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An unusual room temperature ββββ-lactone decarboxylation 

facilitated a five-step enantioselective formal synthesis of the 

cyclopentane core of an estrogen receptor ββββ-agonist. A 

computational study probed the underlying factors 

facilitating unprecedented, rapid decarboxylation. Aryl 

substitution promotes faster reaction in the retro-[2+2] as a 

result of conjugative stabilization with the forming olefin. 

Additionally, the configuration of the α-ester in these fused β-

lactones leads to differential decarboxylation rates resulting 

in enantioselectivity.     

Catalytic methods to assemble bioactive molecules and 
privileged motifs are on-going pursuits in synthesis. Many have 
sought to achieve this goal by employing organic catalysts, 
which allows for a greener approach.1 N-Heterocyclic carbenes 
(NHC) have emerged as powerful class of organic catalysts that 
can be used to construct important structural motifs, bioactive 
molecules, and natural products.2 Our group and others have 
shown that NHCs react with aldehydes to generate catalytically 
competent enolate,3 homoenolate,4 and acyl anion 
intermediates,5 which have been trapped with various 
electrophiles. In 2012, we reported the first NHC-catalyzed 
dynamic kinetic resolution (DKR) of α-substituted-β-ketoesters 
(1) to furnish bicyclic β-lactones (2) and cyclopentenes (3) 
(Scheme 1 eq. 1).6 Computational studies7 shed light on the 
rare, non-classical nature of this specific organocatalytic DKR 
and on the origins of stereoselectivity in the β-lactone 
formation. While examining this NHC-DKR process we 
determined that aryl ketones with electron-donating substitution 
or heteroaromatic ketones normally resulted in complete 
spontaneous decarboxylation to the cyclopentene (3) under the 
reaction conditions (eq. 2). Unfortunately, this rapid 
decarboxylation led to cyclopentenes with diminished 
enantioselectively, due the moderate diastereoselectivity (5-7:1 
d.r.) for the lactone forming process. However, substrates 
possessing an ortho-substitution on the aryl ring of the ketone 

furnished the respective products in 20:1 dr. Therefore, the 
rapid decarboxylation before the separation of the diastereomer 
lactones is inconsequential, allowing for the isolation of the 
desired cyclopentene in high yield while maintaining the high 
enantioselectivity (90% ee). In this communication, we apply 
this DKR to construct the cyclopentane ring of known bioactive 
benzopyrans. This report demonstrates that this DKR can be 
applied to the enantioselective synthesis of different analogues 
of these bioactive benzopyrans. Additionally, we delve into the 
mechanism of the rapid decarboxylation for this DKR process 
using computational methods and explain why certain 
substrates are more prone to rapid decarboxylation, even under 
these mild conditions. 

  

Scheme 1. NHC-Catalyzed Dynamic Kinetic Resolution 
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Scheme 2. Enantioselective formal synthesis of estrogen receptor β-agonist 11. 

In 2006, Eli Lilly disclosed a new class of hydroxylated benzopyrans 
that were highly potent and selective estrogen receptor β-agonist 
with nanomolar activity in models of benign prostatic hyperplasia, 
otherwise known as enlarged prostate (Figure 1).8 A subsequent 
structure-activity relationship study revealed that the cyclopentane 
ring was essential to provide nanomolar activity while maintaining 
the great selectivity.8e Previous reported syntheses to these 
enantioenriched benzopyrans relied on an eight-step linear reaction 
sequence and a subsequent preparative chrial HPLC separation of 
the final benzopyran to obtain enantiopure products. To the best of 
our knowledge, a general catalytic asymmetric variant to these 
compounds has not been reported. The formal synthesis began with 
the treatment of literature known9 acetophenone 4 with dimethyl 
carbonate and sodium hydride in toluene afforded β-keto ester 5. A 
Tsuji-Trost allylation of β-ketoester and with allyl carbonate 6 and 
subsequent PCC oxidation provided aldehyde 7 in 36% yield over 
three steps. In the key enantioselective, catalytic DKR step, the 
exposure of aldehyde 7 to 7 mol % of azolium 8 with 30 mol % of 
Cs2CO3 gave cyclopentene 9 in 86% yield with excellent 
enantioselectivity (92% ee). A subsequent hydrogenation (Pd/C) 
gave cyclopentane 10 in 48% yield as a sole diastereomer based on 
comparison with reported structures.10 This cyclopentane (10) in 
racemic form has previously been converted to selective estrogen 
receptor benzopyran 11 in three steps by scientists at Eli Lilly.8e 
Thus we have been able to employ our NHC-DKR-decarboxylation 
strategy toward an efficient, asymmetric route to these valuable 
benzopyrans and related structures. Most notably this synthetic 
sequence avoids the previously described chiral separation approach 
and provides a stereocontrolled and efficient method to rapidly 
assemble a diverse library of these bioactive benzopyrans. 

β-lactones with an electron-rich aryl ring, such as 4-MeOPh (2a, 
Table 1, entry 1), synthesized under Scheme 1 conditions undergo 
unprecedented and rapid decarboxylation to the cyclopentene, often 
leaving no trace of the lactone.6 This outcome is in sharp contrast to 
the thermolytic conditions (>60 ºC) typically required for 

decarboxylative [2+2]-cycloreversion of β-lactones (Scheme 3).11 
Reduced temperatures have traditionally only been achieved through 
radical decarboxylation.12 Electron-neutral (2b) and -poor (2c) β-
lactones are stable to Scheme 1 conditions; decarboxylation only 
occurs after heating in SiO2 (Scheme 3), as previously observed. 

