Design and Divergent Synthesis of Aza Nucleosides from a Chiral Imino Sugar

Saúl Martínez-Montero,^{†,§} Susana Fernández,[†] Yogesh S. Sanghvi,[‡] Jyoti Chattopadhyaya,[§] Muthupandian Ganesan,[¶] Namakkal G. Ramesh,[¶] Vicente Gotor,^{*,†} and Miguel Ferrero^{*,†}

[†]Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo (Asturias), Spain

[‡]Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States

[§]Program of Bioorganic Chemistry, Institute of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden

[¶]Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India

Supporting Information

ABSTRACT: Several novel nucleoside analogues as potential inhibitors of glycosidases and purine nucleoside phosphorylase (PNP) have been synthesized via selective coupling of an appropriate nucleobase at different positions of an orthogonally protected imino sugar as a common precursor. This synthetic strategy offers a straightforward protocol for the assembly of imino sugar containing nucleosides, establishing a new repertoire of molecules as potential therapeutics.

INTRODUCTION

The synthesis and development of glycosidase inhibitors have been the focus of attention, due to their vital role played by carbohydrates in a variety of biological processes. The glycosidases are responsible for catalyzing the cleavage of the glycosidic bonds in oligosaccharides and glycoconjugates. Thus, these enzymes are involved in a wide range of biochemical process such as intestinal digestion, post-translational processing of glycoproteins, and the lysosomal catabolism of glycoconjugates.¹ Consequently, compounds that are able to inhibit or modulate the activity of glycosidases have proven to be promising anticancer, antidiabetes, and antiviral agents.²

One of the most potent glycosidase inhibitors belongs to the class of imino sugars (or aza sugars), with a demonstrated ability to mimic the carbohydrates or their transition states during hydrolysis as the primary mechanism of their action.^{2a,3} As an example, Miglitol (1, Figure 1) is an FDA approved drug for the treatment of diabetes.^{2a} Yet another important class of

Figure 1. Structures of selected potent glycosidase inhibitors.

imino sugars are the polyhydroxypyrrolidines, which are known to interact with glycosidases and glycotransferases. Radicamine A (2) and B (3) are representative examples⁴ together with naturally occurring 3,4-dihydroxy-2,5-bis(hydroxymethyl)-pyrrolidine (DMDP, 4) and its corresponding analogues 5 and 6 exhibiting potent glycosidase inhibition.⁵

Additionally, the therapeutic potential of aza sugars has been further exploited by Schramm and co-workers in the design of purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1) inhibitors. PNP is a ubiquitous nucleoside processing enzyme essential for DNA and RNA synthesis and energy metabolism. It is involved in the reversible phosphorolysis of purine nucleosides to their respective bases and ribose(deoxyribose)- α -1-phosphate. Inhibition of PNP leads to an accumulation of 2'-deoxyguanosine triphosphate (dGTP) in T-cells that are not able to metabolize dGTP because of their low nucleotidase activity, causing high concentrations of this compound and ultimately leading to cellular apoptosis. Therefore, PNP is a key target for the control of T-cell proliferative disorders and consequently, for the treatment of leukemia and autoimmune related diseases.⁶

The seminal work by Schramm in understanding the transition state for the natural PNP-catalyzed hydrolysis of inosine has resulted in the rational design and synthesis of a series of PNP inhibitors.⁷ A variety of imino sugar containing nucleoside analogues have been identified to mimic the oxocarbenium ion character at the transition state. Some of

 Received:
 March 5, 2012

 Published:
 May 2, 2012

them have shown to exhibit high PNP inhibitory activity.⁸ In fact, two nucleoside analogues are currently in human clinical trials for the treatment of T- and B-cell cancers and other autoimmune disorders. These are first-generation Immucillin-H (7, Figure 2) and second-generation DADMe-immucillin-H (8) analogues. Use of an imino sugar and 9-deazapurine base was a central feature in the design of these two nucleoside analogues.

Figure 2. Structures of the two PNP inhibitors currently in clinical trials.

The overall biological importance of polyhydroxypyrrolidines has sparked significant efforts in their synthesis.⁹ As a result, further studies on the synthesis and biological evaluation of polyhydroxypyrrolidines and related compounds are of broad interest. Additionally, one of the key objectives of modern drug discovery is to increase the diversity and number of small molecules available for biological screening.¹⁰ Diversityoriented synthesis (DOS) is already playing a major role in medicinal chemistry. Although DOS is usually directed toward a single biological target, it can also be used to identify new ligands for different targets, usually enzymes. To achieve this goal, one approach involves generation of inhibitors of different enzymes from a common synthetic precursor.¹¹

Given the central role of the polyhydroxypyrrolidine moiety in the design of glycosidase, PNP type inhibitors and our ongoing efforts for discovering biologically active nucleosides,¹² we embarked on the synthesis of novel structures. The focus of this study is to use a common and versatile polyhydroxypyrrolidine precursor and introduce a suitable nitrogenated base at different positions of the imino sugar to generate potential enzyme inhibitors. Herein, we describe a practical synthetic strategy leading to a fast and efficient preparation of structurally diverse nucleoside analogues from a single imino sugar precursor.¹³

RESULTS AND DISCUSSION

An efficient synthesis of imino sugar 5 has been described by Kumar and Ramesh as a strong α -fucosidase inhibitor¹⁴ from commercially available tri-*O*-benzyl-D-glucal 9 (Scheme 1).¹⁵ The synthesis of 5 was accomplished in a few steps from the protected imino sugar 10. We noted that chiral imino sugar 10 is perfectly set up with three orthogonal protecting groups that could be cleaved or manipulated selectively to expose a single functionality at a time. Also, we were inspired by the fact that five-membered imino sugars have shown glycosidase inhibitory activity.¹⁶ Therefore, it was of interest to expand the study to construct nucleosides containing imino sugars. Herein, we describe the utility of 10 as an ideal starting material for building novel nucleoside analogues (Figure 3).

We envisioned synthesizing two types of nucleoside analogues starting from imino sugar 10. The first set of Clinked nucleosides was built via attachment of a natural adenine base to the C2 position of 10, resulting in compounds 15, 20,

^aReaction conditions: (a) ref 15; (b) $Na_2CO_3/MeOH$ (99%); (c) TsCl, pyridine, 50 °C (90%); (d) adenine, 18-crown-6, DMF, 90 °C (81%); (e) Mg/MeOH, reflux (90%); (f) concentrated HCl, reflux (82%).

Figure 3. Three classes of orthogonal protecting groups of imino sugar **10**.

and 25. In the second set of N-linked nucleosides, we utilized the unnatural 9-deazapurine base and connected it to the ring nitrogen to furnish compounds 28 and 31.

Synthesis of C-Linked Nucleosides. The synthesis of imino sugar containing nucleoside 15 was accomplished in five steps, starting with 10. First, selective hydrolysis of the acetyl group with Na₂CO₃ in MeOH furnished 11 in quantitative yield. The deprotection of N-Ts was not observed under the mild conditions used for the hydrolysis of an acetyl group. Second, the primary hydroxyl group in 11 was tosylated under standard conditions to furnish 12 in excellent yield. In the third step, glycosylation of protected 12 with adenine base¹⁷ afforded protected nucleoside 13 in good yield (ca. 81%) after silica gel chromatography. It is noteworthy that N9-substituted product was isolated as the major product upon glycosylation. The deprotection of 13 into 15 was achieved in a two-step process. First, detosylation with Mg/MeOH and then debenzylation with an acid offered unprotected nucleoside 15 in good yield (Scheme 1). The structure of nucleoside 15 was established by ¹H and ¹³C NMR data.

Wong et al. reported that the introduction of a methyl group into the N1 position of the imino sugars resulted in improved biological properties.^{16a,18} Therefore, we also became interested in developing a method to synthesize the N-methylated analogue of **15**. As shown in Scheme 2, the reaction of compound **10** with Mg in MeOH removed the tosyl group with concomitant cleavage of the acetyl protecting group to afford **16** in high yield (ca. 89%). Interestingly, when we tried the Ndetosylation of **10** using Mg turnings activated with iodine, we observed the formation of **17** in moderate yield (46%). We postulate that in situ iodine mediated oxidation of MeOH to formaldehyde may have contributed to the formation of bicyclic structure **17**.¹⁹

^aReaction conditions: (a) Mg/MeOH, reflux (89%); (b) HCHO, dioxane, AcOH, 60 °C (94%); (c) Mg/MeOH/I₂, room temperature (46%); (d) H₂/Pd/C, MeOH (68%); (e) MsCl, Py, room temperature; (f) adenine, 18-crown-6, K₂CO₃, DMF, 90 °C (36%, two steps); (g) concentrated HCl, reflux (81%).

