JOC The Journal of Organic Chemistry

Subscriber access provided by UNIV OF DURHAM

The Application of 2-Benzyl-1,4-naphthoquinones as Pronucleophiles in Aminocatalytic Synthesis of Tricyclic Derivatives

Anna Skrzy#ska, Marta Romaniszyn, Dominika Pomik#o, and Lukasz Albrecht J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00170 • Publication Date (Web): 12 Apr 2018 Downloaded from http://pubs.acs.org on April 12, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

The Application of 2-Benzyl-1,4-naphthoquinones as Pronucleophiles in Aminocatalytic Synthesis of Tricyclic Derivatives

Anna Skrzyńska,[‡] Marta Romaniszyn,[‡] Dominika Pomikło, and Łukasz Albrecht*

Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology,

Zeromskiego 116, 90-924 Łódź, Poland

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

SYNOPSIS TOC

KEYWORDS: Asymmetric catalysis; Vinylogy; 1,4-Naphthoquinones; Naphthalen-1(4*H*)-ones; Remote functionalization.

ABSTRACT: This study demonstrates an unprecedented reactivity of 2-substituted-1,4naphthoquinones. By applying the principle of vinylogy they have been employed as vinylogous pronucleophiles in the organocatalytic cascade reaction for the first time. This novel catalytic activation of 1,4-naphthoquinones enables access to carboannulated naphthalen-1(4H)-one derivatives of biological importance. The site-selectivity and stereoselectivity of a process proved possible to control by the proper choice of reaction conditions.

Introduction

The development of methods for the facile and efficient construction of complex carbocyclic frameworks constitutes highly relevant goal in the contemporary organic chemistry.¹ In particular, the application of cascade reactivities involving C-C bond-forming event merged with subsequent reactions for the synthesis of bio-inspired products have received considerable interest in the past few years.² Among various privileged carbocyclic structures in organic chemistry, α -tetralone and naphthalen-1(4*H*)-one ring systems occupy a prominent position (Scheme 1, top). Due to the presence of a carbonyl group and a double bond within their structure they possess high synthetic usefulness correlated with the functionalization potential of these reactive moieties. Furthermore, such ring systems can be found in nature.^{3,4} For instance, Hamigerans are a family of natural products that contains a α -tetralone structural unit merged with additional five-membered cyclopentane ring (Scheme 1, bottom).⁴

Scheme 1. The importance of α -tetralone and naphthalen-1(4*H*)-one derivatives

1,4-Naphthoquinones and their 2-alkyl-substituted derivatives constitute a useful group of reactants commonly employed in asymmetric synthesis.⁵ Due to the presence of a highly electron-deficient double bond they can act as electrophiles in a Michael-type additions.^{5b-e} Furthermore, they are employed as electron-poor dienophiles in various cycloaddition reactions.^{5f-i} Surprisingly, to the best of our knowledge their potential as vinylogous pronucleophiles in organic synthesis has never before been explored. In the context, it is worth to note that the vinylogous reactivity of organic compounds constitutes a rapidly developing field in the contemporary organic chemistry.^{6,7} Due to the presence of conjugated double bond system in vinylogous reactants a transfer of electrophilic or nucleophilic character to a remote reaction site is possible. In the past few years the principle of vinylogy has been successfully implemented in the field of asymmetric organocatalysis.^{7,8} In such a manner new reaction pathways have been identified opening access to a variety of optically active products relevant for life-science industry.

Given the importance of carboannulated naphthalen-1(4H)-one derivatives and lack of literature precedents on nucleophilic reactivity of 2-substituted-1,4-naphthoquinones **1**, the task of development of such a reactivity for the synthesis of carboannulated naphthalen-1(4H)-ones **3** has been undertaken. The novel reactivity concept is based on the application of dienolate **A** readily available via deprotonation of 2-substituted-1,4-naphthoquinones **1** at the C-1' position. We envisioned that deprotonation of **1** should be possible to realize under relatively mild, basic conditions due to the efficient stabilization of **A** through resonance (Scheme 2, middle). It was anticipated that such a system should be capable of participating in the cascade reaction involving Michael addition from the C-1' position of **A** to the iminium-ion-activated enal **2** followed by the intramolecular aldol condensation to give **3** (Scheme 2, bottom, cascade A).

However, it should be noted that due to ambident nature of the nucleophile **A** employed an alternative reaction scenario is also possible (Scheme 2, bottom, cascade B). It can be initiated through the Michael addition of **A** via C-3 nucleophilic position to the iminium-ion-activated enal **1**. Subsequent cyclization via intramolecular Michael addition and re-oxidation should afford undesired **4**.

Herein, we present our studies on the first application of 2-substituted-1,4-naphthoquinones **1** as vinylogous pronucleophiles in asymmetric organocatalysis. Careful optimization of reaction conditions enabled to control the site-selectivity of the cascade providing an efficient and stereoselective access to carboannulated naphthalen-1(4H)-ones **3** (Scheme 2, bottom, cascade A).

Scheme 2. 2-Substituted-1,4-naphthoquinones 1 in asymmetric organocatalysis and the objectives of our studies

Results and Discussion

Optimization studies initiated using 2-benzyl-1,4-naphthoquinone were a and cinnamaldehyde 2a as model reagents (Table 1). Initial experiment performed in dichloromethane in the presence of diphenvlprolinol trimethylsilvl ether $5a^9$ as aminocatalyst and sodium acetate as basic co-catalyst confirmed the viability of our synthetic hypothesis (Table 1, entry 1). Disappointingly, the conversion to **3a** was low and the formation of the side-product 4a arising from the alternative reaction mechanism (Scheme 2, cascade B) was observed. To our delight, both diastereoselectivity and enantioselectivity of the process were excellent. In order to improve the conversion and suppress the formation of 4a, the co-catalyst screening was performed (Table 1, entries 1-5). Among compounds tested the use of amphiprotic additive (4-(dimethylamino)benzoic acid, DMABA) provided the best conversion and limited the formation of **3a** to the highest extend (Table 1, entry 5). In the course of the further studies the influence of various aminocatalyst 5 on the reaction outcome was evaluated (Table 1, entries 5-8) indicating that the alteration of 5 did not improve the results. Similarly, the change of solvent was not beneficial for the developed cascade (Table 1, compare entries 5, 9-11). Therefore, the influence of the relative ratio of reactants and temperature on the reaction was tested (Table 1, entries 12,13). The use of 2a as limiting factor and performing the reaction at 5 °C for longer time enabled to increase the conversion with the high chemo- and stereoselectivity of the process being maintained (Table 1, entry 13). Notably, for the convenience of the project the catalyst loading was increased to 30 mol% in order to achieve full conversion within shorter timeframe and similar results were obtained (Table 1, entry 14).

