This article was downloaded by: [Selcuk Universitesi] On: 20 December 2014, At: 15:44 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lncn20</u>

Synthesis of Amide-Linked [(3')CH₂CO-NH(5')] Nucleoside Analogues of Small Oligonucleotides

Morris J. Robins^a, Bogdan Doboszewski^{ab}, Bradley L. Nilsson^a & Matt A. Peterson^a

^a Department of Chemistry and Biochemistry , Brigham Young University , Provo, Utah, 84602-5700, U.S.A.

^b Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil Published online: 24 Sep 2006.

To cite this article: Morris J. Robins, Bogdan Doboszewski, Bradley L. Nilsson & Matt A. Peterson (2000) Synthesis of Amide-Linked [(3')CH₂CO-NH(5')] Nucleoside Analogues of Small Oligonucleotides, Nucleosides, Nucleotides and Nucleic Acids, 19:1-2, 69-86, DOI: <u>10.1080/15257770008032997</u>

To link to this article: <u>http://dx.doi.org/10.1080/15257770008032997</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

SYNTHESIS OF AMIDE-LINKED [(3')CH₂CO–NH(5')] NUCLEOSIDE ANALOGUES OF SMALL OLIGONUCLEOTIDES^{§,1}

Morris J. Robins,* Bogdan Doboszewski,† Bradley L. Nilsson, and Matt A. Peterson*

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, U.S.A.

ABSTRACT: We report syntheses of new amide-linked (di-penta)nucleoside analogues of antisense oligonucleotide components. Solution-phase coupling of 3'-(carboxymethyl)-3'-deoxy- and 5'-amino-5'-deoxynucleoside derivatives provides amide dimers. Activated [3'-(carboxymethyl)-3'-deoxy] units with a 5'-azido-5'-deoxy function provide "masked" 5'-amino-5'-deoxy residues for chain extension, and a 5'-O-DMT-protected unit provides the 5'-terminus for attachment to a phosphodiester linkage.

Modulation of the expression of genetic messages into coded proteins is an area of intense interest. Antisense and other related therapeutic strategies have concentrated on the development of oligonucleotide mimics with resistance to nuclease cleavage, potent affinity for complementary oligonucleotide sequences, and pharmacokinetic accessibility to target cells. Initial antisense analogue approaches focused on changes at phosphorus on modified phosphodiester backbones. More recent modifications include carbon–heteroatom linkages without phosphorus, and this field has been reviewed extensively.²

We were interested in amide-linked nucleoside analogues of phosphodiesters,³ and the Novartis group has described studies which confirm the potent affinity of nucleoside amide-dimer units for complementary oligonucleotide sequences.⁴ We reported syntheses of 3'-(carboxymethyl)-3'-deoxynucleosides from nucleosides^{3b,c} and carbohydrates.^{3d} However, coupling of derived lactones with 5'-amino-5'-deoxynucleosides did not occur readily.^{3b,c} We now describe mild and efficient couplings of 5'-amino and activated 3'-carboxylate derivatives which provide dimer–pentamer amide-linked oligonucleosides.

[§]This paper is dedicated to happy memories of Gertrude B. Elion.

^{*}FAX: (801) 378-5474

[†]Address: Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil.

RESULTS AND DISCUSSION

Our targets for the 2'-O-methyl 3'-terminal units were the 5'-amino-5'-deoxy-2'-Omethylnucleosides **11** and **12** (Scheme 1). Known derivative⁵ **1** was methylated to give **2** as described⁶ (MeI/Ag₂O) for its uridine analogue. Debenzoylation (NaOMe/MeOH) of **2** and desilylation (NH₄F/MeOH)⁷ gave 2'-O-methyl-5-methyluridine⁸ (**3**). Chlorination of **3** with SOCl₂/HMPA⁹ gave the 5'-chloro derivative **5** and diastereomeric byproducts **7**. NMR spectra of **7** indicated two closely related compounds, and mass spectra verified the presence of two chlorine atoms. Dechlorination of **7** with Bu₄SnH/AIBN gave a single product, 3',5'-dideoxy-2'-O-methyl-5-methyluridine (**8**), in harmony with the assignment of **7** epimers. Treatment¹⁰ of **3** with Ph₃P/CCl₄ gave the desired 5'-chloro derivative **5** without detected formation of the 3',5'-dichloro byproducts. Chlorination of 2'-Omethyladenosine¹¹ (**4**) with SOCl₂/HMPA⁹ gave **6** cleanly. Azide displacement with **5** or

Scheme 1^a

^{*a*} (a) MeI/Ag₂O/toluene. (b) (i) NaOMe/MeOH; (ii) NH₄F/MeOH/ Δ . (c) SOCl₂/HMPA. (d) CCl₄/PPh₃/DMF. (e) Bu₃SnH/AIBN/toluene/ Δ . (f) NaN₃/DMF/ Δ . (g) H₂/Pd–C/EtOH.

6 (NaN₃/DMF/ Δ) occurred without incident to give the 5'-azido-5'-deoxy products 9 or 10, respectively. Catalytic hydrogenolysis of 9 or 10 as described^{3b,c} gave the 5'-amino-5'-deoxynucleosides 11 or 12, respectively.

Treatment¹² of the protected 3'-carboxylates^{3c} **13** or **15** (Scheme 2) and 5'-amine **11** with DCC in DMF or pyridine generated minor quantities of the amide-linked dimers plus unknown byproducts. Active esters **16** and **18** were prepared¹³ from **13** and **15**, respectively, with 4-nitrophenol/DCC/1-hydroxybenzotriazole/DMF. As anticipated, the 5'-amines **11** or **12** coupled with the active ester **16** in ethanol solution at ambient temperature^{13a} to give amide dimers **19** (74%) or **20** (75%), respectively. Active ester **17** was generated from **14** (4-nitrophenol/DCC/CH₂Cl₂) and coupled directly with **12** to give the A–A dimer **21** (77%). Analogous coupling of **11** and **18** gave **22** (71%), which was subjected to catalytic hydrogenolysis to give the 5'-terminal amino dimer **23**. Treatment of **23** with **16** in EtOH at ambient temperature gave trimer **24** (65%).

Scheme 2^a

^{*a*} (a) 4-Nitrophenol/DCC. (b) (**11** or **12**)/EtOH. (c) H₂/Pd–C/EtOH. (d) **16**/EtOH.

Ester 25 (Scheme 3) was generated from 5'-azido-2'-O-(*tert*-butyldimethylsilyl)-3'-(carboxymethyl)-3',5'-dideoxyuridine.^{3c} Coupling of 25 and dimer 26^{3c} (diglyme/65 °C) gave trimer 27 (84%). Catalytic hydrogenolysis of the azido group was sluggish and incomplete under the usual conditions. Treatment of 27 with 1,3-propanedithiol and Et₃N in deoxygenated ethanol provided clean conversion to the 5'-terminal amine 28 (92%). Treatment of 28 with 25 (diglyme/65 °C) gave tetramer 29 (92%). Alternative ambient

^{*a*} (a) Diglyme/65 °C. (b) HS(CH₂)₃SH/EtOH. (c) **25**/(diglyme/65 °C or CH₂Cl₂/ ambient). (d) NaOH/MeOH/H₂O. (e) **26**/DCC/dioxane. (f) H₂/Pd–C/THF.

Scheme 3^a

temperature coupling of dimers 26 and 33^{3c} with DCC/dioxane gave 29 (61%). Saponification of the 3'-terminal ester of 29 (NaOH/MeOH/H₂O) gave the carboxylate 30 (69%), and reduction of the 5'-terminal azido group of 29 (1,3-propanedithiol/Et₃N/EtOH) gave amino tetramer 31 (74%). Coupling of 31 with 25 (diglyme/65 °C) gave pentamer 32 (75%).

The 5'-amino dimer 34^{3c} (with 2',3'-bis-O-TBDMS protection at the 3'-terminal) was coupled with 25 in CH₂Cl₂ at ambient temperature to give trimer 35 (61%), which underwent catalytic hydrogenolysis of the azido group to give 36 (72%). Coupling of 36 with 25 (CH₂Cl₂/ambient temperature) gave tetramer 37 (49%), which also was prepared (60%) by condensation of dimers 33^{3c} and 34^{3c} (DCC/CH₂Cl₂). Treatment of 37 with 1,3-propanedithiol/Et₃N/EtOH resulted in clean reduction of the 5'-azido group to give amine 38 (75%), but attempted catalytic hydrogenolysis was sluggish and incomplete.

SUMMARY AND CONCLUSIONS

Condensation reactions between protected 3'-(carboxymethyl)-3'-deoxynucleoside 4-nitrophenyl esters and 5'-amino-5'-deoxynucleosides take place at ambient temperature in ethanol or at 65 °C in diglyme to give amide linked dimers (~75%). The DCC-mediated coupling of protected 5'-amino-5'-deoxynucleoside and 3'-(carboxymethyl) units provides an alternative method. The use of 5'-azido-5'-deoxy-3'-(carboxymethyl) monomers allows successive reduction of the 5'-(azido \rightarrow amino) group and coupling with another activated 3'-(carboxymethyl) unit. This methodology provides access to amide-linked oligomer analogues of oligonucleotides by well-established procedures of peptide synthesis, and is readily ameanable to solid-phase techniques as well as the solution sequences demonstrated in this study. Catalytic hydrogenolysis of the azide moiety was effective with the smaller molecules, and in one case with a tetramer. Chemical reduction with 1,3-propanedithiol in the presence of triethylamine was more effective with most larger molecules. These routes make synthesis of oligomers with 2'-O-methylribonucleoside monomers readily available. whereas prior approaches that employed free radical-mediated coupling for generation of the 3'-(carboxymethyl) subunits^{2i,4b,d} produced mixtures of the xylo and ribo epimers. Our condensation reactions with 5'-O-(dimethoxytrityl) and 2',3'-bis-O-(tert-butyldimethylsilyl) protection at the 5' and 3' termini demonstrate compatibility with standard oligonucleotide synthesizer technology. Incorporation of dimer (or larger) units into "gapmer" oligonucleotides should proceed without difficulty.

