

Tetrahedron Letters, Vol. 36, No. 43, pp. 7875-7876, 1995 Elsevier Science Ltd Printed in Great Britain 0040-4039/95 \$9.50+0.00

0040-4039(95)01647-3

Regio-Controlled Radical Substitution of 9-Substituted Purines.

Laurent Désaubry and Jean-Jacques Bourguignon*

Laboratoire de Pharmacochimie Moléculaire du CNRS, Centre de Neurochimie, 5, rue Blaise Pascal, 67084 Strasbourg, France

<u>Abstract</u>: 9-benzylpurine undergoes facile radical alkylation and acylation under standard Minisci's conditions affording regioselectively 6-substituted derivatives.

The introduction of various substituents at the 6-position of 9-alkylpurines have been mainly achieved previously via nucleophilic substitution reactions of the corresponding 6-chloropurines, or the more reactive 6-methylsulphonylpurines using stabilized carbanions¹⁻³. Moreover 6-alkynylpurines have been prepared by palladium-catalyzed coupling reactions of 6-chloropurines with alkynes,⁴ and 6-methylpurines by ring closure of 4,5-diamino 6- methylpyrimidines⁵.

We report here convenient homolytic alkylation and acylation reactions of 9-benzylpurine 1 using the Minisci's procedure⁶. The latter compound, prepared by catalytic hydrogenation of the corresponding 6-chloropurine, was submitted to radical subtitution. Alkyl radicals generated from alkyl iodide and t-BOOH as radical source⁷(method A) react with 1 yielding the mononadduct 2 with 43-61% yields. The formation of a diadduct was not observed.

The 6-ethyl derivative 2a has been prepared by an unambiguous method. For this purpose 6chloropurine has been cross-coupled with trimethylsilylacetylene according to Koyama et al.⁴, deprotected and catalytically hydrogenated. The obtained compound exhibits the same physical characteristics (¹H-NMR, ¹³C-NMR, m.p.), than those found for the compound prepared previously by radical substitution.

The 9-benzylpurine 1 reacts also with acyl radicals generated from the corresponding aldehyde⁸, using the NH₄S₂O₈- Fe²⁺ redox system (method B). The monoadducts 3 are obtained with 36-59 % yields⁹. Sodium borohydride reduction of **3a** afforded the awaited **2a**⁹.

a : R-I, tBuOOH, FeSO₄, H₂SO₄ / AcOH, H₂O, 10°C ; b : RCHO, (NH₄)₂S₂O₈, FeSO₄, H₂SO₄ / AcOH, H₂O, 10°C

Scheme 1

PRODUCT	R	method*	yield (%)
	_		10
2a	Et	A	43
2b	i-Pr	A	56
2c	c-Hex	Α	61
3a	Me	В	36
3ъ	Ph	В	51
3c	4-ClC6H4	В	59

*Method A: alkyl iodide, conc. H2SO4, t-BuOOH, FeSO4, H2O-AcOH, 10°C.

Method B: aldehyde, conc. H2SO4, (NH4)2S2O8, FeSO4, H2O-AcOH, 10°C.

Table 1: homolytic substitution of 9-benzyl purine

Three different modes of preparation of 6-ethyl-9-benzyl purine were described. Two of them involved regioselective radical substitution of 9-benzyl purine. The reaction occurs on the pyrimidine ring of the purine. When the 6-position of the pyrimidine nucleus is already substituted (adenines, hypoxanthines, inosines), it has been shown that radical alkylation affords a mixture of C-8 (as major isomer), and C-2 substituted derivatives.^{10,11}. Moreover, when compared to our results, similar regioselectivity has been earlier observed, when C-6 unsubstituted purines were submitted to photochemical reaction with alcohols¹¹⁻¹³ and amines.¹⁴

References

1. Robins, M.R.; Godefroi, E.F.; Taylor, E.C.; Lewis, L.R.; Jackson, A. J. Am. Chem. Soc. 1974, 96, 8095-8103.

2. Yamane, A.; Nomoto, Y.; Matsuda, A.; Ueda, T. Nucleic Acids Res., Spec. Publ. 1978, 5, 309-312.

3. Miyasaka, T.; Suemune, H.; Arakawa, K. Nucleic Acids Res., Spec. Publ. 1978, 5, 273-276.

4. Koyama, S.; Kumayawa,Z.; Kashiimura, N. Nucleic Acids Res., Symp. Ser. 1982, 11, 41-44.

5. Prasad, R.N.; Noell, C.W.; Robins R.K. J. Am. Chem. Soc., 1959, 81, 193-197.

6. Minisci, F.; Vismara, E.; Fontana, F. Heterocycles, 1989, 28, 489-519.

7. Fontana, F.; Minisci, F.; Nogueira Barbosa, M. C.; Vismara, E. Acta Chem. Scand. 1989, 43, 995-999.

8. Caronna, T.; Fronza, G.; Minisci, F.; Porta, O. J. Chem. Soc. Perkin Trans., 1972, 2035-2038.

9. 2a: mp 58-59°C. ¹H-NMR CDCl₃ δ(selected data) : 8.94 (s, 1H), 8.02 (s, 1H), 5.43 (s, 2H), 3.26 (q,

2H). ¹³C-NMR (CDCl₃) : 12.0, 25.9, 46.7, 127.4, 128.0, 128.6, 131.6, 134.9, 143.2; 150.3, 152.1, 163.3.

Anal. Calculated for C14H14N4 : C, 70.56; H, 5.92; N, 23.51. Found : C, 70.43; H, 5.77; N, 23.43.

10. Maeda, M.; Nusmi, K.; Kawazoe, Y. Tetrahedron 1974, 2667-2668.

11. Steinmaus, M.; Rosentmal, I.; Elad, D. J. Org. Chem. 1971, 36, 3594-3598.

12. Linschitz, H.; Connolly, J.S. J. Am. Chem. Soc. 1968, 90, 2979-2980.

13. Evans, B.; Wolfenden, R. J. Am. Chem. Soc. 1970, 92, 4751-4752.

14. Yang, N.C.; Gorelic, L.S.; Kim, B. Photochem. Photobiol. 1971, 13, 275-277.

(Received in France 24 April 1995; accepted 1 September 1995)