 Table 1. 2-Substituted-1,4-naphthoquinones 1 as vinylogous pronucleophiles in asymmetric

 organocatalysis – optimization studies^a

		Ph CHO Ph				
	Cat	2a Ph Ph Ph OTMS 5a	Ph Ph OMe 5b	A Ph Ph ODPMS 5c Ar=3	$\begin{array}{c} 4a \\ \hline \\ Ar \\ OTMS \\ 5d \\ 5-(CF_3)_2C_6H_3 \end{array}$	
	Catalyst (additive	e) Solvent	Conv. ^b (yield)	3a:4a	dr ^c	er ^d
1	5a (NaOAc)	CH_2Cl_2	41	3.3:1	>20:1	99:1
2	5a (Et ₃ N)	CH_2Cl_2	18	>20:1	>20:1	n.d.
3	5a (Li ₂ CO ₃)	CH_2Cl_2	39	3.3:1	>20:1	n.d.
4	5a (K ₂ CO ₃)	CH_2Cl_2	<5	n.d.	n.d.	n.d.
5	5a (DMABA)	CH_2Cl_2	50 (34)	11:1	>20:1	99:1
6	5b (DMABA)	CH_2Cl_2	34	11:1	>20:1	n.d.
7	5c (DMABA)	CH_2Cl_2	33	8:1	>20:1	n.d.
8	5d (DMABA)	CH_2Cl_2	<5	n.d.	n.d.	n.d.
9	5a (DMABA)	toluene	13	>20:1	>20:1	n.d.
10	5a (DMABA)	CCl ₄	12	>20:1	>20:1	n.d.
11	5a (DMABA)	CHCl ₃	36	7:1	>20:1	n.d.
12 ^e	5a (DMABA)	CH_2Cl_2	61	10:1	>20:1	n.d.
13 ^f	5a (DMABA)	CH_2Cl_2	93 (64)	12:1	>20:1	99:1
14 ^g	5a (DMABA)	CH_2Cl_2	97 (67)	12:1	>20:1	99:1

^a Reactions performed on a 0.1 mmol scale employing **1a** (1.0 equiv), **2a** (1.2 equiv), catalyst **5a** (20 mol%) with additive (20 mol%) in 0.4 mL of the solvent at room temperature (for detailed reaction conditions and screening results, see Supporting Information). ^b Conversion was determined by ¹H NMR of a crude reaction mixture. Isolated yield is given in parentheses. ^c Determined by ¹H NMR of a crude reaction mixture. ^d Determined by chiral stationary phase HPLC. ^e Reaction performed using **1a** (2 equiv) and **2a** (1 equiv). ^f Reaction performed using **1a** (2 equiv) and **2a** (1 equiv) at 5 °C for 6 days. ^g Reaction performed using **1a** (2 equiv) and **2a** (1 equiv) at 5 °C at a static st

Being successful in accomplishing optimization studies, the scope of developed cascade reactivity was studied (Scheme 3, Table 2). Initially, the performance of various 2-substituted-1,4-naphthoquinones 1 as vinylogous pronucleophiles in the developed cascade was tested (Scheme 3). To our delight, the reaction cascade involving Michael addition followed by the aldol condensation proved unbiased towards the position of groups on the aromatic substituent in the benzyl moiety of 1 (Scheme 3, compare **3b-d**). Furthermore, their electronic properties had no significant impact on the cascade outcome (Scheme 3, compare **3b,e,f**). Notably, in all of the cases the excellent enantio- and diastereoselectivity of the process was fully maintained. Furthermore, chemoselectivity of the cascade was high with the side-reaction initiated through the Michael addition from the C-3 position of the naphthoquinone ring being supressed to high extent. It is worth to stress out that when 1,4-naphthoquinone bearing methyl substituent instead of benzyl group in the 2 position was employed no reaction was observed.

Scheme 3. 2-Substituted-1,4-naphthoquinones 1 as vinylogous pronucleophiles in asymmetric organocatalysis - 2-substituted-1,4-naphthoquinone 1 scope

Subsequently, various α,β -unsaturated aldehydes **2** were evaluated in the developed cascade (Table 2). It was found that the presence of both electron-withdrawing groups (Table 2, entries 2-8) as well as electron-donating groups (Table 2, entries 9-11) on the aromatic substituent in **2** did not affect the cascade providing the target products **3** in a highly enantio- and diastereoselective fashion. The reaction outcome did also not depend from the location of the substituent on the aromatic moiety in **2** (Table 2, entries 6-8 vs. 10,11). Notably, the use of aliphatic, linear enals resulted in sluggish conversion.

Table 2. 2-Substituted-1,4-naphthoquinones **1** as vinylogous pronucleophiles in asymmetric organocatalysis – α , β -unsaturated aldehyde **2** scope^a

	$ \begin{array}{c} $	Ph OTMS mol%) 20 mol%) ,5 °C B C C C C C C C C C C C C C		
R	Yield [%]	dr ^b	er ^c	
Ph (3a)	67	>20:1	99:1	
$4-CF_{3}C_{6}H_{4}(3g)$	54	>20:1	99:1	
$4\text{-NO}_{2}C_{6}H_{4}\left(\boldsymbol{3h}\right)$	47	>20:1	99.5:0.5	
$2-NO_{2}C_{6}H_{4}(3i)$	50	>20:1	99.5:0.5	
$4-BrC_{6}H_{4}(3j)$	55	>20:1	99:1	
$4\text{-}ClC_{6}H_{4}\left(\mathbf{3k}\right)$	52	>20:1	99:1	
$3-ClC_{6}H_{4}(3l)$	56	>20:1	99:1	
$2\text{-}ClC_{6}H_{4}\left(\mathbf{3m}\right)$	64	>20:1	99.5:0.5	

9	$4-MeC_{6}H_{4}(3n)$	61	>20:1	98.5:1.5
10	$4-(MeO)C_{6}H_{4}(30)$	47	>20:1	98.5:1.5
11	2-(MeO)C ₆ H ₄ (3 p)	70	>20:1	>99.5:0.5
12	$2,4-Cl_2C_6H_3(3q)$	62	>20:1	99:1
13 ^d	Ph (3a)	70	>20:1	99:1

^a Reactions realized on a 0.1 mmol scale using **1** (2.0 equiv) and **2a** (1.0 equiv) in 0.4 mL of CH₂Cl₂ for 2-6 days. ^b Determined by ¹H NMR of a crude reaction mixture. ^c Determined by a chiral stationary phase HPLC. ^d The reaction performed on a 1 mmol scale.

Furthermore, disubstituted aromatic rings were well-tolerated as presented in the cascade leading to the formation of **3q** (Table 2 ,entry 12). It is worth to note that the developed cascade was also performed in a 10-fold larger scale (Table 2, entry 13) providing **3a** with comparable results to those obtained on a 0.1 mmol scale (Table 2, entry 1), thus increasing the attractiveness of our approach.

Absolute configuration of the product **3b** was unequivocally confirmed by the single crystal X-ray experiment (Scheme 4).¹⁰ The same absolute configuration was assigned by analogy to the remaining naphthalen-1(4*H*)-ones **3a,c-q**.