However, the synthesis of 17 was unequivocally established by treatment of 16 with aqueous formaldehyde in the presence of acid, giving 94% of the desired product. Next, selective hydrogenolysis of the hemiaminal afforded N-methylated aza sugar 18 without cleaving the benzyl groups. Subsequent tosylation of 18 under conditions identical with those described for 11 furnished a mixture of products. The ¹H NMR spectra of the mixture failed to show the presence of the tosyl signals. Gratifyingly, mesylation of 18 followed by nucleophilic substitution by adenine yielded the fully protected compound 19. Debenzylation of 19 with concentrated HCl furnished Nmethylated nucleoside 20, and the structure was corroborated by ¹H and ¹³C NMR data. Moreover, the NOESY spectrum of 20 did not show correlations between H2 and H5, either between H3 and H4 hydrogen atoms, which is in agreement with a relative trans configuration, indicating retention of the stereochemistry of the aza sugar after several transformations.

The expeditious synthesis of nucleoside **15** and the C3hydroxyl group configuration suitable for an elimination followed by ring closure encouraged us to assemble locked nucleic acid structures that are key building blocks for antisense oligonucleotides as therapeutic agents.²⁰ Additionally, examples of natural and synthetic bicycle imino sugars with glycosidase inhibitory activity prompted us to undertake the synthesis of a locked aza nucleoside.^{95,21} Therefore, installation of a leaving group on the C3 hydroxyl group may allow ring closure onto the hydroxymethyl group, furnishing the novel bicyclic locked nucleoside analogue **25** (Scheme 3).

The synthesis of nucleoside **25** was accomplished in five steps starting with **13**. First, acid treatment of **13** successfully cleaved the three benzyl groups simultaneously to furnish **21** in good yield. The resulting 1,3-diol system in **21** was selectively protected with 2,2-dimethoxypropane to afford ketal **22** in almost quantitative yield. Next, the hydroxyl group in **22** was transformed into triflate by treatment with TfCl in the presence of DMAP, furnishing **23** in a modest 53% yield. We were pleased to note that the treatment of **23** with a TFA-CH₂Cl₂ mixture not only deblocked the acetal but also triggered an in situ cyclization, resulting in the formation of bicyclic homoaza nucleoside **24** in excellent yield. Removal of the tosyl group from **24** following the same protocol as before yielded the final compound **25**. To the best of our knowledge, this is the first

Scheme 3. Synthesis of Bicyclic Locked Nucleoside 25^a

Article

"Reaction conditions: (a) concentrated HCl, reflux (66%); (b) $CH_2 = C(OMe)CH_3$, THF, DMF, *p*-TSOH, room temperature (98%); (c) TfCl, DMAP, Py, room temperature (53%); (d) TFA, CH_2Cl_2 , room temperature (91%); (e) Mg/MeOH, reflux (79%).

example of a locked bicyclic homoaza nucleoside synthesized in a straightforward manner.

The structures of 24 and 25 were confirmed by extensive analysis of 1D and 2D NMR spectroscopy. After cyclization, HMBC spectra of compound 24 clearly showed a three-bond correlation between C3 and CH_2O hydrogen atoms of the new five-membered ring together with other expected cross-peaks. The structure was further confirmed on the basis of the NOESY spectrum of the final compound 25, which showed a correlation between H3 and H4 hydrogen atoms, supporting the change in the previous trans relative configuration between them. These data supported the inversion at the C3 position (Figure 4).

Synthesis of N-Linked Nucleosides. The first and second generations of PNP inhibitors containing an imino sugar moiety have already demonstrated their potential in the design of drug molecules, where Immucillin-H was granted orphan drug status in the United States for the treatment of various leukemia. Subsequently, Schramm and co-workers described a new class of inhibitors (8, Figure 2) for PNP in which the 9-deazapurine moiety is directly attached to the N atom of the aza sugar via a methylene bridge.²² Currently, DADMe-Immunillin-H is under phase II clinical development for the treatment of gout. The promising PNP inhibitory activity of N-linked nucleosides prompted us to undertake the synthesis of the two aza sugar nucleoside analogues **28** and **31** (Schemes 4 and 5, respectively).

Orthogonally protected aza sugar **10** also serves as an attractive starting material for the synthesis of proposed PNP inhibitors, increasing the molecular diversity that can be created from a single imino sugar structure. The aza sugar **10** was conveniently transformed into **16** (Scheme 2) with the unprotected imino group ready for coupling with the base. Schramm et al. have utilized the Mannich reaction for the assembly of immucillin analogues starting with imino sugars.²³ Surprisingly, the reaction of **16**, 9-deazapurine, and form-

Scheme 4. Synthesis of N-Linked Nucleoside 28

Scheme 5. Synthesis of Fluoro Aza Sugar Nucleoside 31^a

"Reaction conditions: (a) DAST, CH_2Cl_2 , 0 °C; (b) Mg/MeOH, reflux (56%, two steps); (c) **26**, MeOH/THF, 40 °C, NaBH₃CN (85%); (d) concentrated HCl, reflux (84%)

aldehyde under Mannich conditions led to the formation of the bicycle 17 (Scheme 2) as a major product instead of the desired nucleoside. We believe that the iminium intermediate formed after the reaction of 16 with formaldehyde underwent concomitant intramolecular attack of the free hydroxyl group to furnish 17. Therefore, an alternative approach was conceived, starting with the previously reported 9-deazapurine 26^{8g} prefunctionalized with an aldehyde group that will be easier to link with imino sugar 16 using reductive amination conditions. As expected, the coupling of 16 with aldehyde 26 in the presence of NaBH₃CN furnished the desired nucleoside 27 in 84% isolated yield after chromatography (Scheme 4).

Next, the treatment of 27 with acid cleanly removed all five protecting groups in 2.5 h under reflux to furnish the N-linked nucleoside 28 as a hydrochloride salt. The structure of 28 was established by extensive NMR and MS data. ¹H NMR spectrum of compound 28 shows only half of the expected signals, confirming the C_2 axis of symmetry that was further supported by NOESY experiments. It is striking to note that the synthesis of a complex nucleoside such as 28 was accomplished in three simple steps starting with 10 in high yield.

In recent years, use of the fluorine atom has proven to be an indispensable tool for drug discovery efforts.²⁴ For this reason, Schramm et al. have described the synthesis and biological evaluation of an inhibitor of human PNP where one of the hydroxyl groups of the pyrrolidine moiety has been replaced by a fluorine atom.²⁵ In a similar way, we wished to synthesize the fluoro nucleoside **31** as a structural analogue of nucleoside **28**, expanding the repertoire of aza nucleosides accessible for drug discovery efforts. The prior success of the synthesis of **28** prompted us to install the fluorine substituent first and then carry out the coupling with the formyl-functionalized **26**. Therefore, treatment of **11** with DAST at a low temperature followed by N-detosylation of the crude product furnished **29** in moderate yield (ca. 55%) over two steps (Scheme 5).

Fluoro aza sugar 29 was then reductively alkylated with aldehyde 26 in the presence of NaBH₃CN in a MeOH/THF

mixture to afford the protected product 30 in excellent yield. Next, the acid-mediated deprotection of 30 gave the fluoro nucleoside 31 in 84% yield, isolated as the hydrochloride salt.

CONCLUSIONS

In summary, we have synthesized a series of five nucleoside analogues using divergent and high-yielding protocols. We started from the common chiral imino sugar 10 by selective removal of the protecting groups followed by glycosylation with appropriate bases. The homoaza nucleoside 15 and its bicyclic analogue 25 were assembled by starting from 10, where the Oacetyl group was deblocked selectively. A serendipitous reaction led to the formation of the bicyclic structure 17, which was further transformed into the N-methyl derivative 20. On the other hand, concomitant deprotection of N-tosylate and Oacetyl groups from 10 offered a short synthesis of potential PNP inhibitors 28 and its fluorine analogue 31 via reductive amination. This study illustrates the successful utility and applications of the easily accessible aza sugar 10 for the preparation of novel N- and C-linked nucleoside analogues with potential for interesting biological activity. Clearly, aza sugar 10 is a desirable scaffold containing orthogonal protecting groups that will enable the discovery of divergent reaction pathways and synthesis of structurally diverse compounds needed for modern day drug discovery and synthetic organic chemistry applications. Full exploitation of this unique class of nucleosides as potential therapeutics and their biological screening is currently in progress.