EXPERIMENTAL SECTION

Uncorrected melting points were determined with a capillary tube apparatus. NMR spectra were determined with solutions in Me₄Si/Me₂SO- d_6 at 200 or 300 MHz (¹H) or 50

or 75 MHz (13 C) unless otherwise specified. Proton signals designated "ex" underwent exchange with D₂O, but not all NMR spectral solutions were subjected to D₂O exchange. High resolution mass spectra (MS) were determined under FAB conditions with a matrix of NaOAc/thioglygerol unless otherwise specified. Solvents were dried by distillation from CaH₂, except THF (Na/benzophenone) and CH₂Cl₂ (P₄O₁₀). Silica gel TLC plates were visualized under 254 nm light, and silica gel (200–400 mesh) was used for flash column chromatography. "Solvent A" for chromatography is the separated organic phase of EtOAc/*i*-PrOH/H₂O (4:1:2). "HOBT" is 1-hydroxybenzotriazole. Compounds (11, 12, 26, 33, 34)^{3c} and (13–15)^{3d} were prepared as described previously.

3-*N*-Benzoyl-3',5'-*O*-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-2'-*O*-methyl-5-methyluridine (2). A suspension of 3-*N*-benzoyl-3',5'-*O*-(1,1,3,3tetraisopropyldisiloxane-1,3-diyl)-5-methyluridine⁵ (1; 810 mg, 1.34 mmol), CH₃I (6 mL), and Ag₂O (2.5 g) in dried toluene (40 mL) was stirred (under Ar) and protected from light for 2 days.⁶ CH₃I (2 mL) and Ag₂O (0.8 g) were added, and stirring was continued for 4 days (nearly all of 1 was methylated, TLC). The mixture was filtered (sintered glass), and volatiles were evaporated. The residue was chromatographed (EtOAc/hexanes, 1:4) to give 2 (640 mg, 77%) as a glass: ¹H NMR δ 7.99–7.57 (m, 6H), 5.64 (s, 1H), 4.29 (dd, J = 4.8, 9.1 Hz, 1H), 4.19 (d, J = 12.7 Hz, 1H), 3.99–3.89 (m, 3H), 3.46 (s, 3H), 1.83 (d, J = 1.0 Hz, 3H), 1.06–0.99 (m, 28H); ¹³C NMR δ 169.5, 162.5, 148.5, 136.0, 135.5, 131.1, 130.4, 129.5, 108.7, 88.9, 82.3, 81.0, 68.7, 59.4, 58.6, 17.3, 17.23, 17.15, 17.1, 17.0, 16.9, 16.8, 12.8, 12.38, 12.37, 12.2, 11.9; MS *m/z* 641.2687 (MNa⁺ [C₃₀H₄₆N₂O₈Si₂Na] = 641.2690).

2'-O-Methyl-5-methyluridine (3). A solution of **2** (600 mg, 0.992 mmol) in NaOMe/MeOH (chip of Na/70 mL) was stirred for 4 days (TLC showed 2 products, partial disiloxane ring cleavage), and then was neutralized (solid CO₂). NH₄F (400 mg, 10.8 mmol) was added,⁷ and the mixture was refluxed (2 days, TLC showed conversion to a more polar product). The mixture was filtered, and volatiles were evaporated. The residue was chromatographed (MeOH/CH₂Cl₂, 1.8:20) and the product was recrystallized (MeOH) to give **3** (220 mg, 83%) with mp 192–195 °C (Lit.⁸ mp 194–195 °C).

5'-Chloro-5'-deoxy-2'-O-methyl-5-methyluridine (5) and 1-[3,5-Dichloro-3,5-dideoxy-2-O-methyl- β -D-(ribo/xylo)furanosyl]-5-methyluracil (7). Method A.⁹ SOCl₂ (0.75 mL, 1.2 g, 10 mmol) was added by syringe to a stirred solution of 3 (500 mg, 1.84 mmol) in HMPA (5 mL), and stirring was continued overnight (TLC, MeOH/CH₂Cl₂, 1:10, showed 2 less polar products). Standard extraction workup (CH₂Cl₂/brine), evaporation of volatiles, and short-path distillation of HMPA gave a residue that was chromatographed (MeOH/CH₂Cl₂, 0.7:20) to give 7 (162 mg, 30%; xylo/ribo, ~8:1): ¹H NMR (major isomer) δ 11.47 (br s, 1H, ex), 7.43 (q, *J* = 1.2 Hz, 1H), 5.80 ("d," J = 2.6 Hz, 1H), 4.73 (dd, J = 1.0, 3.8 Hz, 1H), 4.44 ("dt", J = 4.0, 6.2, 6.2 Hz, 1H), 4.17 (dd, J = 1.2, 2.4 Hz, 1H), 3.92 (dd, J = 1.6, 6.0 Hz, 2H), 3.40 (s, 3H), 1.79 (d, J = 1.2 Hz, 3H); ¹³C NMR (major isomer) δ 162.7, 149.3, 134.4, 108.8, 89.0, 87.7, 79.2, 58.9, 56.7, 41.1, 11.2; MS m/z 331.0225 (MNa⁺ [C₁₁H₁₄³⁵Cl₂N₂O₄Na] = 331.0228).

Further elution and recrystallization (CH₂Cl₂/Et₂O) gave **5** (305 mg, 57%) with mp 145–146 °C: ¹H NMR δ 11.40 (br s, 1H, ex), 7.49 (d, *J* = 1.0 Hz, 1H), 5.85 (d, *J* = 5.8 Hz, 1H), 5.42 (d, *J* = 6.0 Hz, 1H, ex), 4.11 ("dd", *J* = 5.6, 9.8 Hz, 1H), 4.01–3.76 (m, 4H), 3.33 (s, 3H), 1.77 (d, *J* = 0.8 Hz, 3H); ¹³C NMR δ 162.7, 149.6, 135.1, 109.1, 85.3, 82.1, 79.9, 68.3, 56.5, 43.6, 11.0; MS (FAB, thioglycerol) *m*/*z* 291.0736 (MH⁺ [C₁₁H₁₆³⁵ClN₂O₅] = 291.0748.

Method B.¹⁰ A solution of **3** (70 mg, 0.26 mmol), Ph_3P (100 mg, 0.381 mmol), and CCl₄ (300 µL, 478 mg, 3.11 mmol) in DMF (5 mL) was stirred (under Ar) for 24 h (nearly all of **3** was converted to **5**, TLC). Volatiles were evaporated, and xylene was added and evaporated to remove residual DMF. Chromatography (MeOH/CH₂Cl₂, 0.7:20) gave **5** (55 mg, 73%).

1-(3,5-Dideoxy-2-*O*-methyl-β-D-*erythro*-pentofuranosyl)-5-methyluracil (8). Bu₃SnH (520 μL, 560 mg, 1.92 mmol) and AIBN (33 mg, 0.20 mmol) in toluene (15 mL) were added dropwise (2 h) to a stirred solution of **7** (120 mg, 0.390 mmol) in toluene (20 mL) at 90 °C (TLC, MeOH/CH₂Cl₂, 0.7:20, showed a more polar product). Volatiles were evaporated, the residue was chromatographed (MeOH/CH₂Cl₂, 0.6:20), and recrystallization (CH₂Cl₂/Et₂O) gave **8** (68 mg, 73%) with mp 124–125 °C: ¹H NMR δ 11.36 (s, 1H, ex), 7.32 (d, J = 1.2 Hz, 1H), 5.73 (d, J = 1.8 Hz, 1H), 4.19 (hep, J = 5.5 Hz, 1H), 3.95 (d, J = 6.0 Hz, 1H), 3.29 (s, 3H), 2.04 (dd, J = 5.2, 13.6 Hz, 1H), 1.81 (d, J = 1.2 Hz, 3H), 1.73 (dd, J = 6.2, 13.4 Hz, partial overlap), 1.32 (d, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz) δ 163.3, 149.7, 135.5, 109.1, 89.2, 84.6, 75.1, 56.1, 37.2, 19.3, 11.6; MS *m*/z 241.1183 (MH⁺ [C₁₁H₁₇N₂O₄] = 241.1188).