Scheme 4. 2-Substituted-1,4-naphthoquinones **1** as vinylogous pronucleophiles in asymmetric organocatalysis – absolute configuration assignment

Given the stereochemical assignments, a plausible reaction mechanism was proposed (Scheme 5). It is postulated that the reaction cascade is initiated by two parallel processes. Firstly, 2-substituted-1,4-naphthoquinone **1** is deprotonated to generate the corresponding dienolate **A**. Secondly, enal **2** is activated through the iminium ion **B** formation. Subsequently, the first C-C

bond-forming event takes place. Enantioselectivity of the Michael addition of **1** to **2** is controlled by the bulky substituent present at the C-2 of the pyrrolidine moiety in **B**. Notably, the diastereoselectivity of the addition is a consequence of dienolate **A** reacting in its *E*,*Z*configuration (Scheme 5, TS-1). Dienolate **A** adopts such a reactive configuration in order to avoid disfavored interactions (between \mathbb{R}^2 substituent and the sterically demanding substituent of the iminium ion **B**) that are present in the alternative transition state (Scheme 5, TS-2) proceeding through the *E*,*E*-configured dienolate **A**. The conjugate addition leads to the formation of enamine **6** that undergoes intramolecular aldol reaction to give iminium ion **7**. Subsequent dehydratation and hydrolytic removal of the catalyst affords target product **3**.

Scheme 5. 2-Substituted-1,4-naphthoquinones **1** as vinylogous pronucleophiles in asymmetric organocatalysis – mechanistic considerations

Conclusions

In conclusion, we have demonstrated for the first time that 2-substituted-1,4-naphthoquinones **1** can serve as pronucleophiles thus providing new opportunities for organic synthesis. The reaction between **1** and α , β -unsaturated aldehydes **2** proceeded in a vinylogous fashion providing carboannulated naphthalen-1(4*H*)-ones **3** in a sequence of reaction involving Michael addition followed by the intramolecular aldol condensation. The proper choice of reaction conditions enabled the control of both the site- and stereo-selectivity of the cascade.

Experimental Section

General Information. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ¹H and 176 MHz for ¹³C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃: 7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). Mass spectra were recorded on a spectrometer using electrospray ionization (ESI+) using TOF mass analyzer (referenced to the mass of the charged species). Optical rotations were measured on a Perkin-Elmer 241 polarimeter and [α]_D values are given in deg•cm•g⁻¹ •dm⁻¹; concentration *c* is listed in g•(100 mL)⁻¹. Melting points were determined in open capillaries and are uncorrected. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation. The enantiomeric ratio (*er*) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak IA, IC and ID column). For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) was used. 2-Substituted-

1,4-naphthoquinones $1a-f^{11}$ and aldehydes $2g-q^{12}$ were synthetized from the corresponding benzaldehydes according to literature procedures.

Synthesis of 2- substituted-1,4-naphthoquinone I – general procedure. AgNO₃ (1 mmol) and (NH₄)₂S₂O₈ (20 mmol) were dissolved in water (40 mL) and a solution of 1,4-naphthoquinone (10 mmol) and 2-phenylacetic acid (20 mmol) in a 1:1 mixture of acetonitrile/dichloromethane (40 mL) was quickly added. The biphasic mixture was refluxed (bath temperature ca. 80 °C) for 2 hours, cooled to ambient temperature, and dichloromethane (40 mL) was added. The aqueous layer was separated and extracted again with dichloromethane (40 mL). The combined organic layers were dried (anhydrous sodium sulphate) and evaporated. Resulting brown oil was purified by column chromatography (hexane:EtOAc 100:1). Pure products were obtained as yellow solids.

2-*Benzyl-1,4-naphthoquinone* **1a**. Following general procedure, pure product **1a** was isolated by FC on silica (hexane:diethyl ether 100:1) in 71% yield as an yellow solid (mp = 85-86 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.12–8.10 (m, 1H), 8.06-8.03 (m, 1H), 7.73–7.72 (m, 2H), 7.35-7.33 (m, 2H), 7.27–7.25 (m, 3H), 6.61 (t, *J* = 1.6 Hz, 1H), 3.90 (d, *J* = 1.4 Hz, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 185.3, 185.2, 151.0, 136.9, 135.8, 134.0, 133.9, 132.4, 132.2, 129.6 (2C), 129.0 (2C), 127.1, 126.8, 126.3, 35.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₃O₂ 249.0910; Found: 249.0913.

2-(4-Chlorobenzyl)-1,4-naphthoquinone **1b**. Following general procedure, pure product **1b** was isolated by FC on silica (hexane:diethyl ether 100:1) in 57% yield as an yellow solid (mp = 98-100 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.10 (ddd, *J* = 4.6, 3.0, 0.5 Hz, 1H), 8.05 (ddd, *J* = 3.9, 3.0, 0.5 Hz, 1H), 7.75–7.71 (m, 2H), 7.32–7.28 (m, 2H), 7.21–7.17 (m, 2H), 6.62 (t, *J* = 1.5)

Hz, 1H), 3.87 (d, J = 1.4 Hz, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 185.1, 185.0, 150.4, 136.0, 135.4, 134.0, 134.0, 133.1, 132.2, 132.2, 131.0 (2C), 129.1 (2C), 126.8, 126.3, 35.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₂ClO₂ 283.0520; Found: 283.0526.

2-(3-Chlorobenzyl)-1,4-naphthoquinone **1c**. Following general procedure, pure product **1c** was isolated by FC on silica (hexane:diethyl ether 100:1) in 43% yield as an yellow solid (mp = 75-77 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.11 (ddd, J = 4.8, 2.9, 0.5 Hz, 1H), 8.06 (ddd, J = 4.1, 2.9, 0.5 Hz, 1H), 7.74 (ddd, J = 5.0, 4.5, 3.6 Hz, 2H), 7.29–7.21 (m, 3H), 7.14 (dt, J = 7.2, 1.6 Hz, 1H), 6.63 (t, J = 1.5 Hz, 1H), 3.87 (d, J = 1.3 Hz, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 185.1, 184.9, 150.1, 139.0, 136.0 (2C), 134.8, 134.0, 133.9, 132.2, 130.2, 129.6, 127.7, 127.4, 126.9, 126.3, 35.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₂ClO₂ 283.0520; Found: 283.0522.

2-(2-*Chlorobenzyl*)-1,4-*naphthoquinone* 1d. Following general procedure, pure product 1d was isolated by FC on silica (hexane:diethyl ether 100:1) in 68% yield as an yellow solid (mp = 108-110 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.16–8.12 (m, 1H), 8.07–8.03 (m, 1H), 7.75–7.73 (m, 2H), 7.42-7.41 (m, 1H), 7.28–7.23 (m, 3H), 6.44 (t, *J* = 1.7 Hz, 1H), 4.05 (d, *J* = 1.7 Hz, 2H). ¹³C NMR (176 MHz, CDCl₃) δ 185.1, 185.0, 149.3, 135.7, 134.7, 133.9 (2C), 132.3 (2C), 132.0, 130.1, 128.9, 127.4, 126.8 (2C), 126.3, 33.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₂ClO₂ 283.0520; Found: 283.0517.