EXPERIMENTAL SECTION

General Considerations. All reagents were the highest commercial quality and were used without further purification. All nonaqueous reactions were carried out under anhydrous conditions in dry, freshly distilled solvents. Reactions were monitored by TLC carried out using UV light as visualizing agent and/or acidic aqueous permanganate or 7% ethanolic phosphomolybdic acid. Flash chromatography was performed using silica gel 60 (230-400 mesh). ¹H, ¹³C NMR, and DEPT were obtained using 300.13, 400.13, and 600.13 MHz instruments for ¹H and 75.5, 90.61, and 150.90 MHz for ¹³C. The same spectrometers were used for the acquisition of ¹H–¹H homonuclear (COSY and NOESY) and ¹H-¹³C heteronuclear (HSQC and HMBC) correlations. Optical rotations were recorded on a polarimeter, and values are reported as follows: $[\alpha]_{\lambda}^{T}$ (c (g/100 mL), solvent). High-resolution mass spectra (HRMS) were recorded on a mass spectrometer under electron spray ionization (ESI) conditions.

Procedures and Experimental Data. (25,3R,4R,5R)-3,4-Bis-(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)-N-(ptoluenesulfonamido)pyrrolidine (11). A suspension of 10 (400 mg, 0.635 mmol) and Na₂CO₃ (508 mg, 4.8 mmol) in MeOH (8 mL) was stirred at reflux for 1.5 h. After completion of the reaction, the mixture was filtered over Celite and washed with MeOH and CH₂Cl₂. Solvents were evaporated to give 11¹⁵ as a colorless viscous liquid (372 mg, 99%) without purification.

(2S,3R,4R,5S)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-[(4methylphenyl)sulfonyl]oxy-N-(p-toluenesulfonamido)pyrrolidine (12). A solution of 11 (373 mg, 0.635 mmol) and p-TsCl (607 mg, 3.2 mmol) in dry pyridine (6.5 mL) was stirred overnight at 50 °C. Pyridine was evaporated under high vacuum, and the resulting residue was subjected to flash chromatography (20% EtOAc/hexane) to yield 12 (424 mg, 90%) as a colorless viscous liquid. $R_{\rm f}$ (50% EtOAc/ hexanes): 0.69. IR (KBr): ν 3.063, 3034, 2924, 2871, 1736, 1598, 1496 cm⁻¹. [α]_D²⁰ = -14° (*c* 0.5, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 2.34, (s, 3H), 2.38 (s, 3H), 3.58 (d, 1H, J_{HH} 10.0 Hz), 3.80 (dd, 1H, J_{HH} 10.0 Hz, J_{HH} 3.1 Hz), 3.98 (m, 2H), 4.23 (m, 5H), 4.63 (m, 6H), 7.03 (m, 2H), 7.24 (m, 16H), 7.70 (d, 2H, J_{HH} 8.4 Hz), 7.77 (d, 2H, J_{HH} 6.9 Hz). ¹³C NMR (CDCl₃, 75.5 MHz): δ 21.3, 21.4, 56.9, 58.2, 65.8, 67.2, 72.5, 73.0, 73.3, 80.0, 80.2, 126.8–129.4 (23 C), 132.8, 137.2, 137.8, 138.0, 138.2, 143.4, 144.6. MS (ESI⁺, m/z) 742 [(M + H)⁺ 10%], 764 [(M + Na)⁺ 60%]. HRMS (ESI⁺): calcd for C₄₁H₄₃NNaO₈S₂ [M + Na]⁺ 764.2322, found 764.2299.

(2S,3R,4R,5S)-2-(9-Adeninylmethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-N-(p-toluenesulfonamido)pyrrolidine (13). A mixture of compound 12 (300 mg, 0.426 mmol), adenine (86 mg, 0.639 mmol), K₂CO₃ (118 mg, 0.852 mmol), and 18-crown-6 (168 mg, 0.639 mmol) in DMF (4.3 mL) was heated to 90 °C overnight. DMF was evaporated under vacuum, and flash column chromatography (2% MeOH/CH₂Cl₂) of the residue gave pure 13 (239 mg, 81%) as a white foam. R_f (10% MeOH/90% CH₂Cl₂): 0.48. $[\alpha]_D^{20} = +20^\circ$ (c 0.5, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz), 2.32 (s, 3H), 3.57 (d, 1H, J_{HH} 9.0 Hz), 3.97-4.17 (m, 4H), 4.25-4.70 (m, 7H), 4.96 (dd, 1H, J_{HH} 2.2 Hz, J_{HH} 13.8 Hz), 6.26 (br s, 2H), 6.88 (m, 2H), 6.90-7.32 (m, 16H), 7.93 (d, 2H, $J_{\rm HH}$ 9.0 Hz), 7.97 (s, 1H), 8.39 (s, 1H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 21.5, 44.3, 57.2, 59.0, 65.3, 72.6, 73.2, 80.1, 80.5, 119.3, 126.8-129.4 (20C), 136.9, 137.3, 137.5, 137.8, 142.1, 143.4, 150.5, 152.7, 155.6. MS (ESI⁺, m/z): 705 [(M + H)⁺ 100%]; 727 [(M + Na)⁺ 50%]. HRMS (ESI⁺): calcd for $C_{39}H_{41}N_6O_5S$ $[M + H]^+$ 705.2854, found 705.2809.

(25, 3*R*, 4*R*, 55)-2-(9-Adeninylmethyl)-3, 4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (14). Mg (turnings) was added (68 mg, 2.8 mmol) to a solution of compound 13 (200 mg, 0.28 mmol) in dry MeOH (2.8 mL), and the mixture was refluxed for 2 h. MeOH was evaporated, and purification by flash chromatography (10% MeOH/90% CH₂Cl₂) afforded 14 (141 mg, 90%) as a white foam. $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.32. $[\alpha]_{\rm D}^{20}$ = +19° (*c* 0.5, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 2.33 (br s, 1H), 3.53 (dd, 1H, ³J_{HH} 9.0 Hz, ³J_{HH} 9.0 Hz), 3.61 (dd, 1H, J_{HH} 6.4 Hz, J_{HH} 9.2 Hz), 3.69 (q, 1H, J_{HH} 6.4 Hz), 3.94 (m, 1H), 4.00 (m, 1H), 4.04 (m, 1H), 4.18 (dd, 1H, J_{HH} 8.0 Hz, J_{HH} 14.0 Hz), 4.21–4.59 (m, 7H), 5.86 (br s, 2H), 7.22–7.39 (m, 15H), 7.81 (s, 1H), 8.33 (s, 1H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 45.1, 58.0, 59.0, 68.8, 72.3, 73.4, 82.1, 82.2, 84.0, 127.5–128.5 (15 C), 138.0, 137.9, 138.1, 141.8, 150.1, 152.7, 156.4. HRMS (ESI⁺): calcd for C₃₂H₃₅N₆O₃ [M + H]⁺ 551.2765, found 551.2802.

