

Article



Subscriber access provided by University of Winnipeg Library

## TOTAL SYNTHESIS OF (-)-GRAMININ A BASED ON ASYMMETRIC CYCLIZATION CARBONYLATION OF PROPARGYL ACETATE

Yoichi Ito, Taichi Kusakabe, Yogesh Daulat Dhage, Keisuke Takahashi, Ken Sakata, Hiroaki Sasai, and Keisuke Kato

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02886 • Publication Date (Web): 02 Dec 2019 Downloaded from pubs.acs.org on December 3, 2019

## Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

## Total Synthesis of (-)-Graminin A Based on Asymmetric Cyclization Carbonylation of Propargyl Acetate

Yoichi Ito,<sup>†</sup> Taichi Kusakabe,<sup>†</sup> Yogesh Daulat Dhage,<sup>†</sup> Keisuke Takahashi,<sup>†</sup> Ken Sakata,<sup>†</sup> Hiroaki Sasai,<sup>‡</sup> Keisuke Kato\*<sup>†</sup>

† Faculty of Pharmaceutical Sciences, Toho University2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan)

<sup>‡</sup> The Institute of Scientific and Industrial Research (ISIR) Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047 (Japan)

Supporting Information Placeholder



**ABSTRACT:** The first total synthesis of (-)-graminin A is described. Key features of our synthetic approach involve a palladiumcatalyzed asymmetric cyclization carbonylation of prochiral propargylic acetate, conversion of the orthoester product into the methyl 4-oxo-3-furancarboxylate, and copper complex mediated aldol condensation of (+)-gregatin B bearing a diene moiety. A new synthesis of (+)-gregatin B and the first synthesis of (-)-graminin A were achieved.

### INTRODUCTION

Methyl 4-oxo-3-furancarboxylates are important structural motifs, because they exist in a variety of natural products with unique biological activities.<sup>1</sup> Gregatins and aspertetronins were isolated from *Cephalosporium gregatum* and *Aspergillus rugulosus*, respectively.<sup>2</sup> The core structure of these compounds has been revised twice, with Burghart-Stoll and Brückner assigning the true structure based on total synthesis and NMR spectroscopic comparison to related compounds.<sup>3</sup> Graminin A was isolated as the main component from the culture filtrate of *Cephalosporium gramineum* (Figure 1).<sup>4</sup>



Figure 1. Gregatins A-E and Graminin A

Although the 2D structure was proposed as described above, the absolute configuration was not determined, and high resolution NMR data were not reported. Gregatins B-E having the 5R configuration exhibit dextro optical rotation. Interestingly, when the alkyl substituent on C2 (R<sup>1</sup>) was changed to the alkene moiety (gregatin A), the sign of the optical rotation was reversed.



On the basis of the sign of the optical rotation and structural similarities, we assumed that the absolute configuration of C5 in (-)-graminin A to be R.

Previously, we reported the total synthesis of gregatins B and E based on palladium-catalyzed cyclization carbonylation of optically active propargyl acetate 1 (Scheme 1, previous work).<sup>5a</sup> The orthoester 2 was converted into the key furanone 3 by using our previously reported procedure.<sup>5b</sup> The previous synthesis had two disadvantages: 1) Seven steps were required to prepare the optically active propargyl acetate 1. 2) Conversion of the acetoxymethyl group into an alkyne moiety was necessary. To improve the efficiency of the synthesis, we investigated a second generation route (Scheme 1, this work). Key features of this work involve a palladium-catalyzed asymmetric cyclization carbonylation of prochiral propargylic acetate 4 and Cu complex-mediated aldol reaction of (+)-gregatin B bearing a diene moiety.

## **RESULTS AND DISCUSSION**

The prochiral propargylic acetate **4** was obtained from ethyl acetate via a three-step sequence. Thus, addition of TMS-acetylide followed by desilylation, and subsequent acetylation afforded **4** in 74% yield (three steps). Initially, we screened several kinds of mono- to tri-dentate ligands for the asymmetric cyclization carbonylation of prochiral propargylic acetate **4** (Table 1, entries 1-5).<sup>6</sup>

 Table 1. Asymmetric cyclization carbonylation of 4: ligand

 screening and investigation of palladium counterion



| 4  | Pd(tfa) <sub>2</sub> /L3                                                   | 0 °C, 18 h          | 34<br>(1.6/1) | -42/-28 |
|----|----------------------------------------------------------------------------|---------------------|---------------|---------|
| 5  | $Pd(tfa)_2/L4$                                                             | 0 °C ~ rt, 69 h     | 27<br>(1.8/1) | -52/-55 |
| 6  | Pd(tfa) <sub>2</sub> /L5                                                   | 0 °C, 48 h          | 18<br>(1.6/1) | -17/-31 |
| 7  | Pd(tfa) <sub>2</sub> /L6                                                   | 0 °C, 25 h          | 27<br>(1.6/1) | 55/54   |
| 8  | Pd(tfa) <sub>2</sub> /L7                                                   | -20 °C, 41 h        | 66<br>(1.2/1) | 22/-24  |
| 9  | Pd(tfa) <sub>2</sub> /L8                                                   | 0 °C, 23 h          | 49<br>(1.7/1) | -46/-40 |
| 10 | PdCl <sub>2</sub><br>(CH <sub>3</sub> CN) <sub>2</sub> /L4                 | 0 °C ~ rt, 100<br>h | 58<br>(1.5/1) | -25/-17 |
| 11 | Pd(BF <sub>4</sub> ) <sub>2</sub><br>(CH <sub>3</sub> CN) <sub>4</sub> /L4 | 0 °C, 46 h          | 56 (2/1)      | -53/-51 |
| 12 | $Pd(NO_3)_2/L4$                                                            | -10 °C, 84 h        | 62<br>(1.9/1) | -62/-59 |

Among them, sulfoxide-oxazoline (sox) ligand<sup>7</sup> L4 gave moderate enantioselectivity (Table 1, entry 5). In the case of L5 bearing an achiral oxazoline moiety, lower enantioselectivity resulted (Table 1, entry 6). The use of L6 bearing chiral oxazoline and achiral phosphine moieties gave almost the same result as that using L4 (Table 1, entries 5 and 7). These results suggested that the stereochemistry of the oxazoline plays an important role in chiral induction. Diastereomer L7 and isopropyl oxazoline L8 reduced the enantioselectivity (Table 1, entries 8 and 9). Next, we investigated the palladium counterion (Table 1, entries 10-12). The use of  $NO_3^-$  as a counterion resulted in improved yield and enantioselectivity (Table 1, entry 12). Finally, we investigated three kinds of sox ligands L9-L11 bearing additional substituents at the C5 position of the oxazoline ring (Table 2, entries 1-4). Among them, 5,5dimethyloxazoline L10 improved the enantioselectivity, affording 72% ee of 5 in 65% yield (Table 2, entry 3). The absolute configuration and ee value were determined after conversion to the known key furanone 3.

### Table 2. Ligand tuning



<sup>*a*</sup>Absolute configuration and ee value were determined after conversion to the furanone **3**.

A model for the observed stereochemical outcome of the cyclization carbonylation is proposed as shown in Scheme 2. Based on the results using L4 and L6 (Table 1, entries 5 and 7), the major coordination site of the substrate is assumed to be next to the oxazoline. The alkyne-coordinated complex B should be slightly favored over complex A, because the alkyne moiety has a linear or straight geometry, leading to the major enantiomer.

Scheme 2. Working model of the asymmetric cyclization carbonylation of 4



With the optimal conditions in hand, we investigated the concise synthesis of (+)-gregatin B (Scheme 3). Asymmetric cyclization carbonylation of **4** using the conditions of entry 3 in Table 2 gave the orthoester **5** in 65% yield. The orthoester was converted into the key furanone **3** according to our previously reported procedure.<sup>5a,b</sup> Thus, acid treatment of orthoester **5** followed by Knoevenagel-type condensation gave the key furanone **3** in 74% yield (two steps, 72% ee). The optical purity of **3** was enriched by recrystallization from CH<sub>2</sub>Cl<sub>2</sub> / hexane (65% yield, 96% ee). Regioselective palladium-catalyzed hydrostannylation<sup>8</sup> of **3** followed by reaction with iodine afforded iodide (*R*)-**6** in 71% yield. Finally, (+)-gregatin B was obtained using the Suzuki-Miyaura coupling reaction in 80% yield.<sup>5a</sup>

Scheme 3. Concise total synthesis of (+)-gregatin B



# Table 3. Investigation of aldol reaction using modelsubstrate 7



<sup>*a*</sup> Recovery 94%. <sup>*b*</sup> 10 was obtained in 78% yield. <sup>*c*</sup> -20°C, 11 was obtained in 19% yield. <sup>*d*</sup> 11 was obtained in 70% yield. <sup>*e*</sup> /40 °C.