5'-Chloro-5'-deoxy-2'-*O*-methyladenosine (6). SOCl₂ (0.90 mL, 1.5 g, 12 mmol) and 2'-*O*-MeAdo¹¹ (**4**; 600 mg, 2.14 mmol) in HMPA (12 mL) was treated as described for $3 \rightarrow 5$ [workup after 16 h, recrystallization (H₂O)] to give **6** (390 mg, 62%) with mp 171–172 °C: ¹H NMR δ 8.37, 8.16 (2 × s, 2 × 1H), 7.37 (br s, 2H, ex), 6.04 (d, *J* = 5.6 Hz, 1H), 5.56 (d, *J* = 5.6 Hz, 1H, ex), 4.55 (t, *J* = 5.4 Hz, 1H), 4.41 ("dt", *J* = 4.0, 4.0, 5.2 Hz, 1H), 4.14–4.07 (m, 1H), 3.95 (dd, *J* = 5.6, 11.4 Hz, 1H), 3.84 (dd, *J* = 6.4, 11.4 Hz, 1H), 3.33 (s, 3H); ¹³C NMR δ 156.3, 153.0, 149.4, 139.8, 119.3, 85.6, 84.3, 81.4, 69.7, 57.7, 44.7; MS *m/z* 300.0868 (MH⁺ [C₁₁H₁₅³⁵ClN₅O₃] = 300.0863).

5'-Azido-5'-deoxy-2'-O-methyl-5-methyluridine^{3c} (9). A solution of 5 (360 mg, 1.24 mmol) and NaN₃ (1.21 g, 18.6 mmol) in DMF (30 mL) was stirred for 2 h at 90–100 °C (TLC showed the conversion of $5 \rightarrow 9$ with similar R_f values, but 9 chars intensely upon spraying with 5% H₂SO₄/EtOH and heating). Extraction workup and chromatography (MeOH/CH₂Cl₂, 0.8:20) gave 9^{3c} (242 mg, 66%).

5'-Azido-5'-deoxy-2'-O-methyladenosine^{3c} (10). A solution of **6** (390 mg, 1.30 mmol) and NaN₃ (1.27 g, 19.5 mmol) in DMF (35 mL) was stirred for 8 h at ~100 $^{\circ}$ C (TLC showed no formation of cyclonucleoside byproducts, but **6** and **10** had equal R_f values). Volatiles were evaporated, and the residue (in a minimum volume of MeOH) was applied to a silica gel column. Elution (MeOH/CH₂Cl₂, 1.5:20) gave **10**.^{3c}

2' - *O*-(*tert*-**B** utyldimethylsilyl)-3' - deoxy-3' - {[(4-nitrophenoxy)carbonyl]methyl}-5'-*O*-dimethoxytrityl-5-methyluridine (16). A mixture of **13** (240 mg of the Et₃N salt, 0.293 mmol), DCC (91 mg, 0.44 mmol), HOBT (20 mg, 0.15 mmol), 4-nitrophenol (61 mg, 0.44 mmol), and DMF (10 mL) was stirred for 2 days and then partitioned (CH₂Cl₂/brine). The organic layer was washed (NaHCO₃/H₂O) and dried (MgSO₄), and volatiles were evaporated. Xylene was added and evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 0.25:20 containing ~0.5% Et₃N) to give **16** (155 mg, 63%): ¹H NMR δ 11.40 (s, 1H, ex), 8.27 (d, *J* = 9.4 Hz, 2H), 7.56 (s, 1H), 7.40–7.22 (m, 13H), 6.85 (d, *J* = 9.0 Hz, 2H), 5.66 (d, *J* = 2.4 Hz, 1H), 4.54 (dd, *J* = 2.6, 5.1 Hz, 1H), 4.15–4.05 (m, 1H), 3.68 (s, 6H), 3.55–3.42 (m, 1H), 3.39–3.25 (m, H₂O signal overlap), 2.82–2.57 (m, 3H), 1.37 (s, 3H), 0.84 (s, 9H), 0.07, 0.00 (2 × s, 2 × 3H); ¹³C NMR (125 MHz) δ 169.6, 163.6, 158.18, 158.16, 154.9, 150.4, 145.0, 144.6, 135.23, 135.17, 135.15, 129.8, 127.9, 127.6, 126.8, 125.2, 122.8, 113.2, 109.2, 90.2, 86.0, 82.0, 76.1, 63.2, 55.0, 30.1, 25.6, 25.3, 17.7, 11.8, -4.8, -5.6; MS *m*/z 860.3151 (MNa⁺ [C₄₅H₅₁N₃O₁₁SiNa] = 860.3191.

5'-Azido-2'-*O*-(*tert*-butyldimethylsilyl)-3',5'-dideoxy-3'-{[(4-nitrophenoxy)carbonyl]methyl}-5-methyluridine (18). A mixture of 15 (380 mg of the Et₃N salt, 0.703 mmol), DCC (220 mg, 1.06 mmol), HOBT (48 mg, 0.35 mmol), 4-nitrophenol (147 mg, 1.06 mmol), and DMF (30 mL) was stirred overnight. Workup (as described for $13 \rightarrow 16$) and chromatography (MeOH/CH₂Cl₂, 0.25:20) gave 18 (300 mg, 76%): ¹H NMR δ 11.43 (s, 1H, ex), 8.33 (d, J = 9.4 Hz, 2H), 7.59 (d, J = 1.0 Hz, 1H), 7.42 (d, J = 9.4 Hz, 2H), 5.69 (d, J = 2.4 Hz, 1H), 4.52 (dd, J = 2.2, 5.4 Hz, 1H), 4.13–4.06 (m, 1H), 3.83 (dd, J = 2.6, 13.8 Hz, 1H), 3.70 (dd, J = 5.2, 13.4 Hz, 1H), 2.88 (d, J = 5.8 Hz, 2H), 2.69–2.58 (m, 1H), 1.81 (s, 3H), 0.88 (s, 9H), 0.07, 0.00 (2 × s, 2 × 3H); ¹³C NMR (125 MHz) δ 169.9, 163.7, 155.0, 150.4, 145.0, 135.9, 125.4, 122.9, 109.5, 90.8, 81.1, 75.8, 51.5, 29.7, 25.62, 25.59, 17.7, 12.2, -4.8, -5.6; MS *m*/z 583.1927 (MNa⁺ [C₂₄H₃₂N₆O₈SiNa] = 583.1949.

2'-*O*-(*tert*-Butyldimethylsilyl)-3'-(*N*-carbonylmethyl)-3'-deoxy-5'-*O*-(dimethoxytrityl)-5-methyluridinyl-(3'→5')-5'-amino-5'-deoxy-2'-*O*methyl-5-methyluridine (19). A solution of 11 (20 mg, 0.074 mmol) and 16 (62 mg, 0.074 mmol) in EtOH (4 mL) was stirred for 4 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1.3:20 containing ~0.5% Et₃N) to give 19 (53 mg, 74%): ¹H NMR δ 11.38 (s, 2H, ex), 8.08 (t, *J* = 5.4 Hz, 1H, ex), 7.55, 7.49 (2 × d, *J* ~1Hz, 2 × 1H), 7.40–6.87 (m, 13H), 5.80 (d, *J* = 5.8 Hz, 1H), 5.64 (d, *J* = 2.4 Hz, 1H), 5.21 (d, *J* = 6.0 Hz, 1H, ex), 4.48–4.42 (m, 1H), 4.02–3.92 (m, 2H), 3.73 (s, 6H), 3.44–3.12 (m) and 3.30 (s) (9H), 2.67 (quin, *J* = 5.8 Hz, 1H), 2.37 (dd, *J* = 7.3, 16.3 Hz, 1H), 2.04 (dd, *J* = 6.3, 16.3 Hz, 1H), 1.77, 1.32 (2 × s, 2 × 3H), 0.83 (s, 9H), 0.07, 0.00 (2 × s, 2 × 3H); MS *m*/z 992.4105 (MNa⁺ [C₅₀H₆₃N₅O₁₃SiNa] = 992.4089.

2'-O-(tert-Butyldimethylsilyl)-3'-(N-carbonylmethyl)-3'-deoxy-5'-O- $(dimethoxytrityl) - 5 - methyluridinyl - (3' \rightarrow 5') - 5' - amino - 5' - deoxy - 2' - O - O'$ methyladenosine (20). A solution of 12 (12 mg, 0.043 mmol) and 16 (30 mg, 0.036 mmol) in EtOH (1 mL) was stirred for 3 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:9 containing $\sim 0.5\%$ Et₃N). The residue was partitioned (EtOAc//NaHCO₃/H₂O) and the organic phase was dried (Na₂SO₄). Volatiles were evaporated to give 20 (26 mg, 75%): ¹H NMR (CDCl₃) δ 10.82 (br s, 1H), 8.20 (s, 1H), 8.01 ("d", J = 7.0 Hz, 1H), 7.98, 7.75 (2 × s, 2 × 1H), 7.45–7.19 (m, 9H), 6.80 (dd, J = 1.5, 8.9 Hz, 4H), 6.66 (br s, 2H), 5.89 (s, 1H), 5.85 (d, J = 7.4 Hz, 1H),4.64-4.55, 4.34-4.25 (2 × m, 2 × 2H), 4.14 (d, J = 7.4 Hz, 1H), 4.05-3.90 (m, 1H), 3.73, 3.72, 3.32 (3 × s, 3 × 3H), 3.32–3.22 (m, 1H, overlap with the singlet at δ 3.32), 3.00-2.88, 2.74-2.56, 2.17-1.96 ($3 \times m$, $3 \times 2H$), 1.37 (s, 3H), 0.82 (br s, 9H), 0.17, 0.05 (2 × s, 2 × 3H); ¹³C NMR (CDCl₃) δ 171.3, 164.7, 158.7, 156.4, 152.9, 151.1, 149.0, 144.4, 140.9, 135.9, 135.5, 135.4, 130.34, 130.25, 128.3, 128.0, 127.2, 120.7, 113.3, 110.6, 106.3, 90.7, 88.6, 86.8, 84.7, 83.3, 81.5, 77.3, 70.6, 63.0, 58.9, 55.2, 46.1, 41.1, 38.9, 31.5, 25.7, 18.0, 11.8, -4.7, -5.3; MS m/z 1001.4194 (MNa⁺ $[C_{50}H_{62}N_8O_{11}SiNa] = 1001.4205).$