(2S, 3R, 4R, 5S)-2-(9-Adeninylmethyl)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidine (15). A mixture of 14 (100 mg, 0.18 mmol) and concentrated aqueous HCl (38%; 1.8 mL) was refluxed for 2 h. Water was evaporated, and aqueous NH₃ (32%; 1 mL) was added to the residue. After the aqueous phase was evaporated, the resulting solid was purified by column chromatography (CH₂Cl₂/MeOH/ NH₄OH, 88/10/2) to afford 15 (41 mg, 82%) as a white solid. $R_{\rm f}$ $(CH_2Cl_2/MeOH/NH_4OH, 6:3:1): 0.32. [a]_D^{20} = -21^\circ (c \ 0.5, c)$ MeOH). ¹H NMR (D₂O, 400.13 MHz): δ 3.80 (dd, 1H, ³J_{HH} 8.8 Hz, ${}^{3}J_{HH}$ 12.4 Hz), 3.93 (dd, 1H, ${}^{3}J_{HH}$ 4.4 Hz, ${}^{3}J_{HH}$ 12.0 Hz), 4.07 (q, 1H, J_{HH} 4.4 Hz), 4.25 (dd, 1H, J_{HH} 1.6 Hz, J_{HH} 3.2 Hz), 4.31 (m, 1H), 4.36 (dd, 1H, $J_{\rm HH}$ 1.6 Hz, $J_{\rm HH}$ 4.0 Hz), 4.62 (dd, 1H, $J_{\rm HH}$ 7.6 Hz, $J_{\rm HH}$ 15.2 Hz), 4.70 (dd, 1H, $J_{\rm HH}$ 6.5 Hz, $J_{\rm HH}$ 15.2 Hz), 8.18 (s, 2H). ¹³C NMR (D₂O, 100.6 MHz): δ 40.7, 57.5, 60.3, 63.9, 74.3, 74.6, 118.4, 142.3, 150.0, 152.3, 155.3. MS (ESI⁺, m/z): 281 [(M + H)⁺ 100%], 303 [(M + Na)⁺ 80%]. HRMS (ESI⁺): calcd for $C_{11}H_{17}N_6O_3$ [M + H]⁺ 281.1357, found 281.1378.

(25,3R,4R,55)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)pyrrolidine (16). Mg (turnings) was added (115 mg, 4.8 mmol) to a solution of compound 10 (600 mg, 0.96 mmol) in dry MeOH (4.8 mL), and the mixture was refluxed for 2 h. MeOH was evaporated, and purification by flash chromatography (10% MeOH/ CH₂Cl₂) afforded 16¹⁵ (367 mg, 89%) as a colorless gummy liquid.

(85,6R,7R,55)-(8-Benzyloxymethyl)-6,7-bis(benzyloxy)-3-oxa-1azabicyclo[3.3.0]octane (17). A solution of 16 (280 mg, 0.65 mmol), 37% aqueous formaldehyde (146 μ L, 1.95 mmol), and acetic acid (186 μ L, 3.25 mmol) in dioxane (6.5 mL) was stirred at 60 °C for 30 min. After it was cooled, the solution was concentrated under vacuum and the residue purified by flash column chromatography (50% EtOAc/ hexane) to give 17 (270 mg, 94%) as a colorless viscous oil. R_f (30% EtOAc/hexanes): 0.16. $[\alpha]_D^{20} = +8^\circ$ (c 0.8, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 3.31 (q, 1H, J_{HH} 6.3 Hz), 3.48 (t, 1H, J_{HH} 8.3 Hz), 3.62 (dd, 1H, J_{HH} 6.6 Hz, J_{HH} 9.1 Hz), 3.82 (dd, 1H, J_{HH} 6.0 Hz, $J_{\rm HH}$ 9.3 Hz), 3.90 (q, 1H, $J_{\rm HH}$ 4.4 Hz), 4.09 (m, 2H), 4.20 (m, 2H), 4.45 (d, 1H, $J_{\rm HH}$ 12.0 Hz), 4.69–4.52 (m, 6 H), 7.29–7.43 (m, 15H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 65.0, 65.5, 65.7, 71.1, 72.9, 73.1, 74.1, 81.9, 83.4, 87.5, 128.2–129.2 (15C), 138.5, 138.7, 139.1. MS (ESI⁺, m/z): 446 [(M + H)⁺ 100%]. HRMS (ESI⁺): calcd for C₂₈H₃₂NO₄ [M + H]⁺ 446.2326, found 446.2350.

(2S,3R,4R,5S)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)-N-methylpyrrolidine (18). To compound 17 (220 mg, 0.49 mmol) in MeOH (3 mL) was added 10% Pd-90% C (70 mg), and the mixture was stirred at room temperature under an atmosphere of hydrogen overnight. The solution was filtered through Celite and the filtrate concentrated in vacuo. The resulting residue was purified by chromatography (60% EtOAc/40% hexane) to afford 18 (150 mg, 68%) as a colorless viscous oil. R_f (5% MeOH/CH₂Cl₂): 0.44. $[\alpha]_D$ = -56° (c 0.8, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 2.51 (s, 3H), 2.75 (br s, 1H), 3.15 (m, 1H), 3.46 (m, 1H), 3.58 (dd, 1H, J_{HH} 3.0 Hz, J_{HH} 9.9 Hz), 3.72 (m, 3H), 4.25 (t, 1H, J_{HH} 6.9 Hz), 4.42-4.66 (m, 6H), 4.78 (d, 1H, $J_{\rm HH}$ 11.7 Hz), 7.20–7.45 (m, 15H). $^{13}{\rm C}$ NMR $(CDCl_3, 75.5 \text{ MHz}): \delta$ 35.8, 59.7, 62.1, 64.8, 66.3, 72.7, 72.9, 73.5, 84.0, 84.7, 127.4–128.5 (15C), 138.1, 138.3, 138.5. MS (ESI⁺, m/z): 448 [(M + H)⁺ 100%]. HRMS (ESI⁺): calcd for $C_{28}H_{34}NO_4$ [M + H]⁺ 448.2482, found 448.2492.

(2S,3R,4R,5S)-2-(9-Adeninylmethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-N-methylpyrrolidine (19). To a solution of compound 18 (130 mg, 0.29 mmol) in CH₂Cl₂ (3.6 mL) was added pyridine (88 μ L, 1.1 mmol) and MsCl (79 μ L, 1.0 mmol). The mixture was stirred at 0 °C for 20 min. The solvent was removed under vacuum. Without purification, the residue was dissolved in DMF (3 mL). Adenine (58 mg, 0.435 mmol), K₂CO₃ (80 mg, 0.58 mmol), and 18-crown-6 (115 mg, 0.435 mmol) were added to the solution, and the mixture was stirred at 90 °C for 2.5 h. After the solvent was evaporated under high vacuum, the residue was purified by flash column chromatography (2% MeOH, CH₂Cl₂) to give **20** (60 mg, 81%) as a white foam. $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.38. $[\alpha]_{\rm D}^{20} = -7^{\circ}$ (c 1.0, CH₂Cl₂). ¹H NMR (CDCl₃, 400.13 MHz): δ 2.41 (s, 3H), 3.35 (br s, 1H), 3.53 (m, 2H), 3.68 (dd, 1H, J_{HH} 2.8 Hz, J_{HH} 10.0 Hz), 4.11 (t, 1H, J_{HH} 6.0 Hz), 4.22 (dd, 1H, J_{HH} 4.0 Hz, J_{HH} 14.0 Hz), 4.34 (m, 2H), 4.50 (m, 5H), 4.71 (d, 1H, J_{HH} 11.6 Hz), 6.16 (s, 2H), 7.32 (m, 15H), 7.85 (s, 1H), 8.35 (s, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 36.5, 42.9, 62.0, 63.5, 66.0, 72.7, 72.8, 73.4, 82.1, 84.0, 119.3, 127.5-128.5 (15 C), 137.9, 138.0, 138.3, 142.1, 150.5, 152.7, 155.1. MS (ESI⁺, m/z): 565 [(M + H)⁺ 100%]; 587 [(M + Na)⁺ 10%]. HRMS (ESI⁺): calcd for $C_{33}H_{37}N_6O_3$ [M + H]⁺ 565.2922, found 565.2928.