Prior to the synthesis of graminin A, we investigated the vinylogous aldol reaction<sup>9</sup> of model substrate 7 with butanal (Table 3). Acidic conditions gave enone 9 (Table 3, entries 1 and 2), while basic conditions predominantly gave aldol adduct 8 (Table 3, entry 3). However, in both cases, 8 and 9 were obtained in low yields due to recovery of 7 (Table 3, entry 1) or over reactions (Table 3, entries 2-4). Over reaction products 10 and 11 should be produced by conjugate addition of butanal and 7 to the aldol condensation product 9, respectively. Recently, [Cu(II)(box)]X<sub>2</sub> was reported as a useful catalyst for activation of  $\beta$ -ketoesters.<sup>10</sup> Inspired by these studies, box complex C2 and bipyridine complex C3 were tested in this reaction. The reaction of 7 with butanal in the presence of C2 (5 mol %) in DMF afforded desired enone 9 in 53% yield (Table 3, entry 5). A higher reaction temperature increased the yield of 9, and bipyridine complex C3 gave a satisfactory yield (Table 3, entries 6 and 7). Mechanistically, the B-ketoester moiety was activated by the copper complex, which makes the methyl group more acidic. Thus, the vinylogous aldol reaction

 proceeded smoothly without base. We selected **C3** as suitable catalyst for the synthesis of (-)-graminin A.

Scheme 4. Synthesis of (-)-graminin A



(-)-Graminin A has two kinds of diene moieties. We investigated two routes for the construction of the second diene moiety (Scheme 4). In the first route, the vinylogous aldol condensation of iodo vinyl furanone ( $\pm$ )-6 with butanal proceeded smoothly, affording ( $\pm$ )-12 in 75% yield. Unfortunately, the conjugated diene moiety was unstable under basic conditions and the Suzuki-Miyaura coupling reaction of ( $\pm$ )-12 gave a complex mixture, with only a small amount (12%) of ( $\pm$ )-6 recovered by retro-aldol reaction. In the second route, we investigated the vinylogous aldol reaction of (+)-gregatin B with butanal using C3 as a catalyst, and desired (-)-graminin A was obtained in 51% yield. As shown in Table 4 and Fig. 2, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data for (-)-graminin A were almost identical to those for (-)-gregatin A<sup>3b</sup> except for signals corresponding to C3"-H to C5"-H and C3" to C5".

# Table 4. <sup>1</sup>H NMR spectra of (-)-graminin A and (-)-gregatin A

(-)-gregatin A

(-)-graminin A

| Position | Proton        | Synthetic (-)-<br>graminin A (ppm) <sup><i>a</i></sup> | Natural gregatin<br>A (ppm) <sup>b</sup> |
|----------|---------------|--------------------------------------------------------|------------------------------------------|
| 6'       | 3H, <i>t</i>  | 0.99 or 1.00                                           | 0.96                                     |
| 5'       | 2H, <i>m</i>  | 2.06-2.13                                              | 2.06                                     |
| 4'       | 1H, <i>dt</i> | 5.81                                                   | 5.7-6.0 ( <i>m</i> )                     |
| 3'       | 1H, <i>dd</i> | 5.98                                                   | _                                        |
| 2'       | 1H, <i>dd</i> | 6.27                                                   | 6.24                                     |
| 1'       | 1H, <i>d</i>  | 5.57                                                   | 5.54                                     |
| C5-Me    | 3H, <i>s</i>  | 1.55                                                   | 1.53                                     |
| OMe      | 3H, <i>s</i>  | 3.84                                                   | 3.83                                     |
| 1"       | 1H, <i>dt</i> | 7.32                                                   | 7.32 (br-d)                              |
| 2"       | 1H, <i>dt</i> | 7.19                                                   | 7.18 ( <i>dq</i> )                       |
| 3"       | 2H, q         | 2.35                                                   | 2.05 (3H, dd)                            |

| 4" | 2H, sext     | 1.59         | - |
|----|--------------|--------------|---|
| 5" | 3H, <i>t</i> | 0.99 or 1.00 | - |

<sup>a</sup>400 MHz, CDCl<sub>3</sub>. <sup>b</sup>250 MHz, CDCl<sub>3</sub>.



Figure 2. <sup>13</sup>C NMR of graminin A and gregatin A

## CONCLUSIONS

A new total synthesis of (+)-gregatin B and the first total synthesis of (-)-graminin A have been achieved. The optically active furanone skeleton was effectively constructed based on Pd<sup>II</sup>-catalyzed asymmetric cyclization carbonylation of prochiral propargyl acetate **4**, followed by ring conversion. The (E,E)-diene moiety was successfully prepared by the Suzuki-Miyaura coupling reaction. The vinylogous aldol condensation of (+)-gregatin B with butanal was achieved by using a cationic copper catalyst. This methodology would be applicable for the synthesis of related natural products such as graminin C,<sup>10</sup> aspertetronin A, gregatine A and penicilliol A.<sup>11</sup>

## **EXPERIMENTAL SECTION**

General Information. All melting points were determined on a microscopic melting point apparatus and are uncorrected. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at 400 MHz (<sup>1</sup>H NMR) and 100 MHz ( $^{13}$ C NMR) using CDCl<sub>3</sub> or C<sub>6</sub>D<sub>6</sub> as the solvent and TMS as the internal standard. In the case of DMSOd<sub>6</sub>, solvent peak was used as a reference (2.49 ppm for <sup>1</sup>H, and 39.5 ppm for  $^{13}$ C). Coupling constants (J) are reported in Hertz (Hz), and spin multiplicities are represented by the following symbols: s (singlet), br-s (broad singlet), d (doublet), br-d (broad doublet), t (triplet), q (quartet), sext (sextet) and m (multiplet). High-resolution mass spectra were obtained using high-resolution EI (double focusing) or FAB (double focusing) or ESI-TOF mass spectrometers. Infrared spectra (IR) were recorded on a FT-IR spectrophotometer and are reported as wavelength numbers (cm<sup>-1</sup>). Determination of enantiomeric excesses was performed by chiral HPLC analysis of noncrystallized samples. Column conditions are reported in the

50

51

52

53

54

55

56

57 58 59

60

1

experimental section below. All reagents were purchased from commercial sources and used without purification. All evaporations were performed under reduced pressure. Column chromatography was performed using silica gel (particle size 100-210 mm (regular), 40-50 mm (flash)).

3-Methylpenta-1,4-diyn-3-yl acetate (4). To a solution of trimethylsilylacetylene (4.13 g, 0.042 mol) in THF (50 mL) was added dropwise n-BuLi (15.5 mL, ca. 2.65 M in THF, 0.041 mol) at -40 °C under Ar. After the solution was stirred at -40 °C for 0.5 h, EtOAc (1.76 g, 0.020 mol) was added to the stirred solution via syringe at -40 °C. After stirring at the same 12 temperature for 12 h, the mixture was diluted with saturated 13 NH<sub>4</sub>Cl (70 mL) and extracted with EtOAc (40 mL x 2). The 14 combined organic layers were dried over MgSO4 and concentrated in vacuo. To a solution of the crude product in 15 MeOH (30 mL) was added K<sub>2</sub>CO<sub>3</sub> (2.76 g, 0.020 mol) at 0 °C, 16 and the mixture was stirred at room temperature for 1.5 h. The 17 mixture was diluted with brine (50 mL) and extracted with 18  $CH_2Cl_2$  (50 mL x 3). The combined organic layers were dried 19 over MgSO<sub>4</sub> and concentrated in vacuo to give the 20 corresponding alcohol, which was dissolved in pyridine (6.33 21 g, 0.080 mol) and Ac<sub>2</sub>O (6.13 g, 0.060 mol). To this solution 22 was added 4-dimethylaminopyridine (24.4 mg, 0.20 mmol) at 23 room temperature. After stirring at the same temperature for 27 24 h, the mixture was diluted with H<sub>2</sub>O (80 mL) and extracted with 25 EtOAc (80 mL x 2). The organic layer was washed with 2 M HCl (80 mL) and saturated NaHCO<sub>3</sub> (80 mL), dried over 26 MgSO<sub>4</sub> and concentrated in vacuo. The crude product was 27 purified by flash chromatography on silica gel (hexane/EtOAc 28 = 10/1) to afford acetate 4 (2.02 g, 74% yield, 3 steps) as a 29 colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>) & 0.91 (3H, s), 2.10 (3H, s), 2.65 30 (2H, s); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 14.1, 30.4, 63.1, 72.9, 80.0, 31 168.3; IR (KBr): 3293, 3252, 3006, 1752, 1238 cm<sup>-1</sup>; HRMS 32 (EI) m/z:  $[M^+]$  calcd for C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> 136.0524; found 136.0522.