2-(*p*-Tolyl)-1,4-naphthoquinone **1e**. Following general procedure, pure product **1e** was isolated by FC on silica (hexane:diethyl ether 100:1) in 69% yield as an yellow solid (mp = 90-93 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.15–8.11 (m, 1H), 8.09–8.04 (m, 1H), 7.76–7.72 (m, 2H), 7.20–7.17 (m, 2H), 6.91–6.88 (m, 2H), 6.62 (t, *J* = 1.5 Hz, 1H), 3.86 (d, *J* = 1.5 Hz, 2H), 3.82 (s, 3H). ¹³C

NMR (176 MHz, CDCl₃) δ 185.0, 184.9, 150.1, 139.0 (2C), 136.0, 134.8 (2C), 134.0, 133.9, 132.2, 130.2, 129.6, 127.7, 127.4, 126.9, 126.3, 35.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₅O₂ 263.1067; Found: 263.1062.

2-(4-Methoxybenzyl)-1,4-naphthoquinone **1f**. Following general procedure, pure product **1f** was isolated by FC on silica (hexane:diethyl ether 100:1) in 71% yield as an yellow solid (mp = 74-76 °C). ¹H NMR (700 MHz, CDCl₃) δ 8.10–8.09 (m, 1H), 8.04–8.03 (m, 1H), 7.72–7.71 (m, 2H), 7.17–7.15 (m, 2H), 6.87–6.86 (m, 2H), 6.60 (t, *J* = 1.5 Hz, 1H), 3.84 (d, *J* = 1.5 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 185.3, 185.2, 158.7, 151.4, 135.6, 133.9, 133.8, 132.3, 132.2, 130.6 (2C), 128.7, 126.8, 126.2, 114.4 (2C), 55.4, 35.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₁₅O₃ 279.1016; Found: 279.1022.

General Procedure for the Synthesis of Compounds **3a-q**. In an ordinary 4 mL glass vial, equipped with a magnetic stirring bar and a screw cap, catalyst **5a** (0.3 equiv, 0.03 mmol, 9.8 mg) and α,β -unsaturated aldehyde **2** (1.0 equiv, 0.1 mmol) were dissolved in CH₂Cl₂ (0.2 mL). Subsequently, the mixture was cooled to 5 °C and a solution of the corresponding 2-alkyl-1,4naphthoquinone **1** (2 equiv, 0.2 mmol) and 4-dimethylaminobenzoic acid (0.2 equiv, 0.02 mmol, 3.3 mg) in CH₂Cl₂ (0.2 mL) was added and stirring was continued for 2-6 days at 5 °C. Crude product was purified by the flash chromatography on silica gel.

(2R,3R)-5-Oxo-2,3-diphenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-carbaldehyde **3a**. Following general procedure, pure product **3a** was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 67% yield (24 mg, >20:1 dr, **3a**:**4a** 90:10) as an yellow solid (mp = 88-90 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.64 (s, 1H), 8.35–8.31 (m, 1H), 8.29–8.22 (m, 1H), 7.78–7.68 (m, 2H), 7.35–7.28 (m, 5H), 7.27-7.25 (m, 1H), 7.17–7.09 (m, 4H), 6.40 (dd, J = 2.0,

0.8 Hz, 1H), 4.55 (d, J = 2.7 Hz, 1H), 4.18 (t, J = 2.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 189.3, 184.6, 166.7, 148.9, 142.1, 141.7, 141.2, 132.5, 131.9, 131.4, 130.2, 129.3 (2C), 129.2 (2C), 128.7, 128.0, 127.8 (2C), 127.7, 127.6, 127.5 (2C), 125.8, 60.5, 57.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₆H₁₉O₂+H⁺ 363.1380; Found: 363.1387. The *er* was determined by HPLC using a chiral Chiralpack IA [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{\text{major}} = 10.7 \text{ min}$, $t_{\text{minor}} = 13.4 \text{ min} (99:1 \text{ er})$; $[\alpha]_{\text{D}}^{20} = -254.3 \ (c = 1.0, 10.0 \text{ cm})$

(2R,3R)-3-(4-Chlorophenyl)-5-oxo-2-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3b**. Following general procedure, pure product **3b** was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 72% yield (29 mg, >20:1 dr, **3b:4b** 91:9) as a green solid (mp = 130-132 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.63 (s, 1H), 8.36–8.32 (m, 1H), 8.27–8.22 (m, 1H), 7.77–7.69 (m, 2H), 7.34–7.30 (m, 4H), 7.28–7.26 (m, 1H), 7.15–7.12 (m, 2H), 7.07– 7.04 (m, 2H), 6.37 (d, J = 1.5 Hz, 1H), 4.48 (d, J = 2.8 Hz, 1H), 4.15 (t, J = 2.4 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 189.2, 184.4, 166.0, 148.6, 142.0, 141.4, 139.6, 133.7, 132.6, 131.8, 131.5, 130.1, 129.5, 129.3, 129.2 (2C), 128.7 (2C), 128.1 (2C), 127.7, 127.4 (2C), 125.8, 60.5, 56.6. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₆H₁₈ClO₂ 397.0990; Found: 397.0991. The er was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 17.9 \text{ min}$, $t_{minor} = 22.1 \text{ min}$ (98.5:1.5 er); $[\alpha]_D^{20} = -256.3$ (*c* = 1.0, CHCl₃).

(2R,3R)-3-(3-Chlorophenyl)-5-oxo-2-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehvde 3c. Following general procedure, pure product 3c was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 52% yield (21 mg, 18:1 dr, 3c:4c 88:12) as an yellow solid (mp = 118-120 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.63 (s, 1H), 8.36–8.32 (m, 1H), 8.26–8.23

(m, 1H), 7.76–7.71 (m, 2H), 7.34–7.30 (m, 2H), 7.30–7.27 (m, 3H), 7.16–7.12 (m, 2H), 7.12– 7.09 (m, 1H), 7.02–6.98 (m, 1H), 6.39 (dd, J = 2.0, 0.6 Hz, 1H), 4.52 (d, J = 2.7 Hz, 1H), 4.16– 4.10 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 189.1, 184.4, 165.8, 148.6, 143.2, 141.9, 141.4, 135.2, 132.6, 131.8, 131.6, 130.6, 130.1, 129.3 (2C), 128.7, 128.1, 128.0, 127.9, 127.7, 127.4 (2C), 126.1, 126.0, 60.3, 56.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClO₂ 397.0990; found: 397.0999. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 16.0$ min, $t_{minor} = 18.6$ min (99:1 er); $[\alpha]_D^{20} = -258.8$ (c = 1.0, CHCl₃).