To probe the apparent electronic effects controlling this unusual 
decarboxylation and the origins of enantioselectivity, we conducted 
a computational study using quantum mechanical computations 
(SCS-MP213/def2∞ZVP14//B3LYP15/6-31G(d)16 with B3LYP/ 6-
31+G(d,p)/PCM(DCE)17 solvation corrections).18 The computed 
retro-[2+2] transition state structures (TSs) are shown in Figure 1. 
The anti and syn refer to the diastereomeric relationship between the 
lactone and the loss of CO2. All transition structures are concerted 
asynchronous,19 and our computed barriers match the observed 
relative rates of decarboxylation. The anti configuration reacts faster 
than the syn (Scheme 3).  

   
Scheme 3. β-Lactone decarboxylation to cyclopentene.20  

CO2 ejection is accelerated by conjugation to the planar aryl group. 
The configuration of the α-ester affects the conjugation by affecting 
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the degree of planarity of the aryl group with the forming olefin. In 
the anti TS, the aryl groups are planar to the forming olefin, 
facilitating the ejection. This is in contrast to the syn TS, where the 
aryl group is slightly twisted out of the plane, costing an energetic 
penalty of 0.3 kcal mol-1. 

As a consequence of the conjugation, the electronic nature of the 
aryl group has a direct effect on the reactivity. Initial cleavage of the 
C–O bond leads to a transient benzylic carbocation character, which 
is sensitive to the electronics of the aryl group. Electron-donating 
para and/or ortho substituted aryl groups dramatically lowers the 
decarboxylation TS barriers, for example, p-OMe aryl substitution 
(Table 1) reacts rapidly anti at 19.1 kcal mol-1. This is in contrast to 
electron-neutral and electron-poor substituted aryl lactones that have 
higher barriers of 27.5 and 31.4 kcal mol-1, respectively, in 
agreement with experimentally observed higher reaction 
temperatures. In all aryl cases, the syn barriers are higher, but still 
follow the general trend. This trend echoes limited reports on the 
decarboxylation in a series of related β-lactones at ambient and 
cryogenic temperatures, with rapid decarboxylation for electron-
donating (p-OMePh) substituents and none for electron-neutral or -
poor substituents.21 In the absence of conjugating aryl groups, e.g., 
aliphatic (∆G‡ = 33.3, ∆∆G‡ = 0.1) and hydro (∆G‡ = 38.2, ∆∆G‡ = –
1.0), barriers are higher and the enantioselectivity is diminished and 
reversed, respectively.  

 Figure 1. Decarboxylation TSs of syn- and anti-diastereomers of 2a.  

Table 1. Electronic effects on decarboxylation rate and selectivity. 

Entry  R 
Yield  

(% ee)a 
anti-TS12 

∆G‡b 
syn-TS12 

∆G‡ (∆∆G‡)b 
1 2a 4-OMePh 71 (70) 19.1 22.1 (3.0) 
2 2b Ph 95 (98)c,d 24.7 27.5 (2.8) 
3 2c 4-CNPh 64 (99)c 29.1 31.4 (2.3) 
4 2d Me – e 33.3 33.4 (0.1) 
5 2e H – e 38.2  37.2 (–1.0) 

a Scheme 1 conditions, (S)-3 major product. b Energies reported in 
kcal mol-1. c No decarboxylation observed under Scheme 1 
conditions. d Scheme 2 conditions. e Theoretical values only. 
Substrates not accessible through Scheme 1. 

Table 2. Test for origins of selectivity by α group modulation. 

   

Entry  R R’ 
anti-TS12 

∆G‡a 
syn-TS12 

∆G‡ (∆∆G‡)a 
1 2f CN 4-OMePh 33.9 34.3 (0.4) 
2 2g CN H 30.5 29.7 (–0.8) 
3 2h Me 4-OMePh 18.4 21.0 (2.6) 
4 2i Me H 35.8 34.6 (–1.2) 

a Energies reported in kcal mol-1. 

Enantioselectivity is inherent to the molecule by virtue of the α-
group configuration. We modulated the size and electronics of the α-
group to probe whether steric or electronic factors (measured in A 
values22 and σp

+,23 respectively) give rise to the different anti/syn 
barriers. To test for steric control, the ester (σp

+ = 0.49, A = 1.27) 
was replaced by the similarly electron-withdrawing but smaller 
cyano group (σp

+ = 0.66, A = 0.17). CN α-substitution led to a loss 
of selectivity. Electronic control was investigated by replacement 
with the equivalently sized, but electron donating methyl group (σp

+ 
= –0.31, A = 1.7). Retention of selectivity was observed 
computationally with methyl α-substitution and loss with cyano, 
indicating that the ester controls selectivity through its steric 
component. This observed steric effect originates from the strain 
afforded by decarboxylation syn to the α group (Figure 1). The 
pseudo-equatorial (R)-ester in the minor syn-TS12 diastereomer 
leads to a repulsive interaction (2.9 Å) with the departing CO2. The 
absence of this repulsion in the favored anti-TS12 lowers the barrier 
by ~2–3 kcal/mol. 

In conclusion, we have demonstrated the NHC-catalyzed 
DKR/decarboxylation process can be utilized as the key step in the 
enantioselective formal synthesis of a benzopyran estrogen receptor 
β-agonist. Using an ortho-substituted aryl ketone allowed us to 
achieve high enantioselectivity (92% ee) without prior separation of 
the diastereomers. This processes alleviates the need for chiral 
HPLC as previously used in a Lilly campaign to separate the 
enantiomers of the benzopyrans. Utilizing computational studies we 
uncovered the principles controlling the concerted retro-[2+2] 
decarboxylation mechanism from this DKR, including the electronic 
effects on rate. Aryl ketones with electron rich substitution likely 
decarboxylate through ortho/para-quinone methide resonance like 
intermediates. The anti-selective decarboxylation observed for aryl 
ketones is the result of steric interactions between the α group and 
the carboxylate groups in the syn-TSs.  
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