33 Methvl (E)-2-(5-ethynyl-2-methoxy-2,5-dimethyl-1,3-34 dioxolan-4-ylidene)acetate (5) (Table 1). The reaction was 35 performed according to the typical procedure for asymmetric 36 cyclization carbonylation of 4. The orthoester 5 was obtained as 37 a mixture of diastereomers. <sup>1</sup>H NMR (CDCl<sub>3</sub>) diastereomer A : δ 1.68 (3H, s), 1.96 (3H, s), 2.66 (1H, s), 3.36 (3H, s), 3.71 38 (3H, s), 5.45 (1H, s); diastereomer B : δ 1.73 (3H, s), 2.03 (3H, 39 s), 2.65 (1H, s), 3.30 (3H, s), 3.71 (3H, s), 5.44 (1H, s); <sup>13</sup>C{<sup>1</sup>H} 40 NMR (CDCl<sub>3</sub>) diastereomer A : δ 24.7, 27.0, 50.1, 51.1, 73.3, 41 78.7, 80.8, 90.4, 124.1, 166.0, 168.8; diastereomer B : δ 24.0, 42 25.5, 49.4, 51.1, 73.2, 77.6, 81.4, 90.5, 124.3, 166.0, 168.2; IR 43 (KBr): 2346, 2122, 1724, 1660, 1097 cm<sup>-1</sup>; HRMS (EI) m/z: 44  $[M^+]$  calcd for C<sub>11</sub>H<sub>14</sub>O<sub>5</sub> 226.0841; found 226.0845; HPLC: 45 Chiralcel OD-H, hexane/EtOH = 200/1, flow rate = 1.0 mL / 46 min., diastereomer A:  $t_{\rm R}$  = 8.6 min. (S), 48.0 min. (R); 47 diastereomer B:  $t_R = 9.2 \text{ min.} (S)$ , 18.6 min. (R). 48

**Typical procedure for asymmetric cyclization carbonylation of 4 (Table 2, Entry 3).** To a 30-mL two-necked round-bottom flask containing a magnetic stirring bar, the substrate 4 (68.2 mg, 0.5 mmol), *p*-benzoquinone (81.8 mg, 0.75 mmol) and MeOH (7 mL) was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pumpfilling via the three-way stopcock. A MeOH (1 mL) solution of Pd(NO<sub>3</sub>)<sub>2</sub> (5.8 mg, 0.025 mmol) and **L10** (0.0375 mmol) was added to the stirred solution via syringe at -20 °C. The remaining catalyst was washed in MeOH (1 mL) twice and stirred for 94 h at the same temperature. The mixture was diluted with  $CH_2Cl_2$  (50 mL) and washed with 2 M NaOH (50 mL). The aqueous layer was extracted with  $CH_2Cl_2$  (25 mL  $\times$  2) and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane/EtOAc (20/1) afforded the orthoester **5** (73.3 mg, 65%) as a colorless oil. (mixture of diastereomers, ratio = 2:1) Absolute configuration and ee value were determined after conversion to the furanone **3**.

Methyl (5R)-5-ethynyl-2,5-dimethyl-4-oxo-4,5dihydrofuran-3-carboxylate (3). To a solution of 5 (79.6 mg, 0.352 mmol) in MeOH (3 mL) was added 2 M HCl (3 mL) at 0 °C. After stirring at room temperature for 1.0 h, the reaction mixture was diluted with CH2Cl2 (20 mL) and washed with brine (10 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 10 mL), and the combined organic layers were dried over MgSO<sub>4</sub>, and concentrated in vacuo. To a solution of the crude product in MeOH (4 mL) was added NaHCO<sub>3</sub> (296 mg, 3.52 mmol), and the mixture was stirred at room temperature for 14 h. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and washed with brine (10 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 x 10 mL), and the combined organic layers were dried over MgSO4 and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 20/1) to afford furanone 3 (50.8 mg, 74%) yield, 72% ee, 2 steps) as a white solid. Mp. 88-90°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>) & 1.71 (3H, s), 2.65 (3H, s), 2.66 (1H, s), 3.85 (3H, s); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  17.9, 23.9, 51.8, 76.1, 77.5, 82.8, 106.2, 162.8, 193.7, 196.1; IR (KBr): 3250, 2979, 2945, 2884, 2123, 1712, 1590 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>10</sub>H<sub>10</sub>O<sub>4</sub> 194.0579; found 194.0577; HPLC: Chiralcel OD-H, hexane/IPA = 15/1, flow rate = 0.5 mL / min.,  $t_{\rm R} = 23.2$  min. (R), 26.5 min. (S). The optical purity of **3** (229.0 mg, 72%ee) was enriched by recrystallization from CH<sub>2</sub>Cl<sub>2</sub> / hexane (148.0 mg, 65% yield, 96% ee).  $[\alpha]^{20}$  +85.9 (c 0.60, CHCl<sub>3</sub>).

(E)-(5R)-5-(2-iodovinyl)-2,5-dimethyl-4-oxo-4,5-Methyl dihydrofuran-3-carboxylate (6). Pd(dba)<sub>2</sub> (6.0 mg, 0.01 mmol) and tBu<sub>3</sub>P (25.7 µL, 1.0 M in toluene, 0.026 mmol) were added successively to CH<sub>2</sub>Cl<sub>2</sub> (3 mL) and the resulting mixture was stirred at room temperature for 10 min under Ar. A solution of (R)-3 (100 mg, 0.51 mmol) in  $CH_2Cl_2$  (3 mL) was added, and the reaction mixture was cooled to 0 °C. A solution of Bu<sub>3</sub>SnH (224.9 mg, 0.77 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) was added dropwise at 0 °C via syringe over 15 min. The reaction mixture was stirred at 0 °C for 2 h. The reaction mixture was concentrated and the residue was purified by column chromatography on 10% w/w anhydrous  $K_2CO_3$ -silica<sup>12</sup> (hexane/EtOAc = 70/1 to 5/1) to afford the vinylstannane (204.7 mg, 82% yield) as a colorless oil.  $[\alpha]^{20}$  +88.3 (c 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 0.80-0.98 (15H, m), 1.24-1.52 (12H, m), 1.52 (3H, s), 2.66 (3H,s), 3.83 (3H, s), 5.90  $(1H, d, {}^{2}J_{Sn-H} = 59.6 Hz$ , J = 19.0 Hz), 6.35 (1H, d,  ${}^{3}J_{\text{Sn-H}} = 61.0 \text{ Hz}$ , J = 19.0 Hz);  ${}^{13}C{}^{1}H{}$  NMR  $(CDCl_3) \delta$  9.5, 13.7, 17.9, 22.2, 27.2, 28.9, 51.6, 93.2, 106.6, 131.1. 141.4. 163.5. 195.6. 197.7: IR (KBr): 2949. 2902. 2864. 2841, 1711, 1590, 1202 cm<sup>-1</sup>; HRMS (ESI<sup>+</sup>) m/z: [M+H]<sup>+</sup> calcd for C<sub>22</sub>H<sub>39</sub>O<sub>4</sub>Sn 487.1870; found: 487.1871.

