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Temperature-dependent anionic phospho-Fries rearrangements of ferrocenyl/phenyl phosphates
P(O)(OFc)n(OPh)3 − n (Fc = Fe(η5-C5H5)(η5-C5H4); n = 0,1,2,3) were investigated. Whereas ferrocenyls solely
undergo one rearrangement per reaction step, the number of phenyl-based 1,3-O→ C shifts depends on the tem-
perature. This results in different types of otherwise hardly accessible mixed ferrocenyl/phenyl organophospho-
rus compounds. Detailed investigations of the triple-rearrangement of triphenyl phosphate (n = 0) reveals a
consecutive formation of its phosphonate and phosphinate prior to the known phosphane oxide.

© 2016 Elsevier B.V. All rights reserved.
Organophosphorus compounds are common additives in polymers
to control, for example, their inflammatory properties [1,2]. They also
are of importance in light-emitting diodes [3], due to their easy linking
within polymeric networks [2]. Suitable connecting functionalities, e.g.
the hydroxy group, can be obtained by the reaction of ortho-metallated
species with PX3/P(O)X3 (X = Cl, Br), followed by deprotection to give
the respective triple-ortho-substituted phosphine/-oxide derivatives [4,
5]. More efficiently, the anionic phospho-Fries rearrangement, as a sin-
gle-step 1,3-O → C process, allows the conversion of triaryl phosphates
into tris(2-hydroxyaryl)phosphine oxides in high yields [6,7]. These
species were used for the colorimetric determination of, for example,
Fe3+ ions [4,8]. In general, they can act as binding agents for cations
[9], e.g. Li+ [10] dimethyl tin complexes [11], amino acids [12] and C60
[13]. Ortho-hydroxy phosphine oxides bearing a chiral binol backbone
are exceptional catalysts for the asymmetric addition of ZnEt2 to alde-
hydes, with the alcohols obtained in excellent yield and high ee [14].
The triple ortho-alkoxy-substituted phosphines are widely used for C,C
cross-coupling catalysis by applying axially pure biphenyl phosphanes
in catalytic Heck reactions [15].

Our recent results on the synthesis of 1,2-P,O ferrocenyl phosphanes
and their use for C,C cross-coupling Suzuki-Miyaura reactions [16] and
diastereomerically enriched multiple-step anionic phospho-Fries rear-
rangements [17], prompted us to investigate the rearrangement of
triferrocenyl phosphate (A), which will be reported herein. The rear-
rangement to a triple-2-functionalized phosphane oxide (A-3) should
give access to an electronically-rich phosphane by reduction [17] or as
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a tripodal ligand in transition metal complex chemistry. The anionic
phospho-Fries rearrangement provides a novel and straightforward ac-
cess to 2-hydroxy phosphonates and phosphinates, which will be re-
ported, too.

Triferrocenyl phosphate (A) is accessible by the reaction of
ferrocenol FcOH (Fc= Fe(η5-C5H5)(η5-C5H4)) and phosphoryl chloride
in the presence of a base (Scheme 1) [18,19,20]. The yield could be in-
creased from 36 % to 92 % by using BuLi instead of NEt3 as base [16,17,
20]. The investigations of the anionic phospho-Fries reactions for A
have been carried out at various temperature regimes (Scheme 1,
Table SI1). At –70 °C treatment of A with an excess of LDA resulted
in the formation of novel phosphonate A-1 in a yield of 74 %, whereas
17 % of the starting material A remained. At –30 °C the yield of A-1
increased and reached 86 %. However, at higher temperatures A-1
started to decompose.

PhosphonateA-1undergoes a consecutive anionic phospho-Fries re-
arrangement [1,16,17], resulting in the formation of phosphinate A-2 in
a yield of 86% at 0 °C within 4 h (Scheme 1). The planar chirality of both
ferrocenyls resulted in a diastereomeric excess (de) of 77% with a pre-
dominantly formed configuration of the pair of the meso enantiomers
Rp,Sp,rP and Sp,Rp,sP as it could be confirmed by using single crystal X-
ray diffraction analysis (Fig. 1). CompoundA-2 crystallizes in themono-
clinic space group P21/c in a ratio of 0.9:0.1 of their Rp,Rp/Sp,Sp diastereo-
mers, which is similar to the diastereomeric ratio obtained by 31P{1H}
NMR spectroscopy (0.885:0.115, Experimental section). However,
phosphine oxide A-3 (Scheme 3) could not be obtained, neither by the
reaction of A, A-1 nor A-2with LDA (Table SI1).