(2R,3S)-3-(2-Chlorophenyl)-5-oxo-2-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3d**. Following general procedure, pure product **3d** was isolated after 5 days by FC on silica (hexane:diethyl ether 4:1) in 65% yield (26 mg, >20:1 dr, **3d:4d** 98:2) as a green amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.62 (s, 1H), 8.37–8.33 (m, 1H), 8.27–8.23 (m, 1H), 7.75–7.70 (m, 2H), 7.42 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.31 (dd, *J* = 10.2, 4.7 Hz, 2H), 7.27–7.23 (m, 3H), 7.21 (td, *J* = 7.5, 1.5 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.05 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.41 (bs, 1H), 4.66 (bs, 1H), 4.60 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 189.2, 184.5, 165.8, 149.0, 141.8, 141.6, 134.2, 132.5, 131.9, 131.4, 130.4, 130.2, 129.1 (2C), 129.0 (3C), 128.7, 128.0, 127.6 (4C), 125.4, 59.1, 58.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClO₂ 397.0990; Found: 397.0983. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; *t*_{maior} = 14.4 min, *t*_{minor} = 15.8 min (99:1 er); [α]_D²⁰ = -181.1 (*c* = 1.0, CHCl₃).

(2R,3R)-5-Oxo-2-phenyl-3-(p-tolyl)-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3e**. Following general procedure, pure product **3e** was isolated after 6 days by FC on silica (hexane:diethyl ether 4:1) in 62% yield (23 mg, >20:1 dr, **3e:4e** 88:12) as an yellow

amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.63 (s, 1H), 8.33 (ddd, J = 8.6, 4.1, 3.3 Hz, 1H), 8.26–8.22 (m, 1H), 7.76–7.67 (m, 2H), 7.32–7.29 (m, 2H), 7.28–7.24 (m, 1H), 7.16–7.13 (m, 4H), 7.02–6.99 (m, 2H), 6.39 (dd, J = 2.0, 0.7 Hz, 1H), 4.53 (d, J = 2.7 Hz, 1H), 4.14 (t, J = 2.4 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (176 MHz, , CDCl₃) δ 189.4, 184.6, 166.9, 149.0, 142.0, 141.8, 138.1, 137.4, 132.5, 131.9, 131.4, 130.2, 130.0 (2C), 129.2 (2C), 128.7, 128.0, 127.7 (2C), 127.5, 127.4 (2C), 125.7, 60.5, 56.9, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₁O₂ 377.1537; Found: 377.1544. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 15.5$ min, $t_{minor} = 18.0$ min (99:1 er); $[\alpha]_D^{20} = -214.2$ (c = 1.0, CHCl₃).

(2R,3S)-3-(4-Methoxyphenyl)-5-oxo-2-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1carbaldehyde **3f**. Following general procedure, pure product **3f** was isolated after 5 days by FC on silica (hexane:diethyl ether 4:1) in 55% yield (22 mg, >20:1 dr, **3f:4f** 87:13) as an yellow amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.62 (s, 1H), 8.35–8.31 (m, 1H), 8.26–8.23 (m, 1H), 7.74–7.69 (m, 2H), 7.33–7.28 (m, 2H), 7.28–7.23 (m, 1H), 7.16–7.12 (m, 2H), 7.05–7.01 (m, 2H), 6.88–6.83 (m, 2H), 6.38 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.50 (d, *J* = 2.8 Hz, 1H), 4.12 (t, *J* = 2.4 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 189.4, 184.6, 167.0, 159.2, 148.9, 142.0, 141.8, 133.1, 132.5, 131.9, 131.4, 130.2, 129.2 (2C), 128.9 (2C), 128.7, 128.0, 127.5, 127.4 (2C), 125.6, 114.7 (2C), 60.7, 56.6, 55.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₁O₃ 393.1486; Found: 393.1490. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; *t*_{major} = 25.4 min, *t*_{minor} =28.1 min (99.5:0.5 er); [α]_D²⁰ = -256.3 (*c* = 1.0, CHCl₃).

(2R,3R)-5-Oxo-3-phenyl-2-(4-(trifluoromethyl)phenyl)-3,5-dihydro-2H-

cyclopenta[a]naphthalene-1-carbaldehyde 3g. Following general procedure, pure product 3g

was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 54% yield (23 mg, >20:1 dr, **3g**:**4g** 93:7) as an yellow amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.71 (s, 1H), 8.36–8.32 (m, 1H), 8.23–8.18 (m, 1H), 7.78–7.71 (m, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.36–7.32 (m, 2H), 7.31 (m, 1H), 7.27–7.25 (d, J = 8.1 Hz, 2H), 7.12–7.08 (m, 2H), 6.39 (dd, J = 2.1, 0.8 Hz, 1H), 4.58 (d, J = 3.0 Hz, 1H), 4.13 (dd, J = 3.0, 2.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) 188.7, 184.4, 166.0, 147.7, 145.9, 143.6, 140.6, 132.6, 131.9, 131.7, 130.0, 129.8 (q, $J_{C-F} = 32.6$ Hz), 129.5 (2C), 128.7, 128.2, 128.0, 127.8 (2C), 127.7 (2C), 126.2 (q, $J_{C-F} = 3.7$ Hz, 2C), 126.0, 124.2 (q, $J_{C-F} = 273.0$ Hz), 59.9, 57.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₁₈F₃O₂ 431.1253; Found: 431.1255. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 19.3$ min, $t_{minor} = 21.0$ min (99:1 er); [α]_D²⁰ = -211.6 (c = 1.0, CHCl₃).

(2R,3R)-2-(4-Nitrophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3h**. Following general procedure, pure product **3h** was isolated after 4 days by FC on silica (hexane:diethyl ether 4:1) in 47% yield (19 mg, >20:1 dr, **3h:4h** 88:12) as an yellow solid (mp = 123-125 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.75 (s, 1H), 8.36–8.31 (m, 1H), 8.19 (dd, *J* = 7.4, 1.6 Hz, 1H), 8.17 (d, *J* = 8.8 Hz, 2H), 7.77–7.74 (m, 2H), 7.38–7.32 (m, 3H), 7.31 (d, *J* = 8.8 Hz, 2H), 7.13–7.08 (m, 2H), 6.38 (dd, *J* = 2.1, 0.7 Hz, 1H), 4.60 (d, *J* = 3.3 Hz, 1H), 4.12 (dd, *J* = 3.3, 2.1 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 188.5, 184.3, 165.5, 149.4, 148.9, 147.3, 146.8, 143.8, 140.1, 132.7, 131.9 (4C), 129.8, 129.5, 129.2, 128.7, 128.3, 128.2, 127.9, 126.1, 124.5, 124.4, 59.7, 56.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈NO₄ 408.1230; Found: 408.1237. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; *t*_{major} = 18.0 min, *t*_{minor} = 20.5 min (>99.5:0.5 er); [α]_D²⁰ = -383.8 (*c* = 1.0, CHCl₃).