To a mixture of the vinylstannane (285.2 mg, 0.588 mmol) in THF (2 mL) was added a THF (2 mL) solution of  $I_2$  (164 mg,

0.647 mmol) at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was diluted with EtOAc (20 mL) and washed with 10% Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL). The aqueous layer was extracted with EtOAc (2 x 20 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by flash chromatography on 10% w/w anhydrous K<sub>2</sub>CO<sub>3</sub>-silica<sup>12</sup> (hexane/EtOAc = 4/1 to 3/1) to afford (+)-**6** (176 mg, 93% yield) as a white solid. Mp 136-138°C;  $[\alpha]^{19}_D$ +107.0 (c 0.70, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.53 (3H, s), 2.65 (3H, s), 3.84 (3H, s), 6.56 (1H, d, *J* = 14.8 Hz), 6.66 (1H, d, *J* = 14.8 Hz); <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  17.9, 22.1, 51.7, 79.7, 92.6, 106.9, 140.3, 162.9, 195.7, 196.0; IR (KBr): 1709, 1577, 1226, 1201, 1135, 954 cm<sup>-1</sup>; HRMS (EI) m/z: [M+] calcd for C<sub>10</sub>H<sub>11</sub>O<sub>4</sub>I 321.9702; found 321.9704.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

58 59

60

Synthesis of (+)-gregatin B. To a solution of (+)-6 (64.4 mg, 0.2 mmol), boronate<sup>3a</sup> (56.2 mg, 0.309 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (23.1 mg, 0.02 mmol) in THF (deoxygenated, 4 mL) was added dropwise TBAF (310  $\mu$ L, 1.0 M in THF, 0.31 mmol) at 0 °C. After stirring at 10 °C for 13 h under Ar, the mixture was diluted with EtOAc (20 mL) and washed with sat. NH<sub>4</sub>Cl (20 mL). The aqueous layer was extracted with EtOAc (2 x 10 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc = 4.5/1) to afford gregatin B (39.8 mg, 80% yield) as a pale yellow solid. The spectroscopic data was in agreement with that reported in the literature.<sup>3b</sup> [ $\alpha$ ]<sup>19</sup><sub>D</sub>+207.8 (c 0.56, CHCl<sub>3</sub>).

Aldol reaction using model substrate 7 (Table 3). For entries 1 and 2 : To a solution of furanone 7 (100 mg, 0.45 mmol) and butylaldehyde (97 mg, 1.35 mmol) in solvent (5.0 mL) was added piperidine / AcOH = 1:5 (0.5 mL) at room temperature. After the solution was stirred for  $0.2 \sim 23$  h, the mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (40 mL) and washed with H<sub>2</sub>O (2 x 40 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (40 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 15/1 to 10/1) to afford 9 and 10.

*Methyl* (*E*)-4-oxo-2-(*pent-1-en-1-yl*)-1-oxaspiro[4.5]dec-2*ene-3-carboxylate* (9). White solid; Mp 83-85°C; 15% yield, 19.0 mg (0.068 mmol); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.00 (3H, t, *J* = 7.2 Hz), 1.35-1.82 (12H, m), 2.34 (2H, dq, *J* = 7.2, 1.6 Hz), 3.84 (3H, s), 7.14 (1H, dt, *J* = 15.8, 7.2 Hz), 7.32 (1H, dt, *J* = 15.8, 1.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  13.9, 21.5, 21.7 (2C), 24.4, 31.9 (2C), 35.5, 51.7, 91.2, 104.4, 119.6, 149.0, 163.9, 185.4, 200.8; IR (KBr): 2935, 2874, 1737, 1700, 1642, 1552, 1433, 1404, 1199, 1062, 981, 940, 822 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>16</sub>H<sub>22</sub>O<sub>4</sub> 278.1518; found 278.1517.

46 Methyl 2-(3-formyloctan-4-yl)-4-oxo-1-oxaspiro[4.5]dec-2-47 ene-3-carboxylate (10). Inseparable mixture of diastereomers 48 (ratio = 7:3); colorless oil; 78% yield, 121.0 mg (0.346 mmol); 49 <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.86-0.92 (3H, m), 0.95 (3H, t, J = 7.4 Hz), 50 1.25-1.83 (17H, m), 2.47 (1H, br-s), 3.05 (0.6H, dd, J = 6.4, 5.251 Hz), 3.10(1.4H, d, J = 7.4 Hz), 3.83(3H, s), 9.71(0.7H, d, J =52 2.4 Hz), 9.74 (0.3H, d, J = 2.0 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) major diastereomer: δ 12.5, 14.1, 18.2, 20.1, 21.4 (2C), 24.2, 53 31.6 (2C), 33.0, 33.3, 36.3, 51.7, 56.2, 92.2, 107.7, 163.4, 197.2, 54 200.4, 204.5; mimor diastereomer: δ 12.5, 14.0, 18.3, 20.3, 21.4 55 (2C), 24.2, 31.8 (2C), 32.6, 33.6, 31.6, 51.7, 56.0, 92.3, 107.7, 56 163.4, 197.2, 200.3, 204.4; IR (KBr): 2939, 2867, 2712, 1711, 57

1585, 1443, 1393, 1200, 1111, 1056 cm  $^{-1};$  HRMS (EI) m/z: [M+] calcd for  $C_{20}H_{30}O_5$  350.2093; found 350.2092.

For entries 3 and 4: To a solution of furanone 7 (45 mg, 0.20 mmol) and butylaldehyde (43.3 mg, 0.60 mmol) in solvent (1.5 mL) was added *t*BuOK (33.7 mg, 0.30 mmol) or K<sub>2</sub>CO<sub>3</sub> (27.6 mg, 0.20 mmol) at -20 °C or room temperature under Ar. After the solution was stirred for  $0.5 \sim 2.0$  h, the mixture was diluted with sat. NH<sub>4</sub>Cl aq. (15 mL) and EtOAc (15 mL). The aqueous layer was extracted with EtOAc (15 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 4/1 to 2/1) to afford 8 and 11.

Dimethyl2,2'-(2-propylpropane-1,3-diyl)bis(4-oxo-1-<br/>oxaspiro[4.5]dec-2-ene-3-carboxylate) (11). Yellow oil; 70%<br/>yield, 35.0 mg (0.07 mmol); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.90 (3H, t, J<br/>= 7.2 Hz), 1.38-1.81 (24H, m), 2.57-2.60 (1H, m), 3.08 (2H, dd,<br/>J = 14.0, 6.4 Hz), 3.18 (2H, dd, J = 14.0, 7.2 Hz), 3.82 (6H, s);<br/><sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  14.7, 19.4, 21.5, 24.3, 31.7, 34.9, 36.0,<br/>51.6, 92.3, 107.9, 163.4, 196.7, 200.3; IR (KBr): 2934, 2860,<br/>1705, 1583, 1439, 1390, 1198, 1111, 1056 cm<sup>-1</sup>; HRMS (FAB)<br/>m/z: [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>39</sub>O<sub>8</sub> 503.2645; found 503.2644.<br/>For entries 5 – 7 : The reaction was performed according to the

synthesis of  $(\pm)$ -12 using furanone 7 (45 mg, 0.20 mmol), butylaldehyde (43.3 mg, 0.60 mmol) and DMF (1.5 mL) afforded 9 in 83% yield, 41.7 mg (0.15 mmol), (Entry 7).

Methyl 5-((E)-2-iodovinyl)-5-methyl-4-oxo-2-((E)-pent-1-en-1-yl)-4,5-dihydrofuran-3-carboxylate ((±)-12). To a solution of (±)-6 (25.0 mg, 0.078 mmol) and C3 (5.8 mg, 0.0078 mmol) in DMF (1.0 mL) was added butylaldehyde (16.8 mg, 0.23 mmol) at room temperature. After the solution was stirred at 40 °C for 17 h, the mixture was diluted with EtOAc (20 mL) and washed with H<sub>2</sub>O (20 mL). The aqueous layer was extracted with EtOAc (2 x 10 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 25/1 to 20/1) to afford (±)-12 (21.8 mg, 75%) yield) as a yellow solid. Mp 68-72°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 1.00 (3H, t, J = 7.4 Hz), 1.55 (3H, s), 1.56-1.62 (2H, m), 2.36 (2H, q, J = 6.8 Hz, 3.85 (3H, s), 6.58 (2H, m), 7.19 (1H, dt, J = 16.0, 6.8 Hz), 7.30 (1H, dd, J = 16.0, 0.8 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 13.8, 21.3, 22.2, 35.6, 51.7, 79.3, 91.7, 103.8, 119.1, 140.9, 150.3, 163.1, 185.4, 196.4; IR (KBr): 2955, 2874, 1704, 1642, 1554, 1446, 1398, 1200, 1059 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>14</sub>H<sub>17</sub>IO<sub>4</sub> 376.0172; found 376.0173.

