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5 Spectroscopic and kinetic studies of interactions of calf spleen purine nucleoside phosphorylase with
8-azaguanine, an excellent fluorescent/fluorogenic substrate for the synthetic pathway of the reaction,
and its 9-(2-phosphonylmethoxyethyl) derivative, a bisubstrate analogue inhibitor, were carried out. The
goal was to clarify the catalytic mechanism of the enzymatic reaction by identification of ionic/
tautomeric forms of these ligands in the complex with PNP.

Keywords Purine Nucleoside Phosphorylase, Catalytic Mechanism, Enzyme-Ligand
Complexes, 8-Azaguanine, Fluorescence

INTRODUCTION

Purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1), is a potential target for
antimicrobial, antileukemic and antiparasitic therapies.[1] The enzyme catalyzes a
reversible phosphorolysis of purine ribo-and 2’-deoxyribonucleosides, as fol lows:

b�D�purine nucleoside þ orthophosphate ()
purine base þ a�D�pentose�1�phosphate

The reaction mechanism involves an oxocarbenium intermediate in the
transition state,[2] but controversy remains regarding protonation of the purine N(7),
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and, consequently, the endpoint of the reaction. If, as postulated by Fedorov et al.,[2]

N(7) is protonated, the product purine must be released as the N(7)H tautomer. But,
in the absence of protonation, the purine must adopt either an anionic form,[3] or be
neutralized by proton transfer from the second product, ribose-1-phosphate.[4]

We here apply fluorescence spectroscopy to analyze complexes of calf spleen
PNP with 8-azaguanine (8-azaG, Scheme 1), a fluorescent substrate for the reverse
synthetic pathway of the reaction,[5,6] and its 9-(2-phosphonylmethoxyethyl)
derivative[7] (PME-azaG, see Scheme 1), a bisubstrate analogue inhibitor,[8] with
the aim to identify tautomeric/ionic structures of the bound ligands, using
methodology similar to that applied previously to bacterial PNP.[9]

EXPERIMENTAL

Calf spleen PNP from Sigma (18–34 units/mg), fol lowing desalting, was only
minimally contaminated with phosphate (� 1 mM), and PNP concentration
was determined from the extinction of 9.6 cm�1 at 280 nm for a 1% solution.[10]

9-(2-Phosphonylmethoxyethyl)-8-azaguanine (PME-azaG) was synthesized by Holý
et al.[7] Ribose-1-phosphate (R1P), 7-methylguanosine (m7Guo), 8-azaG, and
xanthine oxidase were products of Sigma. Al l other chemicals were of the highest
purity available. Concentrations of stock solutions of 8-azaG, PME-azaG, and
m7Guo were determined spectrophotometrical ly[5,6,10]

Spectrophotometric measurements were carried out with Kontron (Austria)
Uvikon-922, Uvikon-930, or Cary 3E (Varian) instruments, and fluorescence with a
Perkin-Elmer LS-50 spectrofluorimeter (Norwalk, CT), al l equipped with ther-
mostatical ly control led cel l compartments. In fluorimetric measurements the
spectral bandwidths were 2–5 nm for the entrance slit, and 3–15 nm for the exit slit.
Fluorimetric titrations were performed and analyzed as elsewhere described.[6,11,12]

Kinetic Procedures

With m7Guo and 8-azaG as substrates, direct spectrophotometric assays were
based on differences in molar extinctions between substrates and products: De = 4
600 M�1cm�1 at 260 nm at pH 7.0 for m7Guo[10] and De = 6 500 M�1cm�1 at 260
nm and pH 7.0 for 8-azaG. For 8-azaG also fluorimetric method was employed.[5,6]

The initial velocity data were fitted to the generalized kinetic equation:

Vmax

V
¼ 1 þ Km1

½S1�
þ Km2

½S2�
þ K12

½S1�½S2�
ð1Þ

Inhibition of the enzyme by the bisubstrate analogue inhibitor PME-azaG was
analyzed assuming a double competitive model (i.e., assuming only a binary
enzyme-inhibitor complex):