(2S,3R,4R,5S)-2-(9-Adeninylmethyl)-3,4-dihydroxy-5-(hydroxymethyl)-N-methylpyrrolidine (20). A mixture of 19 (60 mg, 0.11 mmol) and concentrated aqueous HCl (38%, 1.8 mL) was refluxed for 2 h. Water was evaporated, and aqueous NH₃ (32%, 1 mL) was added to the residue. After the aqueous phase was evaporated, the resulting solid was purified by column chromatography (CH₂Cl₂/MeOH/ NH₄OH, 88/10/2) to afford 15 (25 mg, 81%) as a white solid. R_f $(CH_2Cl_2/MeOH/NH_4OH, 7.5:2:0.5): 0.24. [\alpha]_D^{20} = +9^\circ (c \ 0.5, c)$ MeOH). ¹H NMR (MeOH-*d*₄, 300.13 MHz): δ 2.55 (s, 3H), 3.26 (q, 1H, H-5, J_{HH} 2.8 Hz), 3.55 (q, 1H, H-2, J_{HH} 5.1 Hz), 3.80 (dd, 1H, CH₂O, *J*_{HH} 5.1 Hz, *J*_{HH} 11.7 Hz), 3.87 (dd, 1H, CH₂O, *J*_{HH} 4.8 Hz, *J*_{HH} 12.0 Hz), 4.10 (m, 2H, H-3 + H-4), 4.39 (dd, 1H, CH₂N, J_{HH} 5.1 Hz, $J_{\rm HH}$ 14.0 Hz), 4.47 (dd, 1H, CH_2N, $J_{\rm HH}$ 7.8 Hz, $J_{\rm HH}$ 15.0 Hz), 8.21 (s, 1H, H-2 or H-8), 8.22 (s, 1H, H-8 or H-2). ¹³C NMR (MeOH-d₄, 75.5 MHz): δ 36.2 (CH₃), 41.4 (CH₂N), 57.6 (CH₂O), 65.8 (C-5 + C-2), 75.6 (C-3), 76.8 (C-4B), 118.5 (C-5B), 142.3 (C-8B), 149.4 (C-4B), 152.1 (C-2B), 155.9 (C-6B). MS (ESI⁺, m/z): 295 [(M + H)⁺ 60%], 317 [(M + Na)⁺ 20%]. HRMS (ESI⁺): calcd for $C_{12}H_{19}N_6O_3$ [M + H]⁺ 295.1513, found 295.1511.

(25,3R,4R,55)-2-(9-Adeninylmethyl)-3,4-dihydroxy-5-(hydroxymethyl)-N-(p-toluenesulfonamido)pyrrolidine (21). Compound 13 (220 mg, 0.31 mmol) was refluxed in concentrated aqueous HCl (38%, 2.0 mL) for 2 h. Water was evaporated, and aqueous NH₃ (32%, 1 mL) was added to the residue. After the aqueous phase was evaporated, the resulting solid was purified by column chromatography (10% MeOH/90% CH₂Cl₂) to give **21** (89 mg, 66%) as a white solid. $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.39. ¹H NMR (DMSO-d₆, 300.13 MHz):

The Journal of Organic Chemistry

δ 2.38 (s, 3H), 3.17 (m, 1H), 3.60 (br s, 1H), 3.78 (m, 3H), 4.16 (m, 1H), 4.30 (br s, 1H), 4.45 (dd, 1H, $J_{\rm HH}$ 9.6 Hz, $J_{\rm HH}$ 13.4 Hz), 4.85 (dd, 1H, $J_{\rm HH}$ 2.9 Hz, $J_{\rm HH}$ 13.3 Hz), 5.16 (br s, 1H), 5.68 (br s, 1H), 7.23 (br s, 2H), 7.36 (d, 2H, $J_{\rm HH}$ 8.1 Hz), 7.90 (d, 2H, $J_{\rm HH}$ 8.1 Hz), 8.01 (s, 1H), 8.22 (s, 1H). ¹³C NMR (DMSO- d_6 , 75.5 MHz): δ 20.9, 42.3, 56.7, 59.9, 63.9, 72.8, 73.1, 118.5, 127.2 (2C), 129.4 (2C), 137.5, 141.8, 142.8, 149.6, 152.4, 155.9. MS (ESI⁺, m/z): 435 [(M + H)⁺ 100%], 457 [(M + Na)⁺ 10%]. HRMS (ESI⁺): calcd for C₁₈H₂₃N₆O₅S [M + H]⁺ 435.1445, found 435.1452.

(4aS,6S,7R,7aR)-6-((6-Amino-9H-purin-9-yl)methyl)-2,2-dimethyl-5-tosylhexahydro[1,3]dioxino[5,4-b]pyrrol-7-ol (22). To a solution of 21 (89 mg, 0.205 mmol) in anhydrous THF (4.0 mL) and DMF (0.4 mL) were added 2-methoxypropene (57 μ L, 0.60 mmol) and p-TsOH (0.41 mmol, 72 mg) under a nitrogen atmosphere. The solution was stirred at room temperature. After 30 min, additional 2methoxypropene (97 μ L, 1.02 mmol) was added and the solution was allowed to react for an additional 30 min. Solvents were evaporated under vacuum, and the residue was purified by flash chromatography (2% MeOH/CH₂Cl₂) to afford pure 22 (95 mg, 98%). R_f (10% MeOH/CH₂Cl₂): 0.56. $[\alpha]_D^{20} = -15^{\circ}$ (c 0.5, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 1.09 (s, 3H), 1.31 (s, 3H), 2.39 (s, 3H), 3.68 (s, 1H), 4.02 (tt, 1H, J_{HH} 3.9, J_{HH} 11.2), 4.13–4.30 (m, 4H), 4.47 (dd, 1H, J_{HH} 11.2 Hz, J_{HH} 13.6 Hz), 5.09 (dd, 1H, J_{HH} 1.5 Hz, J_{HH} 14.0 Hz), 6.53 (br s, 2H), 6.93 (br s, 1H), 7.30 (d, 2H, $J_{\rm HH}$ 7.9 Hz), 7.82 (d, 2H, $J_{\rm HH}$ 7.9 Hz), 8.00 (s, 1H), 8.25 (s, 1H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 20.7, 21.4, 25.9, 41.1, 59.9, 60.0, 64.5, 73.0, 73.5, 98.4, 119.5, 127.0 (2C), 130.0 (2C), 138.7, 141.2, 143.7, 149.3, 152.5, 156.1. MS (ESI⁺, m/z): 475 [(M + H)⁺ 100%], 497 [(M + Na)⁺ 25%]. HRMS (ESI⁺): calcd for $C_{21}H_{27}N_6O_5S$ [M + H]⁺ 475.1758, found 475.1782

(4aS,6S,7R,7aR)-6-((6-Amino-9H-purin-9-yl)methyl)-2,2-dimethyl-5-tosylhexahydro[1,3]dioxino[5,4-b]pyrrol-7-yl Trifluoromethanesulfonate (23). Protected compound 22 (95 mg, 0.20 mmol) was dissolved in dry CH₂Cl₂, and DMAP (73 mg, 0.6 mmol) and TfCl (32 μ L, 0.24 mmol) were added. The solution was stirred for 2.5 h at 0 °C. Solvent was concentrated, and the residue was subjected to flash chromatography (1% MeOH/99% CH₂Cl₂) to give 23 (64 mg, 53%). $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.53. $[\alpha]_{\rm D}^{20} = +41^{\circ}$ (c 0.48, CH₂Cl₂). ¹H NMR (CDCl₃, 400.13 MHz): δ 1.16 (s, 3H), 1.37 (s, 3H), 2.38 (s, 3H), 4.07 (dd, 1H, J_{HH} 4.4 Hz, J_{HH} 12.8 Hz), 4.17 (q, 1H, J_{HH} 4.4 Hz), 4.26 (dd, 1H, J_{HH} 4.8 Hz, J_{HH} 12.8 Hz), 4.45 (m, 2H), 5.12 (m, 3H), 5.95 (br s, 2H), 7.21 (d, 2H, $J_{\rm HH}$ 8.0 Hz), 7.70 (d, 2H, $J_{\rm HH}$ 8.0 Hz), 7.87 (s, 1H), 8.28 (s, 1H). ¹³C NMR (CDCl₃, 100.6 MHz): δ 20.9, 21.4, 26.6, 42.1, 57.3, 59.2, 60.0, 70.8, 87.3, 99.4, 119.4, 126.6 (2C), 129.6 (2C), 136.9, 141.1, 143.9, 150.2, 152.9, 155.5. MS (ESI⁺, m/z): 607 [$(M + H)^+$ 100%], 629 [$(M + Na)^+$ 20%]. HRMS (ESI⁺): calcd for $C_{22}H_{26}F_3N_6O_7S_2 [M + H]^+$ 607.1251, found 607.1277.