**Suzuki-Miyaura coupling reaction of (±)-12.** To a solution of (±)-12 (20.0 mg, 0.054 mmol), boronate<sup>3a</sup> (29.5 mg, 0.080 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (6.3 mg, 5.4 µmol) in THF (deoxygenated, 2.5 mL) was added dropwise TBAF (80 µL, 1.0 M in THF, 0.080 mmol) at 0 °C. After stirring at 0 °C for 22 h under Ar, the mixture was diluted with EtOAc (20 mL) and washed with

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

sat. NH<sub>4</sub>Cl (20 mL). The aqueous layer was extracted with EtOAc (2 x 10 mL), and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane/acetone = 15/1 to 5/1) to afford (±)-6 (2.0 mg, 15% yield) along with a complex mixture.

Synthesis of (-)-graminin A. To a solution of (+)-gregatin B (37.5 mg, 0.15 mmol) and C3 (5.6 mg, 0.0075 mmol) in DMF (1.5 mL) was added butylaldehyde (16.2 mg, 0.23 mmol) at room temperature. After the solution was stirred at 40 °C for 17 h, C3 (5.6 mg, 0.0075 mmol), butylaldehyde (16.2 mg, 0.23 mmol) and DMF (0.5 mL) were again added, and additional butylaldehyde (16.2 mg, 0.23 mmol) was added 46 h later. After stirring at 40 °C for 24 h, the reaction mixture was purified by flash chromatography on silica gel (hexane/AcOEt = 97/3 to 72/28) to afford graminin A (23.1 mg, 51% yield) as a colorless oil.TLC: hexane/EtOAc = 6/1 (R<sub>f</sub> = 0.23); [ $\alpha$ ]<sup>21</sup><sub>D</sub> -144.8 (c 0.54, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.99 (3H, t, J = 7.6 Hz), 1.00 (3H, t, J = 7.6 Hz), 1.55 (3H, s), 1.59 (2H, sext, J = 7.6 Hz), 2.06-2.13 (2H, m), 2.35 (2H, dq, J = 7.2, 1.2 Hz), 3.84 (3H, s), 5.57 (1H, d, J = 15.6 Hz), 5.81 (1H, dt, J = 15.2, 6.8 Hz), 5.98 (1H, dt, J = 15dd, J = 15.2, 10.4 Hz), 6.27 (1H, dd, J = 15.6, 10.4 Hz), 7.19 (1H, dt , J = 15.6, 6.8 Hz), 7.32 (1H, dt, J = 15.6, 1.2 Hz);  $^{13}C{^{1}H} NMR (CDCl_3) \delta 13.3, 13.8, 21.4, 22.5, 25.7, 35.5, 51.6,$ 90.5, 103.8, 119.4, 126.2, 127.8, 131.6, 139.3, 149.6, 163.5, 185.4, 198.4; <sup>1</sup>H NMR ( $C_6D_6$ )  $\delta$  0.68 (3H, t, J = 7.2 Hz), 0.82 25 (3H, t, J = 7.2 Hz), 1.12-1.22 (2H, m), 1.41 (3H, s), 1.79-1.89 26 (4H, m), 3.56 (3H, s), 5.51 (1H, dt, J = 15.2, 6.4 Hz), 5.57 (1H, dt, J = 15.227 d, J = 15.2 Hz), 5.83 (1H, dd, J = 15.2, 10.8 Hz), 6.42 (1H, dd, 28 J = 15.2, 10.8 Hz), 6.96 (1H, dt, J = 16.0, 6.8 Hz), 7.59-7.63 29  $(1H, dt, J = 16.0, 1.6 Hz); {}^{13}C{}^{1}H} NMR (C_6D_6) \delta 13.4, 13.7,$ 30 21.5, 22.5, 25.9, 35.3, 51.1, 90.4, 104.9, 120.0, 127.3, 128.5, 31 131.7, 138.8, 148.1, 163.8, 185.0, 197.0; IR (KBr): 1711, 1642, 32 1554, 1397, 1202, 1052, 989 cm<sup>-1</sup>; HRMS (FAB) m/z: [M+H]<sup>+</sup> 33 calcd for C<sub>18</sub>H<sub>25</sub>O<sub>4</sub> 305.1753; found 305.1726. 34

#### Preparation of ligand L9. 14



Synthesis 2-bromo-N-((1R,2S)-2-hydroxy-1,2of *diphenylethyl)benzamide (14a).* To a solution of (1*S*, 2*R*)-(+)-2-amino-1,2-diphenylethanol (13a) (1.20 g, 5.62 mmol) and Et<sub>3</sub>N (1.13 g, 11.20 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (dehydrated, 20 mL) was slowly added a CH<sub>2</sub>Cl<sub>2</sub> (10 mL) solution of 2-bromobenzoyl chloride (1.23 g, 5.62 mmol) at 0°C under Ar. After stirring for 12 h at room temperature, the reaction mixture was quenched with water (140 mL) and extracted with  $CH_2Cl_2/MeOH = 8/1$ (70 mL) three times. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The solid was washed with hexane/Et<sub>2</sub>O = 1/5 to give **14a** (2.22 g, 100%) as a white solid. Mp 215-218°C; [α]<sup>26</sup><sub>D</sub> -12.4 (c 0.47, DMSO); <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  4.77 (1H, dd, J = 8.4, 5.2 Hz), 5.15 (1H, t, J = 9.0 Hz), 5.44 (1H, d, J = 5.6 Hz), 6.79 (1H, dd, J = 7.4, 1.8 Hz), 7.22-7.36 (8H, m), 7.40-7.45 (4H, m), 7.56 (1H, dd, J = 7.6, 1.2 Hz), 8.81 (1H, d, J = 9.2 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (DMSO*d*<sub>6</sub>) δ 58.5, 75.1, 118.8, 126.7, 127.1, 127.2 (2C), 127.3, 127.6 (2C), 127.7 (2C), 128.3 (2C), 128.4, 130.7, 132.6, 139.1, 140.9, 143.4, 165.7; IR (KBr): 3303, 1645, 1535, 1323, 1027, 750, 700

cm<sup>-1</sup>; HRMS (FAB) m/z:  $[M+H]^+$  calcd for  $C_{21}H_{19}BrNO_2$ 396.0599; found 396.0598.



Synthesis of (4R,5S)-2-(2-bromophenyl)-4,5-diphenyl-4,5dihydrooxazole (15a). 14a (1.52 g, 3.84 mmol) dissolved in toluene (150 mL) was refluxed in a Dean-Stark apparatus with (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (474 mg, 0.384 mmol) for 48 h. The reaction mixture was cooled to room temperature and guenched with sat.NaHCO<sub>3</sub> (150 mL) and extracted with EtOAc (100 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc = 5/1) to give 15a (0.90 g, 62%) as a white solid. Mp 97-99°C;  $[\alpha]^{27}$ <sub>D</sub> 144.3 (c 0.51, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  5.78 (1H, d, J = 10.2 Hz), 6.05 (1H, d, J = 10.2 Hz), 7.00-7.10 (10H, m), 7.34 (1H, dt, J = 8.0, 1.6 Hz), 7.42 (1H, dt, J = 7.6, 1.2 Hz), 7.73 (1H, dd, J = 8.0, 1.2 Hz), 7.95 (1H, dd, J = 7.6, 1.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) & 74.8, 85.8, 122.2, 126.7 (2C), 127.1, 127.4, 127.6, 127.8 (2C), 127.8 (2C), 128.0 (2C), 129.5, 131.9, 132.1, 134.3, 136.3, 137.5, 164.4; IR (KBr): 1654, 1463, 1325, 1087, 1023, 952, 733, 699 cm<sup>-1</sup>; HRMS (FAB) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>17</sub>BrNO 378.0494; found 378.0492.