Vmax

V
¼ 1 þ Km1

½S1�
þ Km2

½S2�
þ K12

½S1�½S2�
1 þ ½I�

Ki

� �
ð2Þ
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where [I] is the inhibitor concentration and Ki the inhibition constant. With one of
the substrates (S2) at constant concentration, it is possible to determine the apparent
inhibition constants, Ki

app, by measuring initial rates with varying concentrations of
the second substrate (S1) and the inhibitor. The thermodynamic value of the
inhibition constant Ki is related to Ki

app by:

Kapp
i ¼ Ki 1 þ ½S2�

Km2

� �
ð3Þ

RESULTS AND DISCUSSION

8-AzaG is a good substrate for the calf PNP in the reverse, synthetic path-
way.[5] Kinetic parameters for this reaction, recently re-evaluated using desalted
calf enzyme and phosphate-free buffers[6] are highly pH-dependent, the Km

increasing from 90 mM at pH 5.9 to �700 mM at pH 8, with virtual ly constant
Vmax. This behavior, contrasting with that of guanine, indicates that the mono-
anionic form of 8-azaG, predominating at pH > 7 (pKa 6.5), is not a substrate for
the enzyme.

The increased acidity of 8-azapurines, relative to the parent purines, results
from high acidity of the triazole proton.[13] Therefore, the monoanionic form of 8-
azaG bears a negative charge on the five-membered ring (Scheme 1), like that
postulated in the Erion mechanism of PNP catalysis.[3] We conclude that inability of
this form to react with PNP testifies against the model, and in favour a model
postulating neutral purine as the substrate.

Neutral 8-azaG exist as a mixture of several tautomeric forms (Scheme 1),
with N(9)H predominating in aqueous medium.[5] The compound is strongly
fluorescent at �390 nm, but its fluorescence excitation spectrum is red-shifted by
�20 nm relative to the UV absorption, indicating that this emission comes
from a minor tautomer; i.e., N(8)H or N(7)H. To resolve which of these forms
dominates when bound to the enzyme we examined fluorescence of the PNP/8-
azaG complex.

Fluorimetric titration of calf PNP with 8-azaG with lexc 315 nm shows a strongly
fluorescent complex with lmax �370 nm, with dissociation constants Kd of
90 ± 5 mM at pH 7.0, and �450 mM at pH 7.7.[6] With excitation at 285 nm
(Figure 1, left panel) significant quenching of protein fluorescence is additional ly
observed. The fluorescence excitation difference spectra, monitored with lobs 370
nm, exhibit a maximum at �280 nm, which we interpret as a result of energy
transfer from tryptophan to the ligand. But the entire spectrum is clearly red-shifted
relative to both UV absorbance and fluorescence excitation of the free 8-azaG
(Figure 1). It is also clearly distinct from that of the monoanion. These observations
question both the N(9)H tautomer and the monoanion as the principal forms of 8-
azaG in the complex with PNP.

PME-8azaG has been shown previously to bind to the calf PNP, leading to a
highly fluorescent complex.[14] We selected this compound because of its fixed
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tautomeric structure, which is spectral ly similar to the N(9)H form of 8-azaG
(Scheme 1).

Inhibition of phosphorolysis by PME-8azaG was studied at pH 7.0, with m7Guo
as a substrate reasonably fol lowing Michaelis-Menten kinetics.[10] Dixon plots
displayed a competitive mode of inhibition (not shown), but, in accordance with
Eq. 3, plots of Ki

app vs. fixed substrate concentrations were linear in the con-
centration range of 0.1–5 mM for phosphate (Pi) and 20–300 mM for m7Guo,
giving intercepts (Ki) of (0.70 ± 0.28) mM for Pi, and (0.98 ± 0.21) mM for m7Guo as
fixed substrates, respectively.[6] In turn, we examined inhibition of the reverse
synthetic reaction by PME-azaG, with 8-azaG and R1P as substrates, in phosphate-
free buffer. As for the phosphorolytic pathway, an apparently competitive inhibition
was observed, and the Ki

app values were markedly dependent on the second (fixed)
substrate concentration. The calculated values of Ki = (1.9 ± 0.3) mM, obtained

SCHEME 1
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assuming a ‘‘double-competitive’’ model of inhibition (Eqs. 2 and 3), was
independent of the fixed substrate concentration, consistent with competition of
PME-azaG vs. both 8-azaG and R1P.