(2S,3S,4R,5S)-2-(9-AdenyImethyI)-(3-O,5-C-methylene)-N-(ptoluenesulfonamido)pyrrolidine (24). A solution of compound 23 (64 mg, 0.106 mmol) in a 1:1 mixture of TFA and CH₂Cl₂ (3 mL) was stirred at room temperature for 1 h. After the solvents were evaporated, the resulting residue was purified by chromatography (5% MeOH/95% CH₂Cl₂) to afford 24 as a white solid (40 mg, 91%). $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.39. $[\alpha]_{\rm D}^{20}$ = +89° (c 0.52, MeOH). ¹H NMR (DMSO-d₆, 400.13 MHz): δ 2.41 (s, 3H, CH₃), 3.28 (d, 1H, CH₂O, J_{HH} 8.4 Hz), 3.59 (d, 1H, CH₂O, J_{HH} 8.0 Hz), 3.78 (dd, 1H, H-2, J_{HH} 3.6 Hz, J_{HH} 8.4 Hz), 3.87 (s, 1H, H-5), 3.97 (s, 1H, H-4), 3.99 (s, 1H, H-3), 4.33 (dd, 1H, CH₂N, J_{HH} 8.8 Hz, J_{HH} 14.4 Hz), 4.48 (dd, 1H, CH₂N, $J_{\rm HH}$ 3.4 Hz, $J_{\rm HH}$ 14.5 Hz), 5.67 (br s, 1H, OH), 7.30 (s, 2H, NH₂), 7.47 (d, 2H, Ts-m, J_{HH} 8.1 Hz), 7.91 (d, 2H, Ts-o, J_{HH} 8.2 Hz), 8.09 (s, 1H, H-8), 8.24 (s, 1H, H-2). ¹³C NMR (DMSO-*d*₆, 100.6 MHz): δ 21.5 (CH₃, Ts), 44.6 (CH₂N), 62.3 (C-3), 65.3 (C-2), 67.6 (CH₂O), 71.1 (C-4), 79.5 (C-5), 119.1 (C-5B), 128.1 (Ts-m), 144.1 (Ts-o), 136.1 (Ts), 141.3 (C-8B), 144.7 (Ts), 150.1 (C-4B), 153.3 (C-2B), 156.5 (C-6B); MS (ESI⁺, m/z): 417 [(M + H)⁺ 100%], 439 $[(M + Na)^+ 60\%]$. HRMS (ESI⁺): calcd for $C_{18}H_{21}N_6O_4S [M + H]^+$ 417.1340, found 417.1349.

(25,35,4R,55)-2-(9-Adenylmethyl)-(3-O,5-C-methylene)pyrrolidine (25). A mixture of compound 24 (40 mg, 0.096 mmol) and Mg (turnings) was refluxed in dry MeOH (2 mL) for 2 h. MeOH was evaporated, and purification by flash chromatography (10% MeOH/ 90% CH₂Cl₂) afforded **25** (19 mg, 79%) as a white solid. $R_{\rm f}$ (10% MeOH/CH₂Cl₂): 0.16. $[\alpha]_{\rm D}^{20} = -85^{\circ}$ (*c* 0.5, MeOH). ¹H NMR (D₂O, 600.13 MHz): δ 3.38 (s, 1H, H-5), 3.52 (t, 1H, H-2, J_{HH} 8.2 Hz), 3.76 (d, 1H, CH₂O, J_{HH} 8.4 Hz), 3.98 (m, 2H, CH₂O + CH₂N), 4.03 (s, 1H, H-3), 4.10 (dd, 1H, CH₂N, J_{HH} 7.4 Hz, J_{HH} 12.6 Hz), 4.28 (s, 1H, H-4), 7.98 (s, 1H, H-8), 8.04 (s, 1H, H-2). ¹³C NMR (D₂O, 100.6 MHz): 46.0 (CH₂N), 55.7 (C-5), 60.5 (C2), 71.2 (C4), 71.9 (CH₂O), 78.8 (C-3), 118.0 (C-5B), 141.9 (C-8B), 148.6 (C-4B), 152.4 (C-2B), 155.2 (C-6B). MS (ESI⁺, *m/z*): 263 [(M + H)⁺ 100%], 285 [(M + Na)⁺ 25%]. HRMS (ESI⁺): calcd for C₁₁H₁₅N₆O₂ [M + H]⁺ 263.1251, found 263.1244.

(2S,3R,4R,5S)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(hydroxymethyl)-N-(7-(benzyloxymethyl)-6-methoxy-9-deazapurin-9-yl)methylpyrrolidine (27). Imino sugar 16 (90 mg, 0.21 mmol), sodium cyanoborohydride (0.36 mmol, 22 mg), and compound 26 (56 mg, 0.19 mmol) were dissolved in a 4/1 mixture of MeOH and THF (4 mL). Three drops of acetic acid were added, and the solution was stirred at 40 °C overnight. Solvents were evaporated in vacuo, and the residue was purified by flash chromatography (3% MeOH/97% CH_2Cl_2) to give the coupled product 27 (113 mg, 84%). R_f (5% MeOH/CH₂Cl₂): 0.44. $[\alpha]_{D}^{20} = -30^{\circ}$ (c 0.50, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 3.25 (m, 1H), 3.46 (tt, 1H, J_{HH} 3.7 Hz), 3.57 (dd, 1H, J_{HH} 3.7 Hz, J_{HH} 10.1 Hz), 3.79 (m, 2H), 3.87 (dd, 1H, J_{HH} 3.5 Hz, J_{HH} 11.8 Hz), 4.10 (s, 3H), 4.19 (m, 3H), 4.38–4.77 (m, 7H), 4.68 (d, 1H, J_{HH} 12.3 Hz), 4.73 (d, 1H, J_{HH} 12.3 Hz), 5.60 (d, 1H, J_{HH} 10.5 Hz), 5.66 (d, 1H, J_{HH} 10.5 Hz), 7.17 (s, 1H), 7.21-7.38 (m, 20H), 8.55 (s, 1H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 41.8, 53.4, 57.3, 60.7, 62.6, 66.6, 69.9, 72.4, 72.8, 73.3, 82.3, 83.7, 115.3, 116.0, 127.2-128.3 (22C), 131.5, 136.8, 138.4, 138.6, 149.6, 150.0, 156.1. MS (ESI⁺, m/z): 715 [(M + H)⁺ 100%], 737 [(M + Na)⁺ 10%]. HRMS (ESI⁺): calcd for $C_{43}H_{47}N_4O_6 [M + H]^+$ 715.3490, found 715.3526.

(2S,3R,4R,5S)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)-N-(9-deazahypoxanthin-9-yl)methylpyrrolidine (Hydrochloride Salt) (28·HCl). Compound 27 (112 mg, 0.16 mmol) was heated under reflux in concentrated HCl (38%, 2 mL) for 2.5 h. After it was cooled, the solution was concentrated in vacuo and aqueous NH₃ (32%, 1 mL) was added to the residue. Water was evaporated, and the resulting solid was purified by column chromatography (CH₂Cl₂/MeOH/ NH₄OH, 88/10/2) to afford 28 (36 mg, 74%), which was then converted with 10% aqueous HCl to 28 HCl. Rf (CH2Cl2/MeOH/ NH₄OH, 6/3/1): 0.19. $[\alpha]_D^{20} = +2^\circ$ (*c* 0.50, MeOH). ¹H NMR (D₂O, 600.13 MHz, 373 K): δ 3.80 (br s, 4H, CH₂O), 4.58 (s, 2H, H-2 + H-5, $J_{\rm HH}$ 5.3 Hz), 4.90 (d, 2H, H-3 + H-4, $J_{\rm HH}$ 3.3 Hz), 5.10 (d, CH₂N, 1H, J_{HH} 13.4 Hz), 5.28 (d, 1H, CH₂N, J_{HH} 13.5 Hz), 8.22 (s, 1H, H-8), 8.54 (s, 1H, H-2). ¹³C NMR (D₂O, 150.92 MHz): δ 45.9 (CH₂N), 55.9 (CH₂O), 69.0 (C-2 + C-5), 74.6 (C-3 + C-4), 105.6 (C-9B), 117.7 (C-4B), 131.4 (C-8B), 143.1 (C-2B), 144.1 (C-5B), 155.1 (C-6B). MS (APCI⁺, m/z): 311 [(M + H)⁺ 20%]. HRMS (ESI⁺): calcd for $C_{13}H_{19}N_4O_5$ [M + H]⁺ 311.1350, found 311.1340.