The rearrangement of B, in which all ferrocenyls are replaced by
phenyls, has been reported to exclusively result in oxide B-3 within
one reaction step at−78 °C and subsequent warming to 0 °C (Scheme
2) [6,21]. Interestingly, neither phosphonate B-1 nor phosphinate B-2
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Scheme1. Consecutive anionic phospho-Fries rearrangement of triferrocenyl phosphateA
to afford phosphonate A-1 and phosphinate A-2. (i) LDA, thf, −30 °C, 3 h, Me2SO4, 86%
(based on A). (ii) LDA, thf, 0 °C, 3 h, Me2SO4, 86% (based on A-1). a) Obtained by the
reaction of 3 equiv of FcOLi with POCl3 in diethyl ether.

Scheme 2. Anionic phospho-Fries rearrangement of triphenyl phosphate (B) to give B-1–
B-3. (i) thf, LDA, B, 2 h, Me2SO4. a) Yield based on B.
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have been isolated so far. The question is, if they were formed during
this reaction or a simultaneous rearrangement from B to B-3 occurs ex-
cluding their formation.

To investigate the reactivity of phosphonate B at low temperatures,
the treatment of this compound with an excess of LDA and the addition
of the electrophile HClaq, were performed at−80 °C (Scheme 2). At this
temperature B was successfully transferred to phosphonate B-1 and
phosphinate B-2, confirming an increased reactivity of B as compared
to A [22]. When the temperature was increased to 0 °C then oxide B-3
was accessible [6,21]. This reactivity behavior of B towards an anionic
phospho-Fries rearrangement can be explained by an increased elec-
tron density at the remaining O-bonded aromatics, requiring higher
temperatures for their lithiation.

The increased reactivity of the phenyl-based hydroxyls might affect
the number of possible rearrangements of A and thus, PhOLi (3 and
12 equiv) were added to the reaction of A with LDA at −30 °C (Table
SI1). The yield of phosphonate A-1 decreased from 86% (Scheme 1) to
59% (3 equiv) and 44% (12 equiv), whereas the formation of
phosphinate A-2 was observed with a yield of 16% (3 equiv) and 46%
(12 equiv) as a single diastereomer (de 0.99).

To further investigate the difference between the phenyl and
ferrocenyl substituents in A and B, compounds C and D were prepared
bearing both types of aromatics (Schemes 3 and 4).
Fig. 1.ORTEP diagram (50% probability level) of the molecular structure ofmeso-A-2with
the atom-numbering scheme. All hydrogen atoms and the co-crystallized racem-A-2
(10%) have been omitted for clarity.
For the synthesis of diferrocenylphenyl phosphate C, FcOLi was
reacted with dichlorophenyl phosphate (Supporting information).
However, treatment of Cwith 4 equiv of LDA at−75 °C (Scheme 3) pro-
duced only phosphonates C-1 and C-2 in minor yield. Increasing the re-
action temperature to 0 °C resulted in a complete conversion of C giving
C-3. Although an excess of dimethyl sulfate was present, compounds C-
1 and C-3were obtained in formof C-1a/C-3a (R=H) and as C-1b/C-3b
(R = CH3). As observed for A (Scheme 1), the ferrocenyls prevent the
formation of any type of phosphine oxides, within the anionic
phospho-Fries rearrangement of C (Scheme 3).

To examine the influence between one (C) and two phenyls (D) on
the product-mixture within an anionic phospho-Fries rearrangement,
the treatment of ferrocenyldiphenyl phosphate (D) has been
reinvestigated [16]. ReplacingNEt3 by BuLi as the base for the deproton-
ation of ferrocenol, increased the yield of D from 62 [16] to 99%.
Unmethylated D-2 could recently be obtained in a yield of 8% by run-
ning the reaction at −40 °C, due to an unsuccessful methylation by
using iodomethane [17].