Synthesis of (4R,5S)-4,5-diphenyl-2-(2-((R)-ptolylsulfinyl)phenyl)-4,5-dihydrooxazole (L9). To a solution of 15a (1.00 g, 2.64 mmol) in Et<sub>2</sub>O (20 mL) was slowly added n-BuLi (2.6 M in hexane, 1.22 mL, 3.17 mmol) at -78 °C under Ar atmosphere. After stirring at -78 °C for 0.5 h, a solution of (1S,2R,5S)-(+)-menthyl (R)- p-toluenesulfinate (0.93 g, 3.17 mmol) in Et<sub>2</sub>O (10 mL) was added dropwise, stirred at -78 °C for 0.5 h, then room temperature for 4 h. To the mixture was added sat. NH<sub>4</sub>Cl (40 mL) and extracted with EtOAc (30 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (hexane/EtOAc = 3/1) to give L9 (0.82 g, 72%) as white solid. Mp 80-83°C;  $[\alpha]^{25}_{D}$  225.6 (c 0.45, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) & 2.30 (3H, s), 5.77 (1H, d, J = 10.4 Hz, 5.92 (1H, d, J = 10.4 Hz), 6.56-6.58 (2H, m), 6.88-7.05 (10H, m), 7.49-7.52 (2H, m), 7.62 (1H, dt, J = 7.2, 1.2 Hz),7.84 (1H, dt, J = 8.0, 1.2 Hz), 8.19 (1H, dd, J = 7.2, 1.2 Hz), 8.52 (1H, d, J = 8.0, 1.2 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  21.4, 75.0, 85.1, 124.8, 125.5, 126.3 (2C), 126.9 (2C), 127.0, 127.4 (2C), 127.5, 127.7 (2C), 127.9 (2C), 129.6 (2C), 130.1, 130.4, 132.3, 136.1, 136.9, 140.9, 143.5, 146.8, 162.0 IR (KBr): 3031, 1646, 1452, 1327, 1087, 1027, 962, 811, 732, 696 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>28</sub>H<sub>23</sub>NO<sub>2</sub>S 437.1449; found 437.1450.

#### Preparation of ligand L10.<sup>14</sup>



3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49 50 51

52

53

54

55

56

57 58 59

60

Synthesis of (R)-2-Bromo-N-(2-hydroxy-2-methyl-1phenylpropyl)benzamide (14b). To a solution of (R)-1-amino-2-methyl-1-phenylpropan-2-ol (13b) <sup>13a</sup> (603 mg, 3.65 mmol) and Et<sub>3</sub>N (1.10 g, 10.87 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (dehydrated, 12 mL) was slowly added a  $CH_2Cl_2$  (3 mL) solution of 2-bromobenzoyl chloride (794 mg, 3.62 mmol) at 0°C under Ar. After stirring for 12 h at room temperature, the reaction mixture was quenched with water (30 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (30 mL) three times. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane / EtOAc = 92/8 to 34/66) afforded **14b** (1.22 g, 96%) as a white solid. TLC: hexane/EtOAc = 2/1 (R<sub>f</sub> = 0.16); Mp 118-120°C;  $[\alpha]^{26}$  23.2 (c 0.53, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.09 (3H, s), 1.43 (3H, s), 1.92 (1H, br-s), 5.02 (1H, d, J = 8.8 Hz), 7.15 (1H, d, J = 8.0 Hz), 7.23-7.40 (7H, m), 7.46 (1H, dt, J = 7.6, 1.6 Hz), 7.57 (1H, dd, J = 8.0, 0.8 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  27.9, 27.9, 62.0, 72.8, 119.2, 127.5, 127.7, 128.2 (2C), 128.3 (2C), 129.7, 131.2, 133.4, 137.7, 138.9, 167.0; IR (KBr): 3414, 3352, 1633, 1529, 1463, 1368, 1200, 1154, 742 cm<sup>-1</sup>; HRMS (FAB) m/z:  $[M+H]^+$  calcd for  $C_{17}H_{19}BrNO_2$  348.0599; found 348.0599.



Synthesis of (R)-2-(2-bromophenyl)-5,5-dimethyl-4-phenyl-4,5-dihydrooxazole (15b). 14b (1.20 g, 3.45 mmol) dissolved in xylene (150 mL) was refluxed in a Dean-Stark apparatus with tetraisopropyl orthotitanate (98 mg, 0.345 mmol) for 17h. The reaction mixture was cooled to room temperature and quenched with sat.NaHCO<sub>3</sub> (150 mL) and extracted with EtOAc (100 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane / EtOAc = 98/2 to 82/18) afforded **15b** (1.07 g, 94%) as a white solid. TLC: hexane/EtOAc = 10/1 (R<sub>f</sub> = 0.19); Mp 84-85°C; [α]<sup>26</sup><sub>D</sub> -10.5 (c 0.53, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 0.98 (3H, s), 1.70 (3H, s), 5.09 (1H, s), 7.27-7.40(7H, m), 7.67 (1H, dd, J = 8.0, 1.2 Hz), 7.77 (1H, dd, J = 7.6, 1.6 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 23.8, 29.1, 78.7, 88.2, 121.9, 127.1, 127.3 (2C), 127.5, 128.3 (2C), 130.4, 131.4, 131.6, 133.9, 138.6, 163.4; IR (KBr): 2974, 2874, 1665, 1465, 1334, 1246, 1086, 1032, 751 cm<sup>-1</sup>; HRMS (FAB) m/z: [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>17</sub>BrNO 330.0494; found 330.0493.



Synthesis of (R)-5,5-dimethyl-4-phenyl-2-(2-((R)-p-tolylsulfinyl)phenyl)-4,5-dihydrooxazole (L10). To a solution of 15b (1.05 g, 3.18 mmol) in Et<sub>2</sub>O (15 mL) was slowly added *n*-BuLi (2.6 M in hexane, 1.47 mL, 3.82 mmol) at -78 °C under Ar atmosphere. After stirring at -78 °C for 0.5 h, a solution of

(1S,2R,5S)-(+)-menthyl (R)- p-toluenesulfinate (1.10 g, 3.82) mmol) in Et<sub>2</sub>O (10 mL) was added dropwise, stirred at -78 °C for 0.5 h, then room temperature for 4 h. To the mixture was added sat. NH<sub>4</sub>Cl (40 mL) and extracted with EtOAc (30 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane / acetone = 7/1 to 6.5/1) afforded L10 (0.83 g, 67%) as a white solid. TLC: hexane/EtOAc = 3/1 (R<sub>f</sub> = 0.20); Mp 96-97°C;  $[\alpha]^{26}$ <sub>D</sub> 100.2 (c 0.48, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 0.86 (3H, s), 1.62 (3H,s), 2.34 (3H, s), 5.08 (1H, s), 6.87-6.90 (2H, m), 7.08-7.10 (2H, m), 7.19-7.26 (3H, m), 7.2-7.55 (2H, m), 7.57 (1H, dt, J= 7.6, 1.2 Hz), 7.77 (1H, dt, J = 7.6, 1.2 Hz), 8.01 (1H, dd, J =7.6, 1.2 Hz), 8.44 (1H, dd, J = 8.0, 1.2 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$  21.3, 23.8, 28.7, 79.0, 87.8, 125.4, 125.8, 126.9 (2C), 127.2 (2C), 127.4, 128.0 (2C), 129.5 (2C), 129.7, 130.3, 132.0, 138.1, 140.7, 143.7, 146.3, 160.8; IR (KBr): 3526, 3464, 2981, 2869, 1641, 1456, 1335, 1083, 1017, 746 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>2</sub>S 389.1449; found 389.1449.

#### Preparation of ligand L11.14



Synthesis of tert-butyl (R)-(2-hydroxy-2-isobutyl-4-methyl-1phenylpentyl)carbamate (16). 16 was prepared according to the reported procedure.<sup>13b</sup> To a solution of (R)-tertbutoxycarbonylaminophenylacetic acid methyl ester<sup>13a</sup> (1.0 g, 4.25 mmol) in THF (dehydrated, 20 mL) was added LaCl<sub>3</sub>·2LiCl (0.6 M in THF, 21.0 mL, 12.6 mmol) at room temperature under Ar. After stirring for 2 h at room temperature, the reaction mixture was added 'BuMgBr (1.0 M in THF, 12.8 mL, 12.8 mmol) at 0°C, then stirred for 18 h at 0°C ~ rt. To the mixture was added sat. NH<sub>4</sub>Cl (100 mL) and extracted with EtOAc (100 mL) twice. The organic layer was washed with brine, dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (hexane / EtOAc = 96/4 to 68/32) afforded 16 (1.24 g, 83%) as a white solid. TLC: hexane/EtOAc = 5/1 (R<sub>f</sub> = 0.30); Mp 112-114°C;  $[\alpha]^{25}_{D}$  1.3 (c 0.51, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ 0.83 (3H, d, J = 6.8 Hz), 0.86 (3H, d, J = 6.4 Hz), 0.88-0.93(1H, m), 0.99 (6H, d, J = 6.4 Hz), 1.24-1.78 (15H, m), 4.58 (1H, m)d, J = 9.2 Hz), 5.58 (1H, d, J = 8.4 Hz), 7.24-7.34 (5H, m); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 23.8, 24.1, 24.3, 24.9, 25.0 (2C), 28.4 (3C), 44.0, 46.0, 60.6, 77.7, 79.3, 127.3, 128.2 (2C), 128.4 (2C), 140.0, 155.3; IR (KBr): 3449, 3411, 2953, 2870, 1670, 1522, 1362, 1254, 1169, 875 cm<sup>-1</sup>; HRMS (FAB) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>36</sub>NO<sub>3</sub> 350.2695; found 350.2695.