(25, 3*R*, 4*R*, 55)-3, 4-Bis (benzyloxy)-5-(benzyloxymethyl)-2-(fluoromethyl)pyrrolidine (**29**). DAST (33 μ L, 0.20 mmol) was added dropwise to a solution of compound **11** (80 mg, 0.14 mmol) in dry CH₂Cl₂ (2 mL) in dry CH₂Cl₂, and the solution was stirred at 0 °C for 1 h. The reaction mixture was concentrated in vacuo, the crude product, without any purification, was dissolved in dry MeOH (2 mL), and Mg (33 mg, 1.4 mmol) was added to the solution. The mixture was refluxed for 2 h, solvents were evaporated, and the residue was purified by flash chromatography (5% MeOH/95% CH₂Cl₂) to give **29** (31 mg, 85%) as a viscous colorless oil. *R*_f (5% MeOH/CH₂Cl₂): 0.26. $[\alpha]_D^{20} = -11^\circ$ (*c* 1.0, CH₂Cl₂). ¹H NMR (CDCl₃, 300.13 MHz): δ 3.56–3.81 (m, 4H), 4.05 (m, 2H), 4.38–4.71 (m, 8H), 7.28–7.40 (m, 15H). ¹³C NMR (CDCl₃, 75.5 MHz): δ 58.1 (d, *J*_{CF} 20.4 Hz), 58.6, 71.2 (*J*_{CF} 322.4 Hz), 72.3 (3C), 82.1, 82.3, 84.3, 127.6–128.5 (18C). HRMS (ESI⁺): calcd for C₂₇H₃₁FNO₃ [M + H]⁺ 436.2282, found 436.2284.

(2S,3R,4R,5S)-3,4-Bis(benzyloxy)-5-(benzyloxymethyl)-2-(fluoromethyl)-N-(7-(benzyloxymethyl)-6-methoxy-9-deazapurin-9-yl)methylpyrrolidine (**30**). Sodium cyanoborohydride (8 mg, 0.13 mmol) was added to a stirred solution of **29** (31 mg, 0.07 mmol)

The Journal of Organic Chemistry

and **26** (22 mg, 0.07 mmol) in a 4/1 mixture of MeOH and THF (2 mL). The reaction mixture was stirred overnight at 40 °C. Solvents were evaporated in vacuo, and the crude reaction was subjected to flash chromatography (2% MeOH/98% CH₂Cl₂) to afford **30** as a white foam (43 mg, 85%). $R_{\rm f}$ (5% MeOH/CH₂Cl₂): 0.54. ¹H NMR (CDCl₃ 300.13 MHz): δ 3.57 (m, 3H), 3.84 (dd, 1H, $J_{\rm HH}$ 3.0 Hz, $J_{\rm HH}$ 7.5 Hz), 4.13 (s, 3H), 4.15–4.64 (m, 13H), 4.75 (ddd, 1H, $J_{\rm HH}$ 3.3 Hz, $J_{\rm HH}$ 7.2 Hz, $J_{\rm HF}$ 35.7 Hz), 5.67 (d, 1H, $J_{\rm HH}$ 7.8 Hz), 5.71 (d, 1H, $J_{\rm HH}$ 7.8 Hz), 7.22–7.40 (m, 21 H), 8.57 (s, 1H). ¹³C NMR (CDCl₃ 75.5 MHz): δ 42.3, 53.51, 60.4, 61.2 (d, $J_{\rm CF}$ 14.3 Hz), 68.0, 70.1, 72.8, 73.4, 77.0, 82.3 (d, $J_{\rm CF}$ 126.8 Hz), 83.1, 83.5, 114.7, 114.8, 126.3–127.5 (22C), 131.2, 136.0, 137.5, 137.6, 148.9, 149.1, 155.2. MS (ESI⁺, m/z): 717 [(M + H)⁺ 100%]. HRMS (ESI⁺): calcd for C₄₃H₄₆FN₄O₅ [M + H]⁺ 717.3447, found 717.3419.

(2S.3R.4R.5S)-5-(Fluoromethvl)-3.4-dihvdroxv-5-(hvdroxvmethyl)-N-(9-deazahypoxanthin-9-yl)methylpyrrolidine (Hydrochloride Salt) (31·HCl). Concentrated HCl (2 mL) was added to a flask containing compound 30 (43 mg, 0.06 mmol). The mixture was refluxed for 2 h. After water was evaporated, aqueous NH₃ (32%, 1 mL) was added to the residue and then this mixture was concentrated under vacuum. The resulting residue was purified by column chromatography (CH₂Cl₂/MeOH/NH₄OH, 88/10/2) to afford 31 (16 mg, 84%), which was then converted with 10% aqueous HCl to 31·HCl. R_f (CH₂Cl₂/MeOH/NH₄OH, 6/3/1): 0.26; Data for 31 are as follows. ¹H NMR (MeOH- d_4 , 300.13 MHz): δ 3.10 (dtt, J_{HH} 2.4 Hz, J_{HH} 7.0 Hz, J_{HF} 38.1 Hz), 3.28 (m, 1H), 3.68 (dd, 1H, J_{HH} 3.0 Hz, J_{HH} 11.8 Hz), 3.82 (dd, 1H, J_{HH} 4.1 Hz, J_{HH} 11.8 Hz), 4.08-4.27 (m, 4H), 4.57 (ddd, 1H, $J_{\rm HH}$ 2.4 Hz, $J_{\rm HH}$ 7.0 Hz, $J_{\rm HF}$ 46.1 Hz), 4.80 (ddd, 1H, J_{HH} 2.6 Hz, J_{HH} 10.1 Hz, J_{HF} 46.1 Hz), 7.42 (s, 1H), 7.89 (s, 1H). Data for the hydrochloride (31·HCl) are as follows. ¹H NMR (D₂O 300.13 MHz): δ 3.65 (br s, 4H), 4.05 (q, 1H, $J_{\rm HH}$ 6.0 Hz), 4.24–4.39 (m, 3H), 4.62 (d, 1H, $J_{\rm HH}$ 13.2 Hz), 4.76 (d, 1H, $J_{\rm HH}$ 13.5 Hz), 7.42 (s, 1H), 7.88 (s, 1H). ¹³C NMR (D₂O, 75.5 MHz): δ 46.3, 56.8, 69.2, 74.3 (2C), 78.4 (d, J_{CF} 182.7 Hz), 104.3, 117.9, 131.8, 141.1, 143.6, 154.3. MS (APCI⁺, m/z): 335 [(M + Na)⁺ 15%], 647 [(2M + Na)⁺ 15%]. HRMS (ESI⁺): calcd for $C_{13}H_{18}FN_4O_4$ [M + H]⁺ 313.1307, found 313.1296.

ASSOCIATED CONTENT

S Supporting Information

Figures giving ¹H, ¹³C, and DEPT NMR spectral data and 2D NMR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mferrero@uniovi.es; vgs@uniovi.es

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support of this work by the Spanish Ministerio de Educación y Ciencia (MEC) (Project MEC-CTQ-2007-61126) and the PCTI (2006-2009)/FEDER (2007-2013) Asturias (Project EQUIP09-07) is gratefully acknowledged. S.M.-M. thanks the MEC for a predoctoral FPU fellowship.

REFERENCES

(1) (a) Borges de Melo, E.; Silveira, A.; Carvalho, I. *Tetrahedron* **2006**, *62*, 10277–10302. (b) Spiro, R. G. In *Carbohydrates in Chemistry and Biology*; Ernst, B., Hart, G. W., Sinay, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000; Vol. 3 (Biosynthesis and degradation of glyconjugates), pp 65–79.

(2) For recent recent reviews on therapeutic applications see: (a) Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R. Drug Dis.Today 2011, 16, 107–118. (b) Winchester, B. G. Tetrahedron: Asymmetry 2009, 20, 645–651. (c) Compain, P. Martin, O. R.; Iminosugars: From Synthesis to Therapeutics Applications; Wiley-VCH: New York, 2007. (d) Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry **2001**, 56, 265–295.

(3) (a) Elbein, A. D.; Molyneux, R. J. In *Iminosugars as Glycosydase Inhibitors*; Stutz, A. E., Ed.; Wiley-VCH: Weinheim, Germany, 1999; pp 216–251.

(4) (a) Shibano, M.; Tsukamoto, D.; Kusano, G. *Heterocycles* **2002**, *57*, 1539–1553. (b) Shibano, M.; Tsukamoto, D.; Masuda, A.; Tanaka, Y.; Kusano, G. *Chem. Pharm. Bull.* **2001**, *49*, 1362–1365.

(5) (a) Asano, N. *Glycobiology* **2003**, *13*, 93R–104R. (b) Nishimura, Y. *Curr. Top. Med. Chem.* **2003**, *3*, 575–591. (c) Wrodnigg, T. M. *Monatsh. Chem.* **2002**, *133*, 393–426.