PME-azaG emits weakly at pH 7.0, but strongly as an anion (pKa 9.0).
Fluorimetric titration of PNP with PME-azaG at pH 7.0 gave Kd = (0.6 ± 0.3) mM, in
agreement with kinetic results, and ligand emission at 340 nm increased about 10-
fold upon binding (Figure 1, right panel). At first sight, this might be interpreted as
preferential binding of the fluorescent anionic form. But the UV difference
spectrum recorded during titration clearly does not resemble the UV spectral
difference between the neutral and anionic species of PME-azaG.[6] Furthermore,
the difference excitation spectrum resembles the UV spectrum of the neutral ligand
(Figure 1), with �5 nm red shift, and clearly differs from that of the anion (not
shown). We conclude that the ligand remains in the neutral form in the complex,
and that enhancement of the emission of this form is observed. This neutral species
is spectral ly distinct from that of the bound 8-azaG, confirming that the latter does
not adopt the N(9)H form.

The spectral properties of PNP/8-azaG and PNP/PME-azaG complexes, and in
particular the previously unpublished fluorescence excitation difference spectra,
support our conclusion[6] that 8-azaG is bound to PNP as a neutral N(7)H or N(8)H
tautomer, and therefore question model of catalysis in which the purine base is
bound to the enzyme as an anion. This model was based in part on the properties
of the fluorescent PNP-guanine complex, interpreted as evidence of dissociation of
Gua upon binding.[15] But the observed fluorescence of Gua complexed with PNP

FIGURE 1 Left panel: Comparison of fluorescence excitation (- - - -) and emission (��) difference spectra, on
titration of calf PNP with 8-azaG at pH = 6.15, with absorption (–– – ) and fluorescence excitation (. . .) and
emission (6 6 6) spectra of the neutral form of 8-azaG, and absorption spectrum (–– – ) of the monoanion of 8-
azaG. Active site concentration is 5.2 mM, and ligand concentrations (�� , bottom to top) are 2.7, 5.5, and 10.9 mM.
Conditions: lexc 285 nm, lobs 370 nm; spectral resolution 3/5 nm. Right panel: Fluorescence difference emission
(��) and excitation (- - - -) spectra of PNP/PME-azaG complex at pH = 7.0. Active site concentration is 6.5 mM, and
ligand concentrations (�� , from bottom to top) are 2.3, 4.5, 5.9, 21.5 mM. Conditions: lexc 285 nm, lobs 340 nm;
spectral resolution 3/5 nm. Absorption ( –– – ) and fluorescence emission (6 6 6) spectra of PME-azaG are shown
for comparison.
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may also originate from the neutral N(7)H form, which is known to emit intensely in
rigid glasses at 140–160 K.[16] The reported strong binding of purines by PNP in the
absence of phosphate[10,17] may lead to sufficient rigidity to enhance fluorescence
yield of the bound N(7)H tautomer.
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Crystal structure of calf spleen purine nucleoside phosphorylase with two ful l trimers in the asymmetric unit:
important implications for the mechanism of catalysis. J. Mol. Biol. 2004, 342, 1015–1032.

13. Albert, A. Chemistry of 8-azapurines. Adv. Heterocycl. Chem. 1986, 39, 117–178.
14. Wierzchowski, J.; Kulikowska, E.; Bzowska, A.; Holý, A.; Magnowska, L.; Shugar, D. Interactions of purine
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