esculetin (1 equivalent) and Lawesson’s
reagent [2,4-bis(4-thoxyphenyl)-1,3,2,4-dithiadiphosphetane
-2,4-disulfide] (2 equivalents) in anhydrous toluene was
refluxed for about 30 h according to reported method.35 After
cooling, the solvent was evaporated under reduced pressure
and the residue was extracted with ethyl acetate and water.
The ethyl acetate extract was further dried over Na2SO4.
The sticky residue was then separated by column chromatog-
raphy with petroleum ether-acetone mixture (8:2). Yield:
65–70%; M.p. 231–234 ◦C, 1H NMR (500 MHz, DMSO-d6):
(C9H6O3S), 6.95(s, 1H), 7.04(s, 1H), 7.06(d, J = 3 Hz, 1H),
7.76(d, J = 9 Hz, 1H) ppm; 13C NMR(500 MHz, DMSO-d6):
(C9H6O3S), 196.59, 152.66, 152.26, 144.95, 137.41, 125.64,
113.73, 112.09, 102.78 ppm; HRMS calculated for C9H6O3S
(+H): m/z: 195.0117, found: 195.0113. FTIR (C9H6O3S):
3379, 2983, 2349, 1554, 1473, 1259, 1130, 1025, 937, 810,
638, 518, 432 cm−1. The spectra for 1H, 13C NMR, HRMS
and FTIR (Figures S1–S4) are provided in electronic support-
ing information.

3. Results and Discussion

3.1 Steady state absorption and fluorescence spectra

Esculetin and TE have distinctive absorption bands in
the UV–Visible region. Esculetin has absorption max-
imum around 357 nm whereas for TE the maximum
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Figure 1. UV-Visible absorption spectra of TE (20 μM)
with m-CPBA (10–110 μM) at pH 7.0 (10 mM phosphate
buffer containing 10% acetonitrile). Inset (a) shows camer-
a-ready pictures of TE (A) and TE in presence of m-CPBA
(B). Inset (b) shows the change in absorbance at 470 and 357
nm for the same solution.

absorption appears at 470 nm. On addition of the m-
CPBA in the concentration range of 10 to 100 μM to a
solution of 20 μM TE, there was decrease in absorbance
at 470 nm with concomitant increase at 357 nm through
a crossover point at 400 nm (Figure 1). The color change
can be visualized by the naked eye, from yellow to col-
orless as shown in Figure 1, inset (a).

Above 100 μM concentration of m-CPBA, the
absorbance increase was not regular, in fact it starts to
decrease (Figure S5 in SI). Inset (b) of Figure 1 repre-
sents the absorbance change of TE at 470 nm and 357
nm with respect to m-CPBA concentrations.

Thiocoumarins are generally weakly fluorescent in
solution. The quantum yield for fluorescence emission
of TE was 0.023 in the solvent system under investiga-
tion. The change in fluorescence spectra of TE solutions
in the presence of m-CPBA were recorded by exciting
at 400 nm (Figure 2). The fluorescence signal at 463 nm
gradually increases with the increasing concentration of
m-CPBA up to 100 μM (Inset (a) of Figure 2). In this sit-
uation the florescence of the solution can be visualized
by the naked eye. The blue emission observed under UV
lamp is shown in Figure 2 inset (b).

The reason for exciting at 400 nm was to minimise
the contribution of fluorescence signal due to different
amount of light absorption by TE solution with addi-
tion of m-CPBA. From the absorption and fluorescence
spectra it was obvious that there was a change in the
chemical nature of TE in the presence of m-CPBA. In
the process of absorption and fluorescence changes, m-
CPBA itself does not contribute directly absorption and
fluorescence signal as shown in control absorption and
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Figure 2. Fluorescence titration of TE (20 μM) solution
with m-CPBA (10–110 μM) at pH 7.0 (10 mM phosphate
buffer containing 10% acetonitrile). λex = 400 nm. Inset (a)
shows the change in fluorescence intensity at 463 nm for the
same solutions. Inset (b) shows camera-ready pictures of TE
(A) and TE in presence of m-CPBA (B) under 366 nm UV
lamp illumination.