(2R,3R)-2-(2-Nitrophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1carbaldehyde **3i**. Following general procedure, pure product **3i** was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 50% yield (20 mg, >20:1 dr, **3i:4i** 82:18) as an yellow amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.68 (s, 1H), 8.37–8.30 (m, 1H), 8.22–8.15 (m, 1H), 7.85 (dd, J = 8.3, 1.4 Hz, 1H), 7.78–7.71 (m, 2H), 7.51 (td, J = 7.4, 1.4 Hz, 1H), 7.40 (ddd, J = 8.3, 7.4, 1.4 Hz, 1H), 7.36–7.30 (m, 3H), 7.22–7.18 (m, 1H), 7.16–7.11 (m, 2H), 6.38 (d, J =1.6 Hz, 1H), 5.24 (bs, 1H), 4.27 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 188.4, 184.3, 166.0, 165.5, 149.5, 147.1, 143.3, 140.2, 134.1, 133.3, 132.6, 131.8, 131.7, 129.9, 129.3 (2C), 128.7, 128.3, 128.1, 128.0, 127.9 (2C), 126.1, 125.0, 61.1, 56.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈NO₄ 408.1230; Found: 408.1238. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{minor} = 24.7min, t_{minor} = 28.4 min (>99.5:0.5 er); [\alpha]_D^{20} = -157.6 (c = 1.0, CHCl_3).$

(2R,3R)-2-(4-Bromophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1

carbaldehyde **3j**. Following general procedure, pure product **3j** was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 55% yield (24 mg, >20:1 dr, **3j**:**4j** 92:2) as an yellow solid (mp = 130-132 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.67 (s, 1H), 8.33 (m, 1H), 8.21 (m, 1H), 7.76–7.71 (m, 2H), 7.46–7.40 (m, 2H), 7.35–7.32 (m, 2H), 7.32–7.28 (m, 1H), 7.10 (m, 2H), 7.05–6.99 (m, 2H), 6.38 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.49 (d, *J* = 2.9 Hz, 1H), 4.11–4.10 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 188.9, 184.4, 166.2, 148.0, 143.0, 140.9, 140.7, 132.6, 132.3 (2C), 131.9, 131.6, 130.0, 129.4 (2C), 129.11 (2C), 128.7, 128.1, 127.9, 127.8 (2C), 125.9, 121.4, 59.7, 57.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈BrO₂ 441.0485; Found: 441.0477. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20]

column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 18.1 \text{ min}, t_{minor} = 22.8 \text{ min}$ (99:1 er); $[\alpha]_D^{20} = -285.9$ (c = 1.0, CHCl₃).

(2R,3R)-2-(4-Chlorophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3k**. Following general procedure, pure product **3k** was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 52% yield (21 mg, >20:1 dr, **3k**:**4k** 93:7) as an yellow solid (mp = 118-120 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.67 (s, 1H), 8.34–8.32 (m, 1H), 8.22–8.20 (m, 1H), 7.76–7.71 (m, 2H), 7.37–7.32 (m, 2H), 7.32–7.27 (m, 3H), 7.09 (m, 4H), 6.38 (dd, J = 2.0, 0.6 Hz, 1H), 4.50 (d, J = 2.9 Hz, 1H), 4.12–4.10 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 189.7, 184.4, 166.2, 148.1, 142.7, 140.7, 140.3, 133.4, 132.6, 131.9, 131.6, 130.1, 129.4 (2C), 129.3 (2C), 128.8 (2C), 128.7, 128.1, 127.9, 127.8 (2C), 125.9, 59.6, 57.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClO₂ 397.0990; Found: 397.0988. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 17.0$ min, $t_{minor} = 21.3$ min (99:1 er); $[\alpha]_D^{20} = -336.8$ (c = 1.0, CHCl₃).

(2R,3R)-2-(3-Chlorophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3I**. Following general procedure, pure product **3I** was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 56% yield (22 mg, >20:1 dr, **3I:4I** 88:12) as a green amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.69 (s, 1H), 8.35–8.33 (m, 1H), 8.23–8.21 (m, 1H), 7.76–7.71 (m, 2H), 7.36–7.33 (m, 2H), 7.32–7.28 (m, 1H), 7.25–7.24 (m, 2H), 7.13–7.10 (m, 3H), 7.06–7.02 (m, 1H), 6.38 (dd, *J* = 2.0, 0.7 Hz, 1H), 4.50 (d, *J* = 2.9 Hz, 1H), 4.15–4.13 (m, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 188.9, 184.4, 166.1, 147.9, 143.9, 142.8, 140.8, 135.0, 132.6, 131.9, 131.6, 130.4, 130.0, 129.4 (2C), 128.7, 128.1, 127.9, 127.8 (2C), 127.7, 127.3, 126.0, 125.8, 59.8, 56.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClO₂ 397.0990;

The Journal of Organic Chemistry

Found: 397.0995. The *er* was determined by HPLC using a chiral Chiralpack IA [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 11.2 \text{ min}$, $t_{minor} = 13.7 \text{ min} (99:1 \text{ er})$; $[\alpha]_D^{20} = -360.3$ (c = 1.0, CHCl₃).

(2R,3R)-2-(2-Chlorophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3m**. Following general procedure, pure product **3m** was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 64% yield (25 mg, >20:1 dr, **3m**:**4m** 91:9) as an yellow solid (mp = 98-100 °C). ¹H NMR (700 MHz, CHCl₃) δ 10.68 (s, 1H), 8.35–8.31 (m, 1H), 8.25 (m, 1H), 7.78–7.68 (m, 2H), 7.38 (m, 1H), 7.35–7.31 (m, 2H), 7.31–7.27 (m, 1H), 7.27–7.17 (m, 2H), 7.17–7.13 (m, 2H), 7.06–7.03 (m, 1H), 6.37 (d, *J* = 2.1 Hz, 1H), 5.09 (bs, 1H), 4.19 (bs, 1H). ¹³C NMR (176 MHz, CHCl₃) δ 188.8, 184.5, 166.4, 148.4, 142.6, 140.8, 133.8, 132.5, 131.8, 131.4 (2C), 130.4, 130.1, 129.2 (2C), 128.7 (2C), 128.6, 128.0, 127.9 (2C), 127.7, 127.5, 125.7, 56.4, 56.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClO₂ 397.0990; Found: 397.0993. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; *t*_{major} = 16.3 min, *t*_{minor} = 18.0 min (99.5:0.5 er); [α]p²⁰ = -121.9 (*c* = 1.0, CHCl₃).

(2R,3R)-5-Oxo-3-phenyl-2-(p-tolyl)-3,5-dihydro-2H-cyclopenta[a]naphthalene-1-

carbaldehyde **3n**. Following general procedure, pure product **3n** was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 61% yield (23 mg, >20:1 dr, **3n**:**4n** 98:2) as a brown amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.61 (s, 1H), 8.35–8.32 (m, 1H), 8.26–8.24 (m, 1H), 7.75–7.69 (m, 2H), 7.35–7.31 (m, 2H), 7.30–7.27 (m, 1H), 7.14–7.10 (m, 4H), 7.04 (d, *J* = 8.1 Hz, 2H), 6.39 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.52 (d, *J* = 2.6 Hz, 1H), 4.16-4.15 (m, 1H), 2.33 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 189.5, 184.6, 166.8, 149.1, 141.8, 141.2, 138.7, 137.3, 132.3, 131.9, 131.4, 130.3, 129.9 (2C), 129.3 (2C), 128.7, 128.0, 127.8 (2C), 127.7, 127.3 (2C),

125.7, 60.2, 57.3, 21.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₇H₂₁O₂ 377.1537; Found: 377.1530. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 15.7 \text{ min}$, $t_{minor} = 17.7 \text{ min}$ (98.5:1.5 er); $[\alpha]_D^{20} = -199.9$ (c = 1.0, CHCl₃).