Carrying out the anionic phospho-Fries rearrangement below−75 °
C reduces the amount of unreacted starting material from 80% for C to
25% for D. The formation of phosphonate D-1 and phosphinate D-3 is
observed. This reveals a positive influence of the two phenyls towards
the lithiation behavior compared to C, where the formation of a
phosphinate has not been observed. At −70 °C compound D was
completely converted and the yields of D-1 and D-3 increased
Scheme 3. Anionic phospho-Fries rearrangement of diferrocenylphenyl phosphate C to
afford phosphonates C-1, C-2 and phosphinate C-3. (i) thf, LDA (4 equiv); C, Me2SO4. a)
Obtained by the reaction of 2 equiv of FcOLi with Cl2P(O)OPh in diethyl ether. b) Yield
based on C. c) 7 equiv of LDA were used.



Scheme 4. Anionic phospho-Fries rearrangement of ferrocenyldiphenyl phosphate D to
give phosphonates D-1 and D-2, phosphinate D-3 as well as phosphine oxide D-4. (i)
thf, LDA (8 equiv), D, 2 h, Me2SO4 (12 equiv). a) Obtained by the reaction of 0.5 equiv of
FcOLi with ClP(O)(OPh)2 in diethyl ether. b) Yield based on D.
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accordingly. Additionally, the formation of phosphinateD-2 is observed.
Phosphine oxide D-4 could be isolated at 0 °C in a yield of 25%
(Scheme 4).

Characterization and differentiation between the different families
of organophosphorus compounds is based on 13C{1H} and 31P{1H}
NMR spectroscopy. The 31P{1H} NMR downfield shift increases by re-
placing oxygens with carbon atoms [16,17]. Thus, phosphates (−15.3
(A) to −17.8 (B) ppm) and phosphonates (11.5 to 18.8 ppm) could
be distinguished, whereby the electron-rich phosphonates A-1 and C-
2 are shifted to lower field (D-1, 18.8 ppm; C-2, 18.3 ppm) as compared
with their phenyl derivatives (C-1b, 11.5 ppm to C-1a, 15.8 ppm). Addi-
tionally, in phosphinatesD-3b (26.1 ppm) –D-3a (44.1 ppm) and phos-
phine oxidesD-4b (38.2 ppm),D-4a (49.3 ppm)andB-3 (51.1 ppm) the
presence of an electron-donating hydroxyl groups increases the chemi-
cal shift as compared to theirmethoxy derivatives (Supporting informa-
tion). Further criteria are the decreasing 1JC,P coupling constants with
significant smaller values for P–CPhenyl (phosphonates B-1, C-1 and D-
1: 184–190 Hz; phosphinates B-2, C-3 and D-2,3: 134–147 Hz; oxides
B-3 and D-4b: 107 and 110 Hz) as compared to P–CFc (phosphonates
A-1 and C-2: 220 and 222 Hz; phosphinates A-2, C-3 and D-3: 162.5–
183.9 Hz; oxide D-4: 120 ppm).

In conclusion, the synthesis of a series of ferrocenyl/phenyl phos-
phates of type P(O)(OFc)n(OPh)3 – n (Fc = Fe(η5-C5H5) (η5-C5H4);
n = 0, 1, 2, 3) was investigated in anionic phospho-Fries rearrange-
ments [1]. Triferrocenyl phosphate (A, n = 3) undergoes step-wise re-
arrangements to the respective phospho- and phospinate. In contrary,
the product mixture derived from the triphenyl derivative B (n = 0)
solely depends on the reaction temperature. Furthermore, the investi-
gations of B reveal that the literature-stated reaction temperature of
−78 °C does not result in the formation of the respective phosphine
oxide B-3. Moreover, stirring at 0–25 °C is essential. Our investigations
provide a new straightforward access to mixed phosphonates and
phosphinates, derived from ferrocenyl/phenyl phosphates within one
reaction step by applying the anionic phospho-Fries rearrangement.
The number of rearrangements could be controlled by varying the reac-
tion temperature, revealing an increased reactivity for phenyl
substituents. Thus, adding PhOLi within the reaction of triferrocenyl
phosphate enables a second rearrangement.
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Appendix A. Supplementary material

Detailed experimental procedures, Tables SI1–4 and a CIF file giving
additional experimental and crystallographic data as well as spectro-
scopic details for all new compounds. This material is available free of
charge via the Internet at http://pubs.acs.org. Crystallographic data of
A-2 are also available from the Cambridge Crystallographic Database
as file number CCDC 1474108 (A-2). Supplementary data associated
with this article can be found in the online version, at http://dx.doi.
org/10.1016/j.inoche.2016.07.017.
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