fluorescence spectra of m-CPBA (Figure S6 in SI). The
fluorescence spectrum of pure TE does not interfere in
the fluorescence titration process, as TE emits at dif-
ferent wavelength (516 nm). The synthesized TE was
free from any fluorogenic contamination as observed in
the absorption, emission and excitation spectra of TE
under similar experimental condition (Figure S7 in SI).
In the context of ratiometric analysis of absorbance at
470 nm and 357 nm with m-CPBA concentration, there
was a decrease in the ratio, suggesting possible conver-
sion of TE to another species (Figure S8 in SI). It is very
common that thioketones (C=S) are readily converted
to ketone (C=O) upon oxidation through desulfurization
process.27,29,32 m-CPBA has the unique property of oxy-
gen atom donation during oxidation.36 The conversion
process for TE in the presence of m-CPBA was com-
pleted within 20 min and the product was stable upto
2 h as revealed from the time dependent fluorescence
signal change (Figure S9 in SI). In order to establish the
chemical conversion, 13C NMR was recorded for pure
TE and the reaction product of TE in the presence of m-
CPBA. The reaction product of m-CPBA and TE was
separated using a silica column for recording the NMR.
The 13C NMR signal of thioketone (C=S) group for TE
was observed at 196.59 ppm. After addition of 5 equiv-
alent of m-CPBA the signal appeared at 161.25 ppm
which was identical to ketone (C=O) group of esculetin
(Figure 3).

As mentioned earlier, TE has very low quantum yield
(ϕf = 0.023). However, with the addition of 5 equiva-
lent of m-CPBA to TE, the fluorescence quantum yield
of TE solution was found to be 0.15 which was very close
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Figure 3. 13C-NMR spectrum of TE, TE in presence of m-CPBA and esculetin. [TE]
= 200 μM, [m-CPBA] = 1 mM, [esculetin] = 200 μM in DMSO-d6.

to esculetin (ϕf = 0.14) under similar conditions. From
the above experimental evidences, the proposed mech-
anism for the conversion of TE to esculetin is shown
in Scheme 2. Similar desulfurization mechanism was
reported for thioamide and thioketone derivatives with
high selectivity and yield by Bahrami et al.37

Chang et al., have performed signalling behaviour of
thiocoumarin derivative in the presence of m-CPBA.29

Compared to thiocoumarin, TE had achieved highest
signalling at lower concentrations of m-CPBA. Also,
the increase in fluorescence signal is almost two times
higher in the case of TE compared to thiocoumarin
derivative. At higher concentrations of m-CPBA (more
than 5 equivalents), conversion of TE to esculetin was
completed and further addition of m-CPBA probably led
to the reaction with the phenolic OH groups of esculetin.
Phenolic compounds yield Prussian blue colour in the
presence of potassium ferricyanide and ferric chloride,
which have absorption around 700 nm.38 The addition
of more than 5 equivalents of m-CPBA to TE solution
was unable to develop any Prussian blue colour, which
confirmed that indeed the phenolic groups of esculetin
have undergone further reaction with m-CPBA (Figure
S10 in SI).

3.2 Effect of interfering ions on fluorescence
signalling

The fluorescence signalling process for TE with m-
CPBA was monitored in the presence of common metal
ions and anions to see the possible interference effect.
The metal ions used are of alkali, alkaline earth, tran-
sition metals along with zinc, cadmium and mercury.
There was no interference in the above signalling pro-
cess of TE with m-CPBA, except mercury, which may
be due to special affinity towards sulfur atom. Figure 4A
shows that there was selective increase in fluorescence

intensity for TE solution in the presence of m-CPBA
only.