(2R,3R)-2-(4-Methoxyphenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1carbaldehyde **30**. Following general procedure, pure product **30** was isolated after 2 days by FC on silica (hexane:diethyl ether 4:1) in 47% yield (18 mg, >20:1 dr, **30:40** 93:7) as an yellow solid (mp = 100-102 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.60 (s, 1H), 8.35–8.32 (m, 1H), 8.27–8.24 (m, 1H), 7.75–7.69 (m, 2H), 7.34–7.31 (m, 2H), 7.30–7.27 (m, 1H), 7.13–7.09 (m, 2H), 7.09– 7.05 (m, 2H), 6.87–6.82 (m, 2H), 6.39 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.50 (d, *J* = 2.7 Hz, 1H), 4.15 (t, *J* = 2.4 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 189.5, 184.6, 166.7, 159.1, 149.1, 141.6, 141.2, 133.7, 132.5, 131.9, 131.4, 130.3, 129.3 (2C), 128.7, 128.5 (2C), 128.0, 127.8 (2C), 127.7, 125.7, 114.6 (2C), 59.9, 57.4, 55.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₁O₃ 393.1486; Found: 393.1488. The *er* was determined by HPLC using a chiral Chiralpack IA [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; *t*_{major} = 14.3 min, *t*_{minor} = 21.5 min (98.5:1.5 er); [α] $_{D}^{20}$ = -193.7 (*c* = 1.0, CHCl₃).

(2*R*,3*R*)-2-(2-*Methoxyphenyl*)-5-oxo-3-phenyl-3,5-dihydro-2*H*-cyclopenta[a]naphthalene-1carbaldehyde **3p**. Following general procedure, pure product **3p** was isolated after 4 days by FC on silica (hexane:diethyl ether 4:1) in 70% yield (27 mg, >20:1 dr, **3p**:**4p** 89:11) as an yellow solid (mp = 158-160 °C). ¹H NMR (700 MHz, CDCl₃) δ 10.59 (s, 1H), 8.34–8.32 (m, 1H), 8.28– 8.26 (m, 1H), 7.74–7.68 (m, 2H), 7.33–7.30 (m, 2H), 7.28–7.26 (m, 1H), 7.26–7.23 (m, 1H), 7.15–7.13 (m, 2H), 7.00–6.98 (m, 1H), 6.90–6.87 (m, 2H), 6.36 (dd, *J* = 2.0, 0.8 Hz, 1H), 4.82 (d, *J* = 2.8 Hz, 1H), 4.22–4.18 (m, 1H), 3.66 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 189.5,

184.8, 167.2, 157.1, 150.0, 141.6, 141.2, 132.4, 131.8, 131.1, 130.4, 129.3, 129.1, 129.0 (2C), 128.8, 128.6, 128.0 (2C), 127.9, 127.4, 125.1, 121.1, 111.4, 56.2, 55.7, 55.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₇H₂₁O₃ 393.1486; Found: 393.1481. The *er* was determined by HPLC using a chiral Chiralpack ID [hexane:*i*-PrOH, 90:10] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 24.1$ min, $t_{minor} = 25.3$ min (>99.5:0.5 er); $[\alpha]_D^{20} = -199.9$ (c = 1.0, CHCl₃).

(2S,3R)-2-(2,4-Dichlorophenyl)-5-oxo-3-phenyl-3,5-dihydro-2H-cyclopenta[a]naphthalene-1carbaldehyde **3q**. Following general procedure, pure product **3q** was isolated after 3 days by FC on silica (hexane:diethyl ether 4:1) in 62% yield (27 mg, >20:1 dr, **3q:4q** 99:1) as an yellow amorphous solid. ¹H NMR (700 MHz, CDCl₃) δ 10.71 (s, 1H), 8.42–8.30 (m, 1H), 8.26–8.15 (m, 1H), 7.76-7.72 (m, 2H), 7.40 (m,1H), 7.35–7.28 (m, 3H), 7.18 (dd, J = 8.3, 2.2 Hz, 1H), 7.15– 7.12 (m, 2H), 6.98 (d, J = 8.3 Hz, 1H), 6.40–6.33 (m, 1H), 5.00 (bs, 1H), 4.14 (bs, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 188.5, 184.4, 165.9, 159.5, 147.9, 143.0, 140.5, 133.8, 132.6, 131.8, 131.6, 130.2, 130.0, 129.5, 129.3 (2C), 128.6, 128.1, 127.9 (2C), 127.9, 127.8, 127.0, 125.9, 62.0, 54.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₇Cl₂O₂ 431.0600; Found: 431.0609. The *er* was determined by HPLC using a chiral Chiralpack IC [hexane:*i*-PrOH, 80:20] column; column temperature 30 °C; flow rate 1.0 mL/min; $t_{major} = 15.1$ min, $t_{minor} = 17.7$ min (99:1 er); [α]_D²⁰ = -147.7 (*c* = 1.0, CHCl₃).

Supporting Information. Full account of screening results, X-ray structure, copies of ¹H and ¹³C NMR spectra, HPLC traces (PDF).

AUTHOR INFORMATION

Corresponding Author

e-mail: lukasz.albrecht@p.lodz.pl, www.a-teamlab.p.lodz.pl

Author Contributions

All authors have given approval to the final version of the manuscript. ‡ These authors contributed equally.

Funding Sources

National Science Centre, Poland, Sonata Bis programme (grant number: 2015/18/E/ST5/00309)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This project was realized within the Sonata Bis programme (grant number: 2015/18/E/ST5/00309) from the National Science Centre, Poland. Thanks are expressed to Dr. Jakub Wojciechowski (Faculty of Chemistry, Lodz University of Technology) for performing X-ray analysis.

REFERENCES

For selected reviews, see: (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
 Vassilikogiannakis, G. *Angew. Chem., Int. Ed.* 2002, *41*, 1668. (b) Moyano, A.; Rios, R. *Chem. Rev.* 2011, *111*, 4703. (c) Goudedranche, S.; Raimondi, W.; Bugaut, X.; Constantieux, T.;
 Bonne, D.; Rodriguez, J. *Synthesis* 2013, *45*, 1909.

(2) For selected reviews on organocatalytic multicatalytic and domino synthetic strategies, see:
(a) Chauhan, P.; Mahajan, S.; Enders, D. Acc. Chem. Res. 2017, 50, 2809. (b) Wende, R. C.; Schreiner, P. R. Green Chem. 2012, 14, 1821. (c) Ramachary, D. B.; Jain, S. Org. Biomol. Chem.