Synthesis of (R)-2-bromo-N-(2-hydroxy-2-isobutyl-4methyl-1-phenylpentyl)benzamide (14c). To a solution of 16 (1.19 g, 3.41 mmol) in  $CH_2Cl_2$  (6 mL) was added TFA (6 mL) at 0°C, and the mixture was stirred for 1 h at room temperature. The reaction mixture was concentrated in vacuo, the residue was diluted with  $CH_2Cl_2$  (40 mL) and washed with 2M NaOH

57

58 59

60

(60 mL). The aqueous phase was extracted with  $CH_2Cl_2(40 \text{ mL})$ twice and the combined organiclayers were dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude aminoalcohol 13c was used without further purification. To a solution of 13c and Et<sub>3</sub>N (1.03 g, 10.22 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (dehydrated, 12 mL) was slowly added a CH<sub>2</sub>Cl<sub>2</sub> (3 mL) solution of 2-bromobenzoyl chloride (748 mg, 3.41 mmol) at 0°C under Ar. After stirring for 12 h at room temperature, the reaction mixture was quenched with water (30 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (30 mL) three times. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (hexane/EtOAc = 94/6 to 51/49) to give 14c (1.47 g, 100%, 2 steps) as white solid. TLC: hexane/EtOAc = 3/1 (R<sub>f</sub> = 0.30); Mp 98-99°C;  $[\alpha]^{25}_{D}$  -2.6 (c 0.54, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.81 (3H, d, J = 6.8 Hz), 0.87 (3H, d, J = 6.4 Hz), 0.92-0.98 (1H, m), 1.02 (3H, d, J = 6.8 Hz),1.03 (3H, d, J = 6.4 Hz), 1.43-1.48 (2H, m), 1.64-1.89 (4H, m), 5.07 (1H, d, J = 8.8 Hz), 7.18 (1H, d, J = 8.4 Hz), 7.23-7.42 (7H, m), 7.46 (1H, dd, *J* = 7.6, 2.0 Hz), 7.57 (1H, dd, *J* = 7.8, 1.0 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>) δ 23.7, 24.1, 24.2, 24.2, 25.0, 25.0, 44.2, 46.2, 60.0, 77.7, 119.2, 127.5, 127.6, 128.3 (2C), 128.7 (2C), 129.8, 131.2, 133.4, 137.8, 139.1, 166.4; IR (KBr): 3403, 3300, 2952, 1631, 1537, 1462, 1153, 1032, 745, 701 cm<sup>-</sup> <sup>1</sup>; HRMS (FAB) m/z:  $[M+H]^+$  calcd for C<sub>23</sub>H<sub>31</sub>BrNO<sub>2</sub> 432.1538; found 432.1538.



Synthesis of (R)-2-(2-bromophenyl)-5,5-diisobutyl-4-phenyl-4,5-dihydrooxazole (15c). 14c (1.40 g, 3.24 mmol) dissolved in xylene (150 mL) was refluxed in a Dean-Stark apparatus with tetraisopropyl orthotitanate (92 mg, 0.324 mmol). After stirring for 27 h at reflux temperature, tetraisopropyl orthotitanate (92 mg, 0.324 mmol) was again added, and additional tetraisopropyl orthotitanate (276 mg, 0.972 mmol) was added 24 h later. After stirring at same temperature for 17 h, the reaction mixture was cooled to room temperature and quenched with sat.NaHCO<sub>3</sub> (150 mL) and extracted with EtOAc (100 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (hexane/EtOAc = 98/2 to 82/18) to give 15c (1.09 g, 81%) as yellow oil. TLC: hexane/EtOAc=10/1 ( $R_f = 0.45$ );  $[\alpha]^{25}_D$  27.2 (c 0.55, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.71 (3H, d, J = 6.8 Hz), 0.76 (3H, d, J = 6.4 Hz), 1.01-1.20 (8H, m), 1.69-1.78 (2H, m), 1.94-2.09 (2H, m), 5.03 (1H, s), 7.25-7.39 (7H, m), 7.68 (1H, d, J = 7.8, 1.0 Hz), 7.77 (1H, d, J = 7.6, 2.0 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>)  $\delta$ 23.7, 24.2, 24.3, 24.7, 25.1, 25.1, 44.3, 47.0, 77.5, 92.6, 122.0, 127.2, 127.4, 128.1 (2C), 128.2 (2C), 130.5, 131.4, 131.6, 134.1, 138.7, 163.4; IR (KBr): 2954, 1658, 1465, 1331, 1097, 740, 693 cm<sup>-1</sup>; HRMS (FAB) m/z:  $[M+H]^+$  calcd for  $C_{23}H_{29}BrNO$ 414.1433; found 414.1433.



Synthesis (R)-5,5-diisobutyl-4-phenyl-2-(2-((R)-pof tolylsulfinyl)phenyl)-4,5-dihydrooxazole (L11). To a solution of 15c (1.00 g, 2.41 mmol) in Et<sub>2</sub>O (15 mL) was slowly added n-BuLi (2.6 M in hexane, 1.12 mL, 2.90 mmol) at -78 °C under Ar atmosphere. After stirring at -78 °C for 0.5 h, a solution of (1S,2R,5S)-(+)-menthyl (R)- p-toluenesulfinate (0.85 g, 2.90 mmol) in Et<sub>2</sub>O (10 mL) was added dropwise, stirred at -78 °C for 0.5 h, then room temperature for 3 h. To the mixture was added sat. NH<sub>4</sub>Cl (40 mL) and extracted with EtOAc (30 mL) twice. The combined organic phase was dried over MgSO<sub>4</sub>, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (hexane/EtOAc = 95/5 to 60/40) to give L11 (0.49 g, 43%) as pale yellow solid. TLC: hexane/EtOAc = 4/1 ( $R_f = 0.21$ ); Mp 102-105°C;  $[\alpha]^{26}_D$  86.7 (c 0.54, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.68 (3H, d, J = 6.8 Hz), 0.75 (3H, d, J = 6.8 Hz), 0.90-1.05 (8H, m), 1.60-1.71 (2H, m), 1.88-2.03 (2H, m), 2.33 (3H, s), 5.29 (1H, s), 6.78-6.80 (2H, m), 7.06 (2H, d, J = 8.0 Hz), 7.16 (2H, t, J = 8.0 Hz), 7.21-7.25 (1H, m), 7.50-7.53 (2H, m), 7.57 (1H, dt, J = 7.6, 1.2 Hz), 7.78 (1H, dt, J = 7.6, 1.2 Hz), 7.96 (1H, dd, J = 7.8, 1.0 Hz), 8.47 (1H, dd, J= 8.0, 1.2 Hz);  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>)  $\delta$  21.3, 23.6, 24.0, 24.1, 24.4, 24.8, 24.9, 44.1, 46.8, 77.9, 91.8, 124.9, 125.6, 125.8, 127.0 (2C), 127.2, 127.8 (2C), 127.9 (2C), 129.5 (2C), 130.3, 131.9, 138.1, 140.6, 143.8, 146.4, 160.6; IR (KBr): 2953, 1645, 1460, 1336, 1084, 1031 cm<sup>-1</sup>; HRMS (EI) m/z: [M<sup>+</sup>] calcd for C<sub>30</sub>H<sub>35</sub>NO<sub>2</sub>S 473.2389; found 473.2389.

#### ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website.

Copy of <sup>1</sup>H and <sup>13</sup>C NMR spectra for all new compounds (PDF)

#### **AUTHOR INFORMATION**

#### **Corresponding Author**

\*E-mail: kkk@phar.toho-u.ac.jp

#### ORCD

Keisuke Kato: 0000-0003-4408-4181

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI Grant Number 24790026.