The metal ions employed in the present system did not
increase the florescence signal of TE solution. Inset of
Figure 4A shows the representative fluorescence spectra
of pure TE solution and TE solution in presence of the m-
CPBA or metal ions. In order to understand the selective
enhancement of fluorescence intensity of TE solution
in the presence of m-CPBA, the same metal ions were
used under competitive conditions. As mentioned ear-
lier, except mercury, the enhancement of fluorescence
intensity was not affected much and within the experi-
mental error in the presence of other metal ions as shown
in Figure 4B. The interference caused by mercury may
be due to the oxidation of phenolic OH group of TE as
reported in the literature for other molecules having phe-
nolic OH group.39 Likewise, there was no interference
observed from anions in the above signalling process of
m-CPBA. The anions used were halides, sulphate, car-
bonate, acetate, nitrate and phosphate. Figure 5A shows
that there was selective increase in fluorescence intensity
for TE solution in presence of the m-CPBA only and the
anions were unable to influence the florescence signal
of TE solution. Inset of Figure 5A shows the represen-
tative fluorescence spectra of TE solution alone and TE
solution in the presence of m-CPBA or anions. Under
competitive conditions, of the anions the enhancement
of fluorescence intensity of TE solution in the presence
of m-CPBA was not affected much and the small varia-
tions were within the experimental error (Figure 5B).

3.3 Comparison of signalling effect of TE in presence
of other oxidants

The signalling effect of TE was compared with other
oxidants like, hydroxyl radical, superoxide radical and
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Scheme 2. Conversion of thioesculetin (TE) to esculetin by m-CPBA.
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Figure 4. (A) Ratios of fluorescence intensity of TE solution in presence of m-CPBA or metal ions with
respect to TE solution only. Inset shows the representative fluorescence spectra of TE solution only and
TE solution in presence of m-CPBA or metal ions. (B) Ratios of fluorescence intensity of TE solution in
presence of m-CPBA and metal ions with respect to TE solution only. [TE] = 20 μM, [m-CPBA] = 100 μM
and [Mn+] = 100 μM at pH 7.0 (10 mM phosphate buffer containing 10% acetonitrile). λex = 400 nm.
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Figure 5. (A) Ratios of fluorescence intensity of TE solution in presence of m-CPBA or anions with respect
to TE solution only. Inset shows the representative fluorescence spectra of TE solution only and TE solution
in presence of m-CPBA or anions. (B) Ratios of fluorescence intensity of TE solution in presence of m-CPBA
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100 μM at pH 7.0 (10 mM phosphate buffer).

hydrogen peroxide along with m-CPBA. The percentage
change in absorbance for TE at 470 nm and 357 nm in
the presence of different oxidants is shown in Figure 6.

From Figure 6, it is clear that m-CPBA shows better
signalling efficiency in comparison to other oxidants.
Apart from hydroxyl radical, the O-O bond in m-CPBA
is the weakest, followed by hydrogen peroxide and
superoxide. The bond dissociation energy of peracetic
acid is 29.5 kcal/mol and the same for hydrogen per-
oxide is 48 kcal/mol in the gas phase.40,41 In many
reactions, m-CPBA is more selective than hydrogen
peroxide and other peracids.36 The O-O bond disso-
ciation energy in superoxide radical is expected to be
higher than in hydrogen peroxide according to molecu-
lar orbital theory and also superoxide radical is a poor
oxidant. On the contrary, though hydroxyl radical is a
strong oxidant, the conversion of TE to esculetin was
close to 50% compared to m-CPBA. The reaction of
hydroxyl radical possibly proceeds through production
of dimeric product of TE through S-S bond formation,
which further hydrolysed to yield TE and esculetin. A
similar type of reaction mechanism has been reported in
the literature for hydroxyl radical reaction with ethylene
trithiocarbonate.42

4. Conclusions

Thioesculetin (TE) was tested for colorimetric and flu-
orescence signalling in the presence of m-CPBA. The
signalling process was due to desulfurization reaction of
TE. Colorimetric signalling in the presence of m-CPBA
clearly indicated that there was transformation of TE
which was evident from the change in absorption spec-
tra. Fluorescence signalling confirms the transformation

of a weak fluorescent molecule, TE, to strongly fluores-
cent molecule, esculetin, in the presence of m-CPBA.
13C NMR clearly supported that the transformation of
TE to esculetin was through desulfurization mechanism.
In fact, TE acts as an ‘off-on’ type fluorescence switch
under oxidizing condition. The signalling was selec-
tive in nature and negligibly affected in the presence
of various metal ions and anions as background. TE
may find applications as redox indicator in chemical and
biochemical environment, in particular for designing
suitable chemodosimetry for reactive oxygen species
and reactive nitrogen species.

Supporting Information (SI)

Figures S1–S10 are available as Supplementary Infor-
mation at www.ias.ac.in/chemsci.
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