2'-O-(tert-Butyldimethylsilyl)-3'-(N-carbonylmethyl)-3'-deoxy-5'-O-(dimethoxytrityl)adenosinyl- $(3' \rightarrow 5')$ -5'-amino-5'-deoxy-2'-O-methyladenosine (21). A solution of 14 (24 mg, 0.029 mmol), 4-nitrophenol (6 mg, 0.04 mmol), and DCC (9 mg, 0.04 mmol) in CH₂Cl₂ (1 mL) was stirred for 24 h. Volatiles were evaporated to give 2'-O-TBDMS-3'-deoxy-3'-{[(4-nitrophenoxy)carbonyl]-methyl}-5'-O-DMT-adenosine (17). This material was dissolved in EtOH (1 mL), a solution of 12 (10 mg, 0.036 mmol) in EtOH (2 mL) was added, and stirring was continued for 3 days. Volatiles were evaporated, and the residue was chromatographed (5 \rightarrow 10% MeOH/CH₂Cl₂ containing ~0.5% Et₃N). Volatiles were evaporated, and the residue was partitioned (EtOAc//NaHCO₃/H₂O). The organic phase was dried (Na₂SO₄), and volatiles were evaporated to give **21** (22 mg, 77%): ¹H NMR δ 8.36 (s, 1H), 8.26 (br s, 1H, ex), 8.20, 8.13, 8.12 (3 × s, 3 × 1H), 7.36–7.20 (m, 13H), 6.82 (dd, *J* = 5.0, 11.8 Hz, 4H), 5.95 (d, *J* = 6.6 Hz, 1H), 5.90 (d, *J* = 1.0 Hz, 1H), 5.33 (d, *J* = 5.4 Hz, 1H, ex), 4.87–4.82, 4.48–4.42, 4.25–4.16, 4.08–4.02, 3.98–3.90 (5 × m, 5 × 1H), 3.69 (s, 6H), 3.26 (s, 3H), 2.90–2.80 (m, 2H), 2.40–2.36 (m, 1H), 2.20–2.02 (m, 2H), 0.78 (br s, 9H), -0.02, -0.07 (2 × s, 2 × 3H); ¹³C NMR δ 170.6, 162.4, 158.1, 156.6, 156.3, 156.2, 152.8, 149.2, 144.9, 140.3, 138.5, 135.6, 129.8, 127.9, 126.8, 119.2, 113.2, 89.6, 85.9, 85.7, 83.9, 82.7, 81.4, 76.8, 69.7, 69.1, 63.9, 57.5, 55.0, 35.8, 30.7, 25.6, 17.6, -5.0, -5.6; MS *m*/*z* 1010.4302 (MNa⁺ [C₅₀H₆₁N₁₁O₉SiNa] = 1010.4321).

5'-Azido-2'-O-(*tert*-butyldimethylsilyl)-3'-(*N*-c arbonylmethyl)-3', 5'dide ox y-5-methyluridinyl-(3' \rightarrow 5')-5'-amino-5'-deoxy-2'-O-methyl-5methyluridine (22). A solution of 11 (120 mg, 0.442 mmol) and 18 (202 mg, 0.360 mmol) in EtOH (18 mL) was stirred for 3 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1.3:20) to give 22 (178 mg, 71%): ⁻¹H NMR δ 11.40 (s, 2H, ex), 8.18 (t, *J* = 5.5 Hz, 1H, ex), 7.57, 7.52 (2 × d, *J* = 1.2 Hz, 2 × 1H), 5.83 (d, *J* = 5.6 Hz, 1H), 5.65 (d, *J* = 2.6 Hz, 1H), 5.25 (d, *J* = 5.6 Hz, 1H, ex), 4.41 (dd, *J* = 2.1, 6.5 Hz, 1H), 4.08–3.74 (m, 4H), 3.67 (d, *J* = 3.4 Hz, 2H), 3.56–3.16 (m) overlap with 3.35 (s) and H₂O signal, 2.56–2.24 (m, partial overlap with the Me₂SO-*d*₆ signals), 1.81 (s, 3H), 0.85 (s, 9H), 0.05, 0.00 (2 × s, 2 × 3H); ¹³C NMR (125 MHz) δ 170.5, 163.6, 150.4, 150.3, 136.3, 135.5, 109.8, 109.3, 90.1, 86.3, 82.4, 81.6, 81.2, 76.3, 69.7, 57.5, 52.0, 41.0, 30.9, 25.58, 25.56, 17.6, 12.0, 11.9, -5.1, -5.6; MS (FAB) *m*/z 715.2843 (MNa⁺ [C₂₉H₄₄N₈O₁₀SiNa] = 715.2847.

5'-Amino-2'-*O*-(*tert*-butyldimethylsilyl)-3'-(*N*-c arbonylmethyl)-3', 5'dide ox y-5-methyluridinyl-(3'→5')-5'-amino-5'-de ox y-2'-*O*-methyl-5methyluridine (23). A suspension of 22 (22 mg, 0.032 mmol) and 10% Pd–C (5 mg) in EtOH (12 mL) was hydrogentated (28 psi) overnight in a Parr shaking apparatus (TLC showed a minor amount of 22). The mixture was filtered (with Celite), volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:4; followed by MeOH/CH₂Cl₂ containing ~4% of 28% NH₃/H₂O) to give 23 (14 mg, 66%): ¹H NMR 8 8.32 (s, 1H), 8.18 (t, *J* = 5.0 Hz, 1H), 7.52 (s, 1H), 5.82 (d, *J* = 5.8 Hz, 1H), 5.56 (d, *J* = ~1 Hz, 1H), 4.31 (d, *J* = 3.8 Hz, 1H), 4.02 (t, *J* = 4.8 Hz, 1H), 3.85 (t, *J* = 5.5 Hz) partial overlap with 3.83–3.72 (m, 3H total), 4.46 ("dt", *J* = 5.3, 5.3, 14.0 Hz, 1H), 3.33 (s) partial overlap with 3.33–3.14 (m, 4H total), 2.91 (d, *J* = 12.4 Hz, 1H), 2.73 (d, *J* = 12.0 Hz, 1H), 2.47–2.38, 2.31–2.15 (2 × m, 2 × 3H), 1.79, 1.77 (2 × s, 2 × 3H), 0.84 (s, 9H), 0.08, 0.00 (2 × s, 2 × 3H); ¹³C NMR (125 MHz) δ 171.0, 163.8, 163.6, 150.5, 150.4, 136.6, 136.4, 109.9, 108.4, 89.8, 86.3, 84.5, 82.6, 81.2, 77.8, 69.7, 57.51, 57.49, 42.1, 41.0, 38.2, 30.8, 25.7, 17.7, 12.1, 12.0, -4.8, -5.5; MS m/z 689.2943 (MNa⁺ [C₂₉H₄₆N₆O₁₀SiNa] = 689.2942.

2'-O-(tert-Butyldimethylsilyl)-3'-(N-carbonylmethyl)-3'-deoxy-5'-O-(dimethoxytrityl)-5-methyluridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3' - (N-carbonylmethyl)-3', 5' - dideoxy-5-methyluridinyl- $(3' \rightarrow 5')$ -5'-amino-5'-deoxy-2'-O-methyl-5-methyluridine (24). A solution of 16 (27 mg, 0.032 mmol) and 23 (13 mg, 0.020 mmol) in EtOH (6 mL) was stirred for 4 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1.2:20 containing ~0.5% Et₃N) to give 24 (18 mg, 65%): ¹H NMR (500 MHz, CDCl₃) δ 9.68, 8.54, 8.06 ($3 \times s$, $3 \times 1H$), 7.67 (d, J = 1.0 Hz, 1H), 7.46 (d, J = 15.0 Hz, 2H), 7.33–7.22 (m, 6H), 7.13, 6.99 (2 × s, 2 × 1H), 6.85–6.82 (m, 5H), 6.36 (t, J = 5.3 Hz, 1H), 5.81 (d, J = 2.5 Hz, 1H), 5.62 (s, 1H), 5.22 (d, J = 4.5 Hz, 1H), 4.61 (dd, J = 2.0, 5.0 Hz, 1H), 4.49 (d, J = 5.5 Hz, 1H), 4.39 (t, J = 5.8 Hz, 1H), 4.23–4.20, 4.13–4.10, 3.99-3.94 (3 × m, 3 × 2H), 3.79, 3.78 (2 × s, 2 × 3H), 3.73 (ddd, J = 3.5, 7.5, 14.0 Hz, 1H), 3.57 (dd, J = 2.0, 11.0 Hz, 1H), 3.50 (m, 3H), 3.39 (dt, J = 3.0, 14.0 Hz, 1H), 3.24 (dd, J = 3.5, 11.0 Hz, 1H), 3.20–3.13 (m, 2H), 2.86 (d, J = 5.0 Hz, 1H), 2.81-2.75 (m, 1H), 2.61 (dd, = 7.8, 15.3 Hz, 1H), 2.39 (dd, J = 9.0, 15.5 Hz, 1H), 2.29 (dd, J = 4.5, 15.0 Hz, 1H), 2.14 (dd, J = 4.0, 15.5 Hz, 1H), 1.92, 1.90, 1.41 (3 × s, 3 × 3H), 0.91, 0.89 (2 × s, 2 × 9H), 0.20, 0.17, 0.14, 0.06 (4 × s, 4 × 3H); ¹³C NMR (125 MHz, CDCl₃) § 171.9, 171.3, 164.1, 163.6, 163.5, 158.7, 150.74, 150.65, 150.2, 144.3, 138.5, 135.7, 135.6, 135.4, 135.3, 130.19, 130.16, 129.1, 128.2 128.0, 127.1, 113.3, 113.1, 111.7, 110.6, 110.4, 93.6, 93.1, 90.9, 86.7, 83.2, 82.8, 82.6, 81.0, 77.1, 70.5, 63.1, 58.9, 55.2, 46.1, 42.2, 42.1, 41.0, 39.3, 31.4, 31.2, 25.83, 25.80, 18.1, 18.0, 12.6, 12.4, 11.9, -4.4, -4.6, -5.3, -5.5; MS *m/z* 1387.5941 (MNa⁺ $[C_{68}H_{92}N_8O_{18}Si_2Na] = 1387.5966.$