#### REFERENCES

 (a) Tang, J. W.; Kong, L. M.; Zu, W. Y.; Hu, K.; Li, X. N.; Yan, B. C.; Wang, W. G.; Sun, H. D.; Li, Y.; Puno, P. T. Isopenicins A-C: Two Types of Antitumor Meroterpenoids from the Plant Endophytic Fungus *Penicillium* sp. sh18. *Org. Lett.* 2019, 21, 771–775. (b) Wang, W. G.; Li, A.; Yan, B. C.; Niu, S. B.; Tang, J. W.; Li, X. N.; Du, X.; Challis, G. L.; Che, Y. S.; Sun, H. D.; Pu, J. X. LC-MS-guided Isolation of Penicilfuranone A: A New Antifibrotic Furancarboxylic Acid from the Plant Endophytic Fungus *Penicillium* sp. sh18. *J. Nat.* *Prod.* **2016**, *79*, 149–155. (c) Tang, H.Yu.; Zhang, Q.; Gao, Y. Q.; Zhang, A. L.; Gao, J. M. Miniolins A–C, Novel Isomeric Furanones Induced by Epigenetic Manipulation of *Penicillium minioluteum. RSC Adv.* **2015**, *5*, 2185–2190. (d) Kimura, T.; Takeuchi, T.; Kumamoto-Yonezawa, Y.; Ohashi, E.; Ohmori, H.; Masutani, C.; Hanaoka, F.; Sugawara, F.; Yoshida, H.; Mizushina, Y. Penicilliols A and B, Novel Inhibitors Specific to Mammalian Y-family DNA Polymerases. *Bioorg. Med. Chem.* **2009**, *17*, 1881–1816.

- (2) (a) Ballantine, J. A.; Ferrito, V.; Hassall, C. H.; Jones, V. I. P. Aspertetronin A and B, Two Novel Tetronic Acid Derivatives Produced by a Blocked Mutant of *Aspergillus rugulosus. J. Chem. Soc. C.* **1969**, 56–61. (b) Kobayashi, K.; Ui, T. Isolation of Phytotoxic Substances Produced by *Cephalosposium gregatum* allington & chamberlain. *Tetrahedron Lett.* **1975**, *16*, 4119–4122.
- (3) (a) Burghart-Stoll, H.; Brückner, R. A Serendipitous Synthesis of (+)-Gregatin B, Second Structure Revisions of the Aspertetronins, Gregatins, and Graminin A, Structure Revision of the Penicilliols. Org. Lett. 2011, 13, 2730-2733. (b) Burghart-Stoll, H.; Brückner, R. Total Syntheses of the Gregatins A-D and Aspertetronin A: Structure Revisions of These Compounds and of Aspertetronin B, Together with Plausible Structure Revisions of Gregatin E, Cyclogregatin, Graminin A, the Penicilliols A and B, and the Huaspenones A and B. Eur. J. Org. Chem. 2012, 2012, 3978-4017. (c) Weber, Brückner, R. A. Total Syntheses of the F.: Dihydrofuranonecarboxylate Natural Products Gregatin B and E: Gram-Scale Synthesis of (+)-Gregatin B and Unambiguous Assignment of the Stereostructure of (+)-Gregatin E. Org. Lett. 2014, 16, 6428-6431.
- (4) Kobayashi, K.; Ui, T. Graminin A, a New Toxic Metabolite from *Cephalosporium gramineum* Nishikado & Ikata J. Chem. Soc., Chem. Commun. **1977**, 774–774.
- (5) (a) Kusakabe, T.; Kawai, Y.; Kato, K. Total Synthesis of (+)-Gregatin B and E. *Org. Lett.* 2013, *15*, 5102–5105. (b) Kato, K.; Nouchi, H.; Ishikura, K.; Takaishi, S.; Motodate, S.; Tanaka, H.; Okudaira, K.; Mochida, T.; Nishigaki, R.; Shigenobu, K.; Akita, H. A Facile Access to Spiro Furanone Skeleton Based on Pd(II)-Mediated Cyclization-Carbonylation of Propargylic Ester *Tetrahedron* 2006, *62*, 2545–2554. (c) Kato, K.; Yamamoto, Y.; Akita, H. Unusual Formation of Cyclic-Orthoesters by Pd(II)-Mediated Cyclization-Carbonylation of Propargylic Acetates *Tetrahedron Lett.* 2002, *43*. 6587.
- (6) The use of bisoxazoline (box) ligand gave cyclopentene-1,3dione derivative: Kato, K.; Teraguchi, R.; Yamamura, S.; Mochida, T.; Akita, H.; Peganova, T. A.; Vologdin, N. V.; Gusev, O. V. Ligand-Controlled Intermolecular Carbonylative Cyclization of 1,1-Diethynyl Acetates: New Entry to the

Fuctionalized 4-Cyclization of 1,1-Diethynyl Acetates: *Synlett* **2007**, 638-642.

- (7) (a) Allen, J. V.; Bower, J. F.; Williams, J. M. J. Enantioselective Palladium Catalysed Allylic Substitution. Electronic and Steric Effects of the Ligand. *Tetrahedron:Asymmetry* 1994, *5*, 1895–1898. (b) Kondo, H.; Yu, F.; Yamaguchi, J.; Liu, G.; Itami, K. Branch-Selective Allylic C-H Carboxylation of Terminal Alkenes by Pd/sox Catalyst. Org. Lett. 2014, *16*, 4212–4215. (c) Ma, R.; White, M. C. C-H to C-N Cross-Coupling of Sulfonamides with Olefins. J. Am. Chem. Soc. 2018, *140*, 3202–3205.
- (8) Darwish, A.; Lang, A.; Kim, T.; Chong, J. M. The Use of Phosphine Ligands to Control the Regiochemistry of Pd-Catalyzed Hydrostannations of 1-Alkynes: Synthesis of (E)-1-Tributylstannyl-1-alkenes. Org. Lett. 2008, 10, 861-864.
- (9) The aldol reaction of similar furanone with Schiff base has been reported : Chantegrel, B.; Gelin, S. Reactivity of 5-Methyl-3(2H)-furanones Toward Schiff Bases; Synthesis of 5-Styryl-3(2H)-furanone Derivatives. Synthesis 1981, 45-47.
- (10) (a) Cichowicz, N. R.; Kaplan, W.; Khomutnyk, Y.; Bhattarai, B.; Sun. Z.; Nagorny, P. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. J. Am. Chem. Soc. 2015, 137, 14341–14348. (b) Huang, J.; Lebœuf, D.; Frontier, A. J. Understanding the Fate of the Oxyallyl Cation following Nazarov Electrocyclization: Sequential Wagner-Meerwein Migrations and the Synthesis of Spirocyclic Cyclopentenones. J. Am. Chem. Soc. 2011, 133, 6307–6317.
- (11) Kimura, T.; Takeuchi, T.; Kumamoto-Yonezawa, Y.; Ohashi, E.; Ohmori, H.; Masutani, C.; Hanaoka, F.; Sugawara, F.; Yoshida, H.; Mizushina Y. Penicilliols A and B, Novel Inhibitors Specific to Mammalian Y-family DNA Polymerases. *Bioorg. Med. Chem.* 2009, *17*, 1811–1816.
- (12) Harrowven, D. C.; Curran, D. P.; Kostiuk, S. L.; Wallis-Guy, I. L.; Whiting, S.; Stenning, K. J.; Tang, B.; Packarda, E.; Nansona, L. Pottasium Carbonate-Silica: A Highly Effective Stationary Phase for the Chromatographic Removal of Organotin Impurities. *Chem. Commun.* **2010**, *46*, 6335-6337.
- (13) (a) M. Kapoor, P. C.-Thakuri, M. C. Young, Carbon Dioxide-Mediated C(*sp*<sup>2</sup>)–H Arylation of Primary and Secondary Benzylamines. *J. Am. Chem. Soc.* 2019, *141*, 7980-7989. (b) A. Krasovskiy, F. Kopp, P. Knochel, Soluble Lanthanide Salts (LnCl<sub>3</sub>·2 LiCl) for the Improved Addition of Organomagnesium Reagents to Carbonyl Compounds. *Angew. Chem. Int. Ed.* 2006, *45*, 497-500.
- (14) Synthetic schemes of ligands; see the Supporting Information.

1 2

3

4

5

6

7

8

9

10

11

12

13