(6) (a) Morris, P. E.; Kamat, V. P. Modified Nucleosides in Biochemistry, Biotechnology and Medicine; Wiley-VCH: Weinheim, Germany, 2008; pp 451–471. (b) Bantia, S.; Kilpatrick, J. M. Curr. Opin. Drug. Discov. Devel. 2004, 7, 243–247. (c) Parks, R. E., Jr.; Stoeckler, J. D.; Cambor, D.; Savarese, T. M.; Crabtree, G. W.; Chu, S. H. Molecular Actions and Targets for Cancer Chemotherapeutic Agents; Academic Press: New York, 1981; pp 229–252.

(7) (a) Miles, R. W.; Tyler, P. C.; Furneaux, R. H.; Bagdassarian, C. K.; Schramm, V. L. *Biochemistry* 1998, *37*, 8615–8621. (b) Horenstein, B. A.; Schramm, V. L. *Biochemistry* 1993, *32*, 7089–7097.
(c) Horenstein, B. A.; Parkin, D. W.; Estupinan, B.; Schramm, V. L. *Biochemistry* 1991, *30*, 10788–10795.

(8) (a) Clinch, K.; Evans, G. B.; Fröhlich, R. F.; Furneaux, R. H.; Kelly, P. M.; Legentil, L.; Murkin, A. S.; Li, L.; Schramm, V. L.; Tyler, P. C.; Woolhouse, A. D. J. Med. Chem. 2009, 52, 1126-1143. (b) Rinaldo-Matthis, A.; Murkin, A. S.; Ramagopal, U. A.; Clinch, K.; Mee, S. P.; Evans, G. B.; Tyler, P. C.; Furneaux, R. H.; Almo, S. C.; Schramm, V. L. J. Am. Chem. Soc. 2008, 130, 842-844. (c) Evans, G. B.; Furneaux, R. H.; Murkin, A. S.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. 2008, 51, 948-956. (d) Taylor, E. A.; Clinch, K.; Kelly, P. M.; Li, L.; Evans, G. B.; Tyler, P. C.; Schramm, V. L. J. Am. Chem. Soc. 2007, 129, 6984-6985. (e) Taylor Ringia, E. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Murkin, A. S.; Schramm, V. L. J. Am. Chem. Soc. 2006, 128, 7126-7127. (f) Semerano, T.; Lossani, A.; Botta, M.; Ghiron, C.; Alvarez, R.; Manneti, F.; Mugnaini, C.; Valensin, S.; Focher, F.; Corelli, F. J. Med. Chem. 2006, 49, 6037-6045. (g) Evans, G. B.; Furneaux, R. H.; Lewandowicz, A.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. 2003, 46, 3412-3423.

(9) For some recent literature see: (a) Sousa, C. A. D.; Rizzo-Aguiar,
F.; Vale, M. L. C.; García-Mera, X.; Caamaño, O.; Rodríguez-Borges, J.
E. *Tetrahedron Lett.* 2012, 53, 1029–1032. (b) Liu, X.-K.; Qiu, S.;
Xiang, Y.-G.; Ruan, Y.-P.; Zheng, X.; Huang, P.-Q. J. Org. Chem. 2011,
76, 4952–4963. (c) Jagadeesh, Y.; Reddy, J.; Rao, B.; Swarnalatha, J. *Tetrahedron* 2010, 68, 1202–1207. (d) Hong, A.; Liu, L.; Sugiyama,
M.; Fu, Y.; Wong, C.-H. J. Am. Chem. Soc. 2009, 131, 8352–8353.
(e) Tsou, E.-L; Chen, S.-Y.; Yang, M.-H.; Wang, S.-C.; Cheng, T.-R.;
Cheng, W.-C. Bioorg. Med. Chem. 2008, 16, 10198–10204.

(10) Schreiber, S. L. Science 2000, 287, 1964-1969.

(11) Tan, D. S. Nat. Chem. Biol. 2005, 1, 74-84.

(12) (a) Rodríguez-Perez, T.; Fernández, S.; Sanghvi, Y. S.; Detorio, D.; Schinazi, R.; Gotor, V.; Ferrero, M. Bioconjugate Chem. 2010, 21, 2239–2349. (b) Martínez-Montero, S.; Fernández, S.; Sanghvi, Y. S.; Gotor, V.; Ferrero, M. J. Org. Chem. 2010, 75, 6605–6613. (c) Martínez-Montero, S.; Fernández, S.; Sanghvi, Y. S.; Wen, K.; Gotor, V.; Ferrero, M. Eur. J. Org. Chem. 2009, 3265–3271. (d) Díaz-Rodríguez, A.; Sanghvi, Y. S.; Fernández, S.; Schinazi, R.; Theodorakis, E.; Ferrero, M.; Gotor, V. Org. Biomol. Chem. 2009, 7, 1415–1423. (e) Ferrero, M.; Gotor, V. Chem. Rev. 2000, 100, 4319–4347. (f) Ferrero, M.; Gotor, V. Monatsh. Chem. 2000, 131, 585–616.

(13) Jones, S. P.; Simmons, B.; Mastracchio, A.; Macmillan, D. W.

(13) Jones, S. F.; Simmons, B.; Mastracento, A.; Machiman, D. W. Nature 2011, 475, 183–188.

(14) Le Merrer, Y.; Poitout, L.; Depezay, J. C.; Dosbaa, I; Geoffroy, S.; Foglietti, M.-J. *Bioorg. Med. Chem.* **1997**, *5*, 519–533.

(15) Kumar, V.; Ramesh, N. G. Tetrahedron 2006, 62, 1877-1885.

The Journal of Organic Chemistry

(16) (a) Liu, J.; Numa, M. M.; Liu, H.; Huang, S.-J.; Sears, P.;
Shikhman, A. R.; Wong, C.-H. J. Org. Chem. 2004, 69, 6273-6283.
(b) Hughes, A. B.; Rudge, A. J. Nat. Prod. Rep. 1994, 135-162.

(17) (a) Wong, C.-H.; Provencher, L.; Porco, J. A., Jr.; Jung, S.-H.; Wang, Y.-F.; Chen, L.; Wang, R.; Steensma, D. H. J. Org. Chem. **1995**, 60, 1492–1501. (b) Nuesca, Z. M.; Nair, V. Tetrahedron Lett. **1994**, 35, 2485–2488.

(18) Liu, J.; Shikhman, A. F.; Lotz, M. K.; Wong, C.-H. Chem. Biol. 2001, 8, 701-711.

(19) Jereb, M.; Vrazic, D.; Zupan, M. Tetrahedron 2011, 67, 1355–1387.

(20) (a) Campbell, M. A.; Wengel, J. Chem. Soc. Rev. 2011, 40, 5680–5689. (b) Zhou, C.; Chattopadhyaya, J. Curr. Opin. Drug Discovery Dev. 2009, 12, 876–898.

(21) (a) Asano, N.; Ikeda, K.; Kasahara, M.; Arai, Y.; Kiza, H. J. Nat. Prod. 2004, 67, 846–850. (b) Teppler, D. Phytochemistry 1990, 29, 2125–2127. (c) Saul, R.; Chambers, J. P.; Molyneux, R. J.; Elbein, A. D. Arch. Biochem. Biophys. 1983, 221, 593–597.

(22) (a) Leawandwicz, A.; Shi, W.; Evans, G. B.; Tyler, P. C.; Furneaux, R. H.; Basso, L. A.; Santos, D. S.; Almo, S. C.; Schramm, V. L. *Biochemistry* **2003**, *42*, 6057–6066. (b) Evans, G. B.; Furneaux, R. H.; Leawandwicz, A.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. **2003**, *46*, 5271–5276.

(23) Evans, G. B.; Furneaux, R. H.; Tyler, P. C.; Schramm, V. L. Org. Lett. 2003, 5, 3639–3640.

(24) (a) Muller, K.; Faeh, C.; Diederich, F. *Science* **2007**, *317*, 1881– 1886. (b) Bohm, H.-J.; Banner, D.; Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, M.; Bendels, S.; Kansy, M. *ChemBioChem* **2004**, *5*, 637–643.

(25) Mason, J. M.; Murkin, A. S.; Li, L.; Schramm, V. L.; Gainsford, G. J.; Skelton, B. W. J. Med. Chem. **2008**, *51*, 5880–5884.