5'-Azido-2'-O-(*tert*-butyldimethylsilyl)-**3'**,**5'**-dideoxy-**3'**-{[(**4**-nitrophenoxy)carbonyl]methyl}uridine (**25**). DCC (176 mg, 0.853 mmol), 4-nitrophenol (117 mg, 0.842 mmol), and 5'-azido-2'-O-TBDMS-3'-(carboxymethyl)-3',5'dideoxyuridine^{3c} (301 mg, 0.707 mmol) in dried CH₂Cl₂ (12 mL) was stirred (under Ar) for 12 h. The mixture was filtered (with Celite), and volatiles were evaporated. The residue was chromatographed (EtOAc/hexanes, 3:7) to give **25** (260 mg, 67%): ¹H NMR (CDCl₃) δ 8.80 (br s, 1H), 8.29 (d, *J* = 9.0 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 9.0 Hz, 2H), 5.77 (d, *J* = 8.1 Hz, 1H), 5.74 (s, 1H), 4.53 (d, *J* = 4.8 Hz, 1H), 4.19 (dt, *J* = 3.0, 9.6 Hz, 1H), 3.93 (dd, *J* = 3.0, 13.5 Hz, 1H), 3.65 (dd, *J* = 3.5, 13.7 Hz, 1H), 2.97 (dd, *J* = 8.9, 17.6 Hz, 1H), 2.65 (dd, *J* = 5.3, 17.6 Hz, 1H), 2.60–2.50 (m, 1H), 0.93 (s, 9H), 0.22, 0.10 (2 × s, 2 × 3 H); ¹³C NMR (CDCl₃) δ 169.5, 163.1, 155.1, 150.2, 139.7, 125.6, 122.4, 102.4, 100.2, 92.1, 81.8, 77.5, 51.7, 39.4, 30.0, 26.0, 18.3, -4.2, -5.3; MS *m*/z 569.1797 (MNa⁺ [C₂₃H₃₀N₆O₈SiNa] = 569.1792).

5'-Azido-2'-O-(tert-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3', 5'-dideoxyuridinyl-(3'→5')-5'-amino-2'-O-(tertbutyldimethylsilyl)-3',5'-dideoxy-3'-[(ethoxycarbonyl)methyl]uridine (27). A solution of 25 (35 mg, 0.064 mmol) and 26 (40 mg, 0.049 mmol) in dried diglyme (1.0 mL) was stirred (under N₂) for 32 h at 65 °C. Volatiles were evaporated, and the residue was chromatographed (5 \rightarrow 10% MeOH/CH₂Cl₂) to give 27 (50 mg, 84%): ¹H NMR $(Me_2CO-d_6, 500 \text{ MHz}) \delta 10.10, 10.09, 10.07 (3 \times \text{br s}, 3 \times 1\text{H}), 7.85, 7.80 (2 \times \text{d}, J = 10.10)$ 8.0 Hz, 2×1 H), 7.76 (d, J = 8.5 Hz, 1H), 7.65, 7.60 ($2 \times t$, J = 6.0 Hz, 2×1 H), 5.76 $(d, J = 1.5 \text{ Hz}, 1\text{H}), 5.67 (d, J = 8.5 \text{ Hz}, 1\text{H}), 5.66 (d, J = 8.0 \text{ Hz}, 1\text{H}), 5.64, 5.63 (2 \times 10^{-5})$ s, 2×1 H), 5.59 (d, J = 8.5 Hz, 1H), 4.62–4.58 (m, 3H), 4.18 ("quin", J = 4.4 Hz, 1H), 4.10 (q, J = 7.0 Hz, 2H), 4.05–4.03 (m, 2H), 3.80 (dd, J = 3.0, 13.5 Hz, 1H), 3.77 (dd, J = 4.8, 13.3 Hz, 1H), 3.73 (ddd, J = 3.0, 6.3, 14.3 Hz, 1H), 3.63 (ddd, J = 3.0, 5.5, 3.514.5 Hz, 1H), 3.58-3.52, 3.44-3.39 ($2 \times m$, $2 \times 1H$), 2.65-2.54 (m, 5H), 2.50 (dd, J =6.0, 16.0 Hz, 1H), 2.46 (dd, J = 6.0, 15.0 Hz, 1H), 2.30 ("sep", J = 4.8 Hz, 2H), 1.22 $(t, J = 7.0 \text{ Hz}, 3\text{H}), 0.920, 0.915, 0.910 (3 \times \text{br s}, 3 \times 9\text{H}), 0.20 (s, 9\text{H}), 0.18, 0.11,$ 0.08 (3 × s, 3 × 3H); ¹³C NMR (Me₂CO- d_6) δ 172.7, 172.2, 164.0, 151.6, 141.3, 141.1, 140.9, 102.6, 102.4, 102.3, 93.5, 93.2, 92.5, 84.3, 83.9, 83.6, 79.0, 78.5, 61.1, 53.3, 42.0, 41.9, 41.5, 41.4, 41.3, 32.0, 31.6, 31.1, 26.44, 26.42, 26.3, 18.7, 14.6, -4.07, -4.16, -4.24; MS m/z 1238.5369 (MNa⁺ [C₅₃H₈₅N₁₁O₁₆Si₃Na] = 1238.5381).

5'-Azido-2'-O-(*tert*-butyldimethylsilyl)-3'-(*N*-carbonylmethyl)-3',5'dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*-butyldimethylsilyl)-3'-(*N*-carbonylmethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*-butyldimethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*-butyldimethylsilyl)-3',5'-dideoxy-3'-[(ethoxycarbonyl)methyl]uridine (29). Method A. Et₃N (1.0 mL, 0.72 g, 7.2 mmol) and 1,3-propanedithiol (1.0 mL, 1.1 g, 1.0 mmol) were added to a stirred solution of 27 (500 mg, 0.411 mmol) in deoxygenated EtOH (20 mL), and stirring was continued (under N₂) for 16 h. Volatiles were evaporated, and the residue was chromatographed (10 \rightarrow 20% MeOH/CH₂Cl₂) to give 28 (457 mg, 92%) with MS *m*/z 1212.5479 (MNa⁺ [C₅₃H₈₇N₉O₆Si₃Na] = 1212.5476. A solution of 25 (280 mg, 0.512 mmol) and 28 (457 mg, 0.384 mmol) in diglyme (10 mL) was stirred (under N₂) for 24 h at 65 °C. Volatiles were evaporated, and the residue mas chromatographed (MeOH/CH₂Cl₂, 1:9) to give 29 (562 mg, 92%).