2011, *9*, 1277. (d) Grondal, C.; Jeanty, M.; Enders, D. *Nat. Chem.* **2010**, *2*, 167. (e) Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. *Curr. Org. Chem.* **2009**, *13*, 1432. (f) Yu, X.; Wang, W. *Org. Biomol. Chem.* **2008**, *6*, 2037. (g) Enders, D.; Grondahl, C.; Hüttl, M. R. M. *Angew. Chem.*, *Int. Ed.* **2007**, *46*, 1570.

(3) For selected examples, see: (a) *The Chemistry of the Quinonoid Compounds*, Vol. 2, Parts 1 and 2; Patai, S.; Rappoport, Z. Eds.; Wiley: New York, 1988. (b) *Progress in the Chemistry of Quinoidal Natural Products*, Lumb, J.-P. G. ProQuest, 2008. (c) Powis, G. *Pharmac. Ther.* **1987**, *35*, 57. (d) Gu, J.-Q.; Graf, T. N.; Lee, D.; Chai, H.-B.; Mi, Q.; Kardono, L. B. S.; Setyowati, F. M.; Ismail, R.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Swanson, S. M.; Kroll, D. J.; Falkinham, J. O. III.; Wall, M. E.; Wani, M. C.; Kinghorn, A. D.; Oberlies, N. H. J. *Nat. Prod.* **2004**, *67*, 1156. (e) Gu, W.; Ge, H. M.; Song, Y. C.; Ding, H.; Zhu, H. L.; Zhao, X. A.; Tan, R. X. J. *Nat. Prod.* **2007**, *70*, 114. (f) Luo, J.-G.; Wang, X.-B.; Xu, Y.-M.; U'Ren, J. M.; Arnold, A. E.; Kong, L.-Y.; Gunatilaka, A. A. L. *Org. Lett.* **2014**, *16*, 5944. (g) Widhalm, J. R.; Rhodes, D. *Hortic Res.* **2016**, *3*, 16046.

(4) For selected examples, see: (a) Wellington, K. D.; Cambie, R. C.; Ruteledge, P. S.; Bergquist,
P. R. J. Nat. Prod. 2000, 63, 79. (b) Nicolaou, K. C.; Gray, D.; Tae, J. Angew. Chem., Int. Ed.
2001, 40, 3675. (c) Nicolaou, K. C.; Gray, D.; Tae, J. Angew. Chem., Int. Ed. 2001, 40, 3679. (d)
Nicolaou, K. C.; Gray, D. L. F.; Tae, J. J. Am. Chem. Soc. 2004, 126, 613. (e) Trost, B. M.;
Pissot-Soldermann, C.; Chen, I.; Schroeder, G. M. J. Am. Chem. Soc. 2004, 126, 4480. (f)
Mukherejee, H.; McDougal, N. T.; Virgil, S. C.; Stoltz, B. M. Org. Lett. 2011, 13, 825. (g)
Singh, A. J.; Dattelbaum, J. D.; Field, J. J.; Smart, Z.; Woolly, E. F.; Barber, J. M.; Heathcott, R.;
Miller, J. H.; Northcote, P. T. Org. Biomol. Chem. 2013, 11, 8041.

(5) For a review, see: Zhang, X.; Chen, Y.-H.; Tan, B. *Tetrahedron Lett.* 2018, *59*, 473. For examples, see: (b) Alemán, J.; Richter, B.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* 2007, *46*, 5515. (c) Alemán, J.; Cabrera, S.; Maerten, E.; Overgaard, J.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* 2007, *46*, 5520. (d) Alemán, J.; Jacobsen, C. B.; Frisch, K.; Overgaard, J.; Jørgensen, K. A. *Chem. Commun.* 2008, 632. (e) He, Z.; Liu, T.; Tao, H.; Wang, C.-J. *Org. Lett.* 2012, *14*, 6230. (f) Albrecht, Ł.; Gómez, C. V.; Jacobsen, C. B.; Jørgensen, K. A. *Org. Lett.* 2013, *15*, 3010. (g) Johansen, T. K.; Gómez, C. V.; Bak, J. R.; Davis, R. L.; Jørgensen, K. A. *Chem. Eur. J.* 2013, *19*, 16518. (h) Martín-Santos, C.; Jarava-Barrera, C.; delPozo, S.; Parra, A.; Díaz-Tendero, S.; Mas-Ballesté, R.; Cabrera, S.; Alemán, J. *Angew. Chem., Int. Ed.* 2014, *53*, 8184. (i) Blom, J.; Johansen, T. K.; Jensen, F.; Jørgensen, K. A. *Chem. Commun.* 2016, *52*, 7153.

(6) For selected reviews, see: (a) Fuson, R. C. *Chem. Rev.* 1935, *16*, 1. (b) Casiraghi, G.;
Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. *Chem. Rev.* 2011, *111*, 3076. (c) Pansare, S. V.;
Paul, E. K. *Chem. Eur. J.* 2011, *17*, 8770. (d) Bisai, V. *Synthesis* 2012, *44*, 1453. (e) Jusseau, X.;
Chabaud, L.; Guillou, C. *Tetrahedron* 2014, *70*, 2595. (f) Kalesse, M.; Cordes, M.; Symkenberg,
G.; Lu, H.-H. *Nat. Prod. Rep.* 2014, *31*, 563. (g) Schneider, C.; Abels, F. *Org. Biomol. Chem.*2014, *12*, 3531.

(7) (a) Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. *Chem. Sci.* 2013, *4*, 2287. (b) Jurberg, I. D.;
Chatterjee, I.; Tannert, R.; Melchiorre, P. *Chem. Commun.* 2013, *49*, 4869. (c) Hepburn, H. B.;
Dell'Amico, L.; Melchiorre, P. *Chem. Rec.* 2016, *16*, 1787. (d) Battistini, L.; Curti, C.; Rassu, G.;
Sartori, A.; Zanardi, F. *Synthesis* 2017, *49*, 2297. (e) Chauhan, P.; Kaya, U.; Enders, D. *Adv. Synth. Catal.* 2017, *359*, 888. (f) Yin, Y.; Jiang, Z. *ChemCatChem* 2017, *9*, 4306.

(8) For selected reviews on organocatalysis, see: (a) Bella, M.; Gasperi, T. Synthesis 2009, 1583. (b) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632. (c) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748. (d) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Chem. Eur. J. 2014, 20, 358. (e) Alemán, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774.

(9) For seminal reports, see: (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794. (b) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjærsgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703. (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212; for selected reviews, see: (d) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248. (e) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 13860.

(10) CCDC 1587384 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

(11) (a) Pluim, H.; Wynberg, H. J. Org. Chem. 1980, 45, 2498. (b) Bunge, A.; Hamann, H.-J.;
McCalmont, E.; Liebscher, J. Tetrahedron Lett. 2009, 50, 4629.

(12) Daubresse; N.; Francesch; C.; Rolando, C. Tetrahedron, 1998, 54, 10761.