Method B. DCC (28 mg, 0.14 mmol) was added to a stirred solution of **26** (108 mg, 0.133 mmol) and **33** (98 mg, 0.12 mmol) in dioxane (6 mL) (under Ar), and stirring was

continued for 48 h. The mixture was filtered (with Celite), volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:9) to give **29** (118 mg, 61%): ¹H NMR (MeOH- d_4 , 500 MHz) δ 7.87 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.5 Hz, 1H), 5.73-5.68 (m, 4.5H), 5.62 (d, J = 1.0 Hz, 1H), 5.61 (s, 2H), 5.48(s, 0.5H), 4.53 (dd, J = 5.3, 7.8 Hz, 3H), 4.49 (dd, J = 1.3, 5.3 Hz, 1H), 4.11 (q, J = 1.3, 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H, 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H, 5.3 Hz, 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H), 5.3 Hz, 1H, 5.3 Hz, 5.3 Hz, 1H), 5.3 Hz, 5.3 Hz, 1H), 5.3 Hz, 5.3 7.5 Hz, 2H), 4.12–4.09 (m, 1H), 4.05 (dd, J = 2.5, 10.0 Hz, 1H), 4.03 (dd, J = 2.5, 7.0 Hz, 1H), 3.99 (dd, J = 3.8, 6.8 Hz, 1H), 3.76 (dd, J = 3.0, 13.5 Hz, 1H), 3.63 (dd, J = 3.0, 13.5 Hz, 1H)5.0, 13.5 Hz, 1H), 3.58 (dd, J = 2.8, 14.3 Hz, 1H), 3.52 (dd, J = 2.8, 14.5 Hz, 1H), 3.50-3.48 (m, 2H), 3.40 (dd, J = 8.3, 13.8 Hz, 1H), 3.37 (dd, J = 8.5, 14.0 Hz, 1H), 3.34 (s, 1H), 2.61 (dd, J = 10.0, 17.5 Hz, 1H), 2.58 (dd, J = 10.0, 16.5 Hz, 1H), 2.57-2.55 (m, 1H), 2.54-2.51 (m, 2H), 2.50-2.46 (m, 1H), 2.40 ("t", J = 5.3 Hz, 1H), 2.37 ("t", J = 5.5 Hz, 1H), 2.33 (dd, J = 6.3, 15.3 Hz, 1H), 2.26–2.17 (m, 3H), 1.23 (t, J = 7.0 Hz, 3H), 0.908, 0.905, 0.898, 0.895 (4 × s, 4 × 9H), 0.16 (s, 12H), 0.08, 0.069, 0.066, 0.05 (4 × s, 4 × 3H); 13 C NMR (MeOH- d_4) δ 174.1, 173.92, 173.87, 173.7, 166.5, 166.4, 152.2, 142.32, 142.25, 142.1, 102.6, 102.5, 94.1, 93.9, 93.8, 93.1, 84.3, 84.1, 84.0, 79.2, 79.1, 78.7, 62.0, 53.3, 43.0, 42.8, 42.52, 42.50, 42.4, 42.1, 41.3, 32.3, 32.0, 31.9, 31.0, 30.9, 30.8, 30.6, 26.61, 26.58, 26.5, 19.11, 19.07, 14.7, -4.01, -4.02, -4.1, -4.90, -4.95, -4.97, -5.3; MS m/z 1619.7068 (MNa⁺ $[C_{70}H_{112}N_{14}O_{21}Si_4Na] = 1619.7101$).

5'-Azido-2'-O-(tert-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl-(3'->5')-5'-amino-2'-O-(tert-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3', 5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(tertbutyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl- $(3' \rightarrow 5')$ -5' -amino - 2'-O - (tert-butyldimethylsilyl) - 3' - (carboxymethyl) - 3', 5' dideoxyuridine (30). NaOH (10 mg, 0.25 mmol) was added to a solution of 29 (62 mg, 0.039 mmol) in MeOH/H₂O (9:1, 1 mL), and stirring was continued for 24 h. Volatiles were evaporated to a small volume, and this solution was cooled (ice/ H_2O). HCl/H₂O (4%) was added (to pH 4–6), volatiles were evaporated, and the residue was chromatographed (solvent A) to give **30** (42 mg, 69%): ¹H NMR (MeOH- d_4 , 500 MHz) δ 7.88, 7.80 (2 × d, J = 8.0 Hz, 2 × 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 5.74–5.69 (m, 5H), 5.62 (s, 2H), 5.61 (s, 1H), 4.55 (dd, J = 4.8, 10.3 Hz, 3H), 4.50 (dd, J = 1.0, 5.0 Hz, 1H), 4.14–4.10 (m, 1H), 4.07 (dd, J = 2.5, 10.5 Hz, 1H), 4.03 (dd, J = 2.5, 10.0 Hz, 1H), 4.00 (dd, J = 3.8, 6.3 Hz, 1H), 3.77 (dd, J = 2.5, 14.0 Hz, 1H), 3.64 (dd, J = 4.5, 14.0 Hz, 1H), 3.60 (dd, J = 2.3, 14.8 Hz, 1H), 3.55–3.52 (m, 3H), 3.41 (dd, J = 8.5, 14.0 Hz, 1H), 3.39 (dd, J = 8.3, 14.8 Hz, 1H), 2.57 (dd, J = 8.3, 15.8 Hz, 15.8 Hz, 15.8 Hz, 15.8 8.5, 16.0 Hz, 1H), 2.56 (dd, J = 7.8, 14.8 Hz, 1H), 2.53–2.48 (m, 2H), 2.44–2.38 (m, 1H), 2.42 ("t", J = 5.8 Hz, 1H), 2.37 (dd, J = 6.0, 13.5 Hz, 1H), 2.35 (dd, J = 6.0, 15.5

Hz, 1H), 2.28–2.19 (m, 3H), 0.92 (s, 9H), 0.915 (s, 18H), 0.91 (s, 9H), 0.17 (s, 12H), 0.09, 0.08 (2 × s, 2 × 6H); ¹³C NMR (MeOH- d_4) δ 174.1, 174.0, 173.92, 173.87, 166.4, 152.1, 143.4, 142.3, 142.1, 102.5, 102.41, 102.36, 101.55, 101.53, 94.0, 93.8, 93.7, 93.1, 90.2, 84.3, 84.2, 84.0, 79.2, 79.1, 78.8, 53.3, 43.0, 42.9, 42.7, 42.4, 41.3, 32.3, 32.0, 30.9, 30.8, 26.61, 26.58, 26.56, 19.11, 19.08, -4.0, -4.07, -4.12, -4.9, -4.96, -4.97, -5.2; MS *m*/*z* 1591.6763 (MNa⁺ [C₆₈H₁₀₈N₁₄O₂₁Si₄Na] = 1591.6788).

5'-Amino-2'-O-(tert-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3', 5'-dideoxyuridinyl-(3'→5')-5'-amino-2'-O-(tertbutyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3', 5'-dideoxy-3'-[(ethoxycarbonyl)methyl]uridine (31). Et₃N (23 µL, 16 mg, 0.16 mmol) and 1,3propanedithiol (23 μ L, 24 mg, 0.23 mmol) were added to a solution of **29** (60 mg, 0.038 mmol) in deoxygenated (Ar, 30 min) EtOH, and stirring was continued for 48 hours. Volatiles were evaporated, and the residue was chromatographed (solvent A) to give 31 (44 mg, 74%): ¹H NMR (MeOH- d_4 , 500 MHz) δ 7.811 (d, J = 8.0 Hz, 1H), 7.810 (d, J= 7.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 5.72 (d, J = 8.5 Hz, 1H), 5.71 (d, J = 8.5 Hz, 2H), 5.694 (s, 1H), 5.686 (d, J = 8.0 Hz, 1H), 5.62 (d, $J = 10^{-10}$ 1.0 Hz, 1H), 5.61, 5.60 ($2 \times s$, $2 \times 1H$), 4.59 (dd, J = 1.3, 5.3 Hz, 1H), 4.56–4.54 (m, 3H), 4.14–4.12 (m, 1H), 4.12 (q, J = 7.0 Hz, 2H), 4.05 (dd, J = 2.8, 10.3 Hz, 1H), 4.049-4.035 (m, 1H), 4.01 (dd, J = 5.5, 10.0 Hz, 1H), 3.64-3.57 (m, 1H), 3.54-3.50(m, 3H), 3.43 (dd, J = 8.3, 14.8 Hz, 2H), 3.21 ("d", J = 12.5 Hz, 1H), 3.12-3.08 (m, 1H), 2.65–2.53, 2.50–2.35 (2 × m, 2 × 4H), 2.29–2.19 (m, 3H), 1.24 (t, J = 7.3 Hz, 3H), 0.92, 0.91, 0.908, 0.903, 0.17 ($5 \times s$, 5×9 H), 0.15, 0.09 ($2 \times s$, 2×3 H), 0.08 (s, 6H), 0.06 (s, 3H); 13 C NMR (MeOH- d_4) δ 174.1, 174.0, 173.9, 173.8, 173.7, 166.48, 166.45, 166.4, 166.3, 152.18, 152.15, 152.1, 142.8, 142.38, 142.35, 142.3, 102.7, 102.5, 102.3, 101.5, 94.4, 94.0, 93.9, 93.7, 84.42, 84.38, 84.1, 83.6, 79.14, 79.06, 78.8, 78.7, 62.0, 44.1, 42.8, 42.54, 42.52, 42.4, 42.1, 32.3, 32.25, 32.0, 30.6, 26.62, 26.56, 26.5, 19.10, 19.07, 14.7, -4.0, -4.1, -4.9, -5.0, -5.2; MS m/z 1595.7358 $(MH_2Na^+ [C_{70}H_{116}N_{12}O_{21}Si_4Na] = 1595.7353).$

for 28 h at 65 °C. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:9) to give **32** (150 mg, 75%): ¹H NMR (Me₂CO-*d*₆, 500 MHz) δ 10.19 (br s, 2H), 10.14 (br s, 1H), 10.11 (br s, 2H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.68–7.63 (m, 4H), 5.75 (d, *J* = 1.5 Hz, 1H), 5.69–5.60 (m, 7H), 4.61–4.57 (m, 5H), 4.20–4.18 (m, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 4.08–4.03 (m, 3H), 3.81–3.75 (m, 2H), 3.74–3.72, 3.71–3.69, 3.68–3.66, 3.65–3.64, 3.63–3.61 (5 × m, 5 × 1H), 3.58–3.50, 3.47–3.43 (2 × m, 2 × 3H), 2.68–2.56 (m, 6H), 2.54–2.42, 2.40–2.28 (2 × m, 2 × 4H), 1.22 (t, *J* = 7.0 Hz, 3H), 0.91 (br s, 45H), 0.20 (s, 12H), 0.192, 0.187 (2 × s, 2 × 3H), 0.124, 0.115 (2 × s, 2 × 3H), 0.111 (s, 6H); ¹³C NMR (Me₂CO-*d*₆) δ 172.7, 172.6, 172.3, 164.3, 151.5, 141.2, 102.5, 102.3, 93.3, 93.0, 92.5, 84.3, 83.8, 83.7, 79.0, 78.4, 72.7, 71.1, 61.1, 58.9, 53.3, 42.2, 41.6, 41.4, 41.2, 32.2, 31.8, 26.53, 26.48, 26.4, 18.8, 18.7, 14.7, –3.95, –3.99, –4.1, –4.87, –4.93, –5.0, –5.3; MS *m/z* 2000.8848 (MNa⁺ [C₈₇H₁₃₉N₁₇O₂₆Si₅Na] = 2000.8821).

5'-Azido-2'-O-(tert-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3',5'-dideoxyuridinyl-(3'→5')-5'-amino-2',3'-bis-O-(tertbutyldimethylsilyl)uridine (35). A solution of 25 (58 mg, 0.11 mmol) and 34 (100 mg, 0.117 mmol) in dried CH_2Cl_2 was stirred (under N_2) for 4 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:9) to give 35 (85 mg, 61%): ¹H NMR (CDCl₃) δ 10.06 (br s, 1H), 9.01 (br s, 1H), 8.38 (br s, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.70 (br s, 1H), 5.81 (s, 1H), 5.80–5.78 (m, 1H), 5.76 (dd, J = 2.0, 8.3 Hz, 1H), 5.71 (dd, J = 2.1, 8.1 Hz, 1 H), 5.63 (s, 1H), 4.85 (dd, J = 5.4, 6.9 Hz, 1H), 4.53 (d, J = 4.5 Hz, 1H), 4.47 (dd, J = 2.4, 5.4 Hz, 1H), 4.25-4.22 (m, 1H), 4.18-4.01 (m, 10.10)2H), 3.97 (dd, J = 2.1, 5.1 Hz, 1H), 3.82 (dd, J = 2.7, 13.5 Hz, 1H), 3.80–3.74 (m, 1H), $3.64 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 1\text{H}), 3.28-3.18 \text{ (m, 2H)}, 2.66-2.49 \text{ (m, 3H)}, 2.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ Hz}, 140 \text{ (m, 3H)}, 3.28-3.18 \text{ (m, 2H)}, 3.66-3.49 \text{ (m, 3H)}, 3.38 \text{ (dd, } J = 3.6, 13.8 \text{ (m, 2H)}, 3.28 \text{ (m, 3H)}, 3.38 \text{ (m$ J = 5.1, 15.6 Hz, 1H), 2.33 (dd, J = 4.5, 15.0 Hz, 1H), 2.13–2.01, 1.96–1.90, 1.78-1.72 (3 × m, 3 × 1H), 0.93, 0.92, 0.91, 0.87 (4 × s, 4 × 9H), 0.22, 0.19, 0.15, 0.09, 0.08, 0.07, 0.04, -0.03 (8 × s, 8 × 3H); ¹³C NMR (CDCl₃) δ 172.2, 171.6, 163.7, 163.2, 151.2, 150.8, 150.3, 144.9, 140.1, 103.2, 102.5, 101.1, 100.2, 97.4, 93.5, 91.1, 85.5, 83.5, 82.1, 73.5, 71.5, 52.6, 42.4, 41.2, 40.3, 32.1, 31.1, 26.1, 26.01, 25.98, 25.96, 18.3, 18.23, 18.19, 18.1, -4.2, -4.29, -4.32, -4.4, -4.7, -5.1, -5.2; MS m/z 1282.5813 (MNa⁺ [C₅₅H₉₃N₁₁O₁₅Si₄Na] = 1282.5827).

5'-Amino-2'-O-(*tert*-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2',3'-bis-O-(*tert*-butyldimethylsilyl)uridine (36). A mixture of 35 (85 mg, 0.067 mmol) and 10%

Pd–C (12 mg) in dried THF (17 mL) was hydrogenolyzed (5 psi) with a Parr shaking apparatus for 12 h and then filtered (with Celite). Volatiles were evaporated, and the residue was chromatographed (solvent A) to give **36** (60 mg, 72%): ¹H NMR (500 MHz) δ 8.21 (m, 2H), 8.14 (br s, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 5.77 (d, J = 6.5 Hz, 1H), 5.65, 5.60, 5.59 (3 × d, J = 8.0 Hz, 3 × 1H), 5.57 (d, J = 1.0 Hz, 1H), 5.53 (d, J = 1.5 Hz, 1H), 4.41 (d, J = 6.0 Hz, 1H), 4.36 (d, J = 3.5 Hz, 1H), 4.29 (dd, J = 4.5, 6.5 Hz, 1H), 4.02 (dd, J = 2.3, 4.8 Hz, 1H), 3.90–3.83 (m, 2H), 3.80 (dt, J = 2.0, 6.5 Hz, 1H), 3.60–3.58 (m, 1H), 2.97 (d, J = 12.5 Hz, 1H), 2.88–2.82 (m, 1H), 2.35–2.32 (m, 3H), 2.31–2.25 (m, 2H), 2.17–2.12 (m, 1H), 0.86, 0.843, 0.837, 0.80 (4 × s, 4 × 9H), 0.09, 0.07, 0.05, 0.04 (4 × s, 4 × 3H), 0.00 (s, 9H), -0.07 (s, 3H); ¹³C NMR (Me₂CO-d₆) δ 172.1, 171.6, 163.8, 163.7, 163.5, 151.6, 151.5, 151.3, 142.5, 142.3, 142.2, 140.9, 103.0, 102.0, 101.5, 93.0, 92.4, 90.1, 85.1, 84.4, 79.2, 79.1, 75.0, 74.2, 51.0, 47.4, 42.2, 41.91, 41.88, 40.23, 40.21, 32.0, 31.7, 26.4, 26.3, 18.77, 18.74, 18.70, 18.6, -4.1, -4.16, -4.20, -4.3, -4.5, -5.01, -5.04; MS *m/z* 1256.5914 (MNa⁺ [C₅₅H₉₅N₉O₁₅Si₄Na] = 1256.5922).

5'-Azido-2'-O-(*tert*-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2'-O-(*tert*butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl-(3' \rightarrow 5')-5'-amino-2',3'-bis-O-(*tert*-butyldimethylsilyl)uridine (37). Method A. A solution of 25 (30 mg, 0.055 mmol) and 36 (60 mg, 0.049 mmol) in dried CH₂Cl₂ (5 mL) was stirred (under Ar) for 5 days. Volatiles were evaporated, and the residue was chromatographed (MeOH/CH₂Cl₂, 1:9) to give 37 (39 mg, 49%).

Method B. DCC (26 mg, 0.12 mmol) was added to a solution of **33** (91 mg, 0.11 mmol) and **34** (106 mg, 0.124 mmol) in dried CH₂Cl₂ (3 mL) (under Ar), and stirring was continued for 12 h. The mixture was filtered (with Celite), and volatiles were evaporated. The residue was chromatographed (MeOH/CH₂Cl₂, 1:9) to give **37** (111 mg, 60%): ¹H NMR (Me₂CO-*d*₆, 500 MHz) δ 10.19 (br s, 1H), 10.13 (br s, 3H), 7.85, 7.78, 7.76 (3 × d, *J* = 8.0 Hz, 3 × 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 7.69 ("t", *J* = 6.0 Hz, 1H), 7.62–7.61 (m, 2H), 5.86 (d, *J* = 6.5 Hz, 1H), 5.76 (d, *J* = 1.5 Hz, 1H), 5.68 (d, *J* = 8.5 Hz, 1H), 5.64 (s, 1H), 5.62 (d, *J* = 1.0 Hz, 1H), 5.60 (d, *J* = 8.5 Hz, 1H), 4.07–4.03 (m, 3H), 3.78 (d, *J* = 4.5 Hz, 2H), 3.73–3.68 (m, 2H), 3.54 ("t", *J* = 5.8 Hz, 2H), 3.48–3.38 (m, 2H), 2.66–2.56 (m, 4H), 2.51 (dd, *J* = 5.3, 16.3 Hz, 1H), 2.46 (dd, *J* = 6.3, 15.3 Hz, 1H), 2.43 (dd, *J* = 5.8, 15.8 Hz, 1H), 2.36–2.32 (m, 2H), 0.93, 0.92, 0.91, 0.909, 0.89 (5 × s, 5 × 9H), 0.20 (s, 6H), 0.19, 0.14, 0.13 (3 × s, 3 × 3H), 0.12 (s, 6H), 0.10, 0.096, 0.06 (3 × s, 3 × 3H); ¹H NMR (MeOH-*d*₄) δ 7.87, 7.80 (2 × d, *J* = 8.1 Hz, 2 × 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 5.84 (d,

J = 6.3 Hz, 1H), 5.76–5.69 (m, 5H), 5.63, 5.62 (2 × s, 2 × 1H), 4.55–4.50 (m, 3H), 4.37 (dd, *J* = 4.8, 5.7 Hz, 1H), 4.13–4.09 (m, 1H), 4.04–4.00 (m, 4H), 3.77 (dd, *J* = 2.1, 13.5 Hz, 1H), 3.63 (dd, *J* = 3.6, 13.2 Hz, 1H), 3.57–3.55, 3.51–3.50 (2 × m, 2 × 1H), 3.47–3.35, 2.60–2.53 (2 × m, 2 × 4H), 2.44–2.32 (m, 3H), 2.25–2.17 (m, 2H), 0.93, 0.92, 0.915, 0.91, 0.88, 0.17 (6 × s, 6 × 9H), 0.13, 0.12, 0.09 (3 × s, 3 × 3H), 0.08 (s, 9H), 0.02 (s, 3H); ¹³C NMR (Me₂CO-*d*₆) δ 172.23, 172.19, 172.1, 163.8, 163.7, 163.6, 151.7, 151.5, 142.3, 141.0, 140.8, 103.0, 102.5, 102.3, 102.2, 101.0, 93.1, 93.0, 92.5, 90.5, 85.0, 84.23, 84.16, 83.7, 78.94, 78.91, 78.89, 75.0, 74.3, 53.3, 42.4, 42.1, 42.0, 41.9, 41.8, 41.3, 32.2, 32.1, 32.0, 31.7, 26.48, 26.46, 26.42, 26.39, 26.3, 18.8, 18.7, 18.6, -4.0, -4.12, -4.14, -4.19, -4.20, -4.3, -4.4, -4.9, -5.02, -5.04; MS *m*/z 1663.7570 (MNa⁺ [C₇₂H₁₂₀N₁₄O₂₀Si₅Na] = 1663.7548).

5'-Amino-2'-O-(tert-butyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2'-O-(tert-butyldimethylsilyl)-3'-(Ncarbonylmethyl)-3', 5'-dideoxyuridinyl-(3'→5')-5'-amino-2'-O-(tertbutyldimethylsilyl)-3'-(N-carbonylmethyl)-3',5'-dideoxyuridinyl- $(3' \rightarrow 5')$ -5'-amino-2',3'-bis-O-(tert-butyldimethylsilyl)uridine (38). Et₃N (17 µL, 12 mg, 0.12 mmol) and 1,3-propanedithiol (17 μ L, 18 mg, 0.17 mmol) were added to a deoxygenated (Ar, 30 min) solution of 37 (46 mg, 0.028 mmol) in EtOH (5 mL), and stirring was continued for 48 h. Volatiles were evaporated, and the residue was chromatographed (solvent A) to give **38** (34 mg, 75%): ¹H NMR (MeOH-d₄, 500 MHz) δ 7.78 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 5.83 (d, J= 6.5 Hz, 1H), 5.74–5.68 (m, 5H), 5.61 (d, J = 1.5 Hz, 1H), 5.60 (d, J = 1.0 Hz, 1H), 4.55 (dd, J = 1.5, 5.5 Hz, 1H), 4.53, 4.50 (2 × d, J = 5.0 Hz, 2 × 1H), 4.36 (dd, J = 1.5, 5.5 Hz, 1H), 4.53 (dd, J = 1.5, 5.5 Hz, 1H), 4.55 (dd, J = 1.5, 5.5 Hz, 1H), 5.5 4.5, 6.5 Hz, 1H), 4.07–3.99 (m, 5H), 3.55–3.47 (m, 2H), 3.45–3.37 (m, 4H), 3.09 (dd, J = 2.5, 13.5 Hz, 1H), 2.98 (dd, J = 8.0, 14.0 Hz, 1H), 2.59 (dd, J = 6.5, 16.0 Hz, 1H), 2.56-2.52 (m, 2H), 2.43-2.35 (m, 2H), 2.35 (dd, J = 5.8, 16.3 Hz, 1H), 2.32 (dd, J6.5, 16.0 Hz, 1H), 2.26–2.18 (m, 2H), 0.92, 0.91, 0.903, 0.901, 0.87 ($5 \times s, 5 \times 9H$), 0.15 (s, 6H), 0.14, 0.12, 0.11, 0.08 (4 × s, 4 × 3H), 0.07 (s, 6H), 0.065, 0.01 (2 × s, 2 \times 3H); ¹³C NMR (MeOH- d_4) δ 173.91, 173.85, 166.48, 166.46, 166.3, 166.1, 152.5, 152.19, 152.15, 152.09, 143.5, 142.8, 142.4, 142.3, 103.4, 102.7, 102.4, 102.3, 94.4, 94.0, 93.7, 90.9, 85.6, 84.4, 84.3, 83.7, 79.1, 79.0, 78.9, 75.4, 74.7, 44.1, 42.9, 42.8, 42.5, 42.4, 42.3, 32.3, 32.2, 32.00, 31.96, 26.62, 26.60, 26.56, 26.50, 19.1, 19.0, -3.97, -4.03, -4.08, -4.13, -4.2, -4.4, -4.9, -5.0; MS m/z 1637.7673 (MNa⁺ $[C_{72}H_{122}N_{12}O_{20}Si_5Na] = 1637.7642).$

Acknowledgment. We thank Brigham Young University for financial support and Mrs. Jeanny K. Gordon for assistance with the manuscript.

REFERENCES

- 1. Nucleic Acid Related Compounds. 112 (Amide-Linked Nucleosides. 4). Paper 111 (Amide-Linked Nucleosides. 3) is reference 3d in the present paper.
- (a) Oligodeoxynucleotides. Antisense Inhibitors of Gene Expression; Cohen, J., Ed.; CRC Press: Boca Raton, 1989. (b) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 544-584. (c) Cazenave, C.; Hélène, C. In Antisense Nucleic Acids and Proteins; Mol, J. N. M., van der Krol, A. R., Eds.; Marcel Dekker: New York, 1991; pp 47-93. (d) Antisense Research and Applications; Crooke, S. T., Lebleu, B., Eds.; CRC Press: Boca Raton, 1993. (e) Milligan, J. F.; Matteucci, M. D.; Martin, J. C. J. Med. Chem. 1993, 36, 1923-1937. (f) Carbohydrate Modifications in Antisense Research; Sanghvi, Y. S., Cook, P. D., Eds; ACS Symp. 580; American Chemical Society: Washington, DC, 1994. (g) De Mesmaeker, A.; Häner, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366-374. (h) Crooke, S. T. Therapeutic Applications of Oligonucleotides; R. G. Landes: Austin, TX, 1995; pp 85-108. (i) Bhat, B.; Swayze, E. E.; Wheeler, P.; Dimock, S.; Perbost, M.; Sanghvi, Y. S. J. Org. Chem. 1996, 61, 8186-8199.
- (a) Zhang, W. Ph.D. Dissertation, Brigham Young University, 1992. (b) Robins, M. J.; Sarker, S.; Xie, M.; Zhang, W.; Peterson, M. A. *Tetrahedron Lett.* 1996, 37, 3921–3924. (c) Peterson, M. A.; Nilsson, B. L.; Sarker, S.; Doboszewski, B.; Zhang, W.; Robins, M. J. J. Org. Chem., in press. (d) Robins, M. J.; Doboszewski, B.; Timoshchuk, V. A.; Peterson, M. A. J. Org. Chem., submitted.
- (a) De Mesmaeker, A.; Waldner, A.; Lebreton, J.; Hoffmann, P.; Fritsch, V.; Wolf, R. M.; Freier, S. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 226-229. (b) De Mesmaeker, A.; Lesueur, C.; Bévièrre, M.-O.; Waldner, A.; Fritsch, V.; Wolf, R. M. Angew. Chem. Int. Ed. Engl. 1996, 35, 2790-2794. (c) De Mesmaeker, A.; Waldner, A.; Wendeborn, S.; Wolf, R. M. Pure Appl. Chem. 1997, 69, 437-440. (d) von Matt, P.; Lochmann, T.; Kesselring, R.; Altmann, K.-H. Tetrahedron Lett. 1999, 40, 1873-1876.
- 5. Matsuda, A.; Yasuoka, J.; Sasaki, T.; Ueda, T. J. Med. Chem., **1991**, 34, 999–1002.
- 6. Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.; Ohtsuka, E. Nucleic Acids Res., **1987**, 15, 6131-6148.
- 7. Zhang, W.; Robins, M. J. Tetrahedron Lett., 1992, 33, 1177-1180.
- Ross, B. S.; Springer, R. H.; Tortorici, Z.; Dimock, S. Nucleosides Nucleotides 1997, 16, 1641–1643.
- 9. Kikugawa, K.; Ichino, M. Tetrahedron Lett., 1971, 87-90.
- (a) Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem., 1972, 37, 2289-2299. (b) Appel, R. Angew. Chem Int. Ed. Engl., 1975, 14, 801-811. (c) Castro, B. R. Org. React. 1983, 29, 1-162.
- 11. Robins, M. J.; Naik, S. R.; Lee, A. S. K. J. Org. Chem., 1974, 39, 1891-1899.
- 12. Albertson, N. F. Org. React. 1962, 12, 157-355.
- (a) Robins, M. J.; Simon, L. N.; Stout, M. G.; Ivanovics, G. A.; Schweizer, M. P.; Rousseau, R. J.; Robins, R. K. J. Am. Chem. Soc., 1971, 93, 1474-1480. (b) Bodanszky, M.; Klausner, Y. S.; Ondetti, M. A. Peptide Synthesis. John Wiley & Sons, 1976.