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A B S T R A C T   

A novel porphyrin dye T-2 with phenoxazine (POZ) as donor unit has been synthesized and utilized for dye- 
sensitized solar cells (DSSC). Compare with porphyrin dye T-1 (in which triphenylamine as a donor unit), the 
DSSC based on T-2 exhibited a significantly higher Jsc (16.35 mA cm− 2) and Voc (670 mV) than that of T-1 (9.13 
mA cm− 2, 610 mV), which attribute to the higher IPCE and τ of the device based on T-2. Correspondingly, the T- 
2-based device achieved a photoelectric conversion efficiency (PCE) of 7.64% (N719, 8.45%). By detailed 
investigation of the relationship between structure and performance, we found the butterfly-shaped structure, 
stronger electron-donating capability, and the extra alkyl chain of POZ are the main reasons leading to better 
performance of T-2 than that of T-1 in the DSSC device.   

1. Introduction 

Porphyrin dyes have been attracted much attention because of their 
excellent photovoltaic properties [1,2], and their advantages are mainly 
reflected in: (i) A strong light absorption capability from visible to 
near-infrared region, (ii) The β-position and Meso-position of the core 
are easy to modify, (iii) Fine-tuning of the electronic properties [3]. 
Since the invention of DSSC by Grätzel and co-workers in 1991, various 
porphyrin dyes have been synthesized and applied in DSSC [4]. Among 
them, SM315 achieves a PCE of 13.0% under simulated sunlight con-
ditions [5]. In addition, the tandem DSSC formed by the metal-free 
organic dye SGT-137 (as the top battery) and porphyrin dye SGT-021 
(as the bottom battery) was proved to have an efficiency of 14.64% [6], 
which is extremely close to the commercialized target efficiency of 
15.0%. It is well-known that rationally optimizing the molecular struc-
ture by molecular engineering can effectively improve its performance 
of porphyrin dyes [7]. Commonly, the design of porphyrin sensitizers 
often includes introducing electron-rich donors and strong 

electron-withdrawing acceptors to reduce the HOMO-LUMO band gap 
and enhance the ICT process [8]. So far, many electron-rich groups such 
as diphenylamine [9,10], triphenylamine [11–15], carbazole [16–18], 
indoline [19,20], cyanine [21,22] and phenothiazine [23–27] are 
widely used as electron donors in porphyrin dyes to promote the 
transmission and injection of electrons toward the surface of TiO2. 
Among them, the nitrogen-anthracene electron donor has a special 
butterfly-shaped configuration, which is widespread adoption for DSSC 
[7,28,29]. Xie and co-workers synthesized a series of 
phenothiazine-based porphyrin sensitizers. A molecular engineering 
approach has also been demonstrated to improve the performance of 
phenothiazine-based porphyrin sensitizers. For instance, the introduc-
tion of alkyl chain into the donor (D) unit or ortho-positions of the 
meso-phenyl moieties is an effective way to suppress dye aggregation 
and charge recombination, which improves the photovoltaic behavior of 
DSSC [30,31]. Besides, electrochemical, photophysical, and photovol-
taic investigations indicate that the introduction of additional acceptors 
can effectively extend the absorption spectra, resulting in better sunlight 
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harvesting [32]. Recently, they reported an alternative approach for 
developing efficient DSSC by designing a class of “concerted companion 
dyes”, which achieve a remarkable efficiency of 12.4% [33]. This series 
of studies provide many essential strategies for the molecular engi-
neering of porphyrin dyes. Our previous work reported that Phenoxazin, 
which also belongs to nitrogen anthracene, exhibits better photovoltaic 
performance than phenothiazine for DSSC [34]. 

Inspired by the discussion above, we introduced the phenoxazine as a 
D unit to the porphyrin dye for the first time and prepared a novel zinc 
porphyrin dye T-2 (Fig. 1). In addition, we systematically analyzed the 
photophysical, electrochemical properties and the performance of T-2 in 
DSSC. Furthermore, we simultaneously carried out a comparative 
analysis with T-1 (triphenylamine (TPA) as D unit). 

2. Experimental 

2.1. Materials 

All reagents and chemicals were purchased from Aladdin or Energy 
chemical reagent platform and used without further purification. All 
solvents were dried and freshly distilled prior to use. All column chro-
matographic separations were performed using Merck silica gel (60–120 
mesh). 

2.2. Device assembly and measurements 

The procedure for preparation of TiO2 electrodes were adapted from 
that reported by Grätzel and co-workers [35] and the detailed processes 
of device fabrication for photovoltaic measurements were very similar 
to the previous articles [15,36–38]. A screen-printed double layer of 
TiO2 particles was used as the photoelectrode. A 12-μm thick film of 
13-nm-sized TiO2 particles was first printed on the FTO conducting 
glass, which was kept in a clean box for 5 min, and then dried at 125 ◦C 
over 6 min, and further coated by a 5-μm thick second layer of 400-nm 
light-scattering anatase particles. Finally, the electrodes coated with the 
TiO2 pastes were gradually sintered in a muffle furnace at 275 ◦C for 5 
min, at 325 ◦C for 5 min, at 375 ◦C for 5 min, at 450 ◦C for 15 min and at 
500 ◦C for 15 min, respectively. The size of the TiO2 film was 0.25 cm2. 
These films were immersed into a 40 mM aqueous TiCl4 solution at 70 ◦C 
for 30 min, washed with water and ethanol, and then heated again at 
450 ◦C for 30 min. The films were then immersed into a 300 μM solution 
of T-1 or T-2 in a mixture of chloroform and ethanol (volume ratio of 3 : 
7) for 10 h at room temperature. The seal uses a 45 mm thick Bynel 
(DuPont) hot melt gasket to fill the electrolyte into the interior space 
through a vacuum backfill system. The osmotic electrolyte consisted: 
0.6 M dimethylpropylimidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 
M tert-butylpyridine in acetonitrile. 4 parallel cells for each dye mole-
cule will be prepared to obtain more reasonable and credible data. 
Under standard AM 1.5 simulated solar irradiation (WXS155S-10), 
photocurrent density-voltage (J− V) curves of solar cell devices were 
measured by Keithley 2400 Source Meter Instruments. Monochromatic 
incident photon-to-current conversion efficiency (IPCE) spectra 

measurement was performed by a Newport-74125 system (Newport 
Instruments). Electrochemical impedance spectroscopy (EIS) was 
measured with a two-electrode system in the dark by Electrochemical 
Workstation (Zahner IM6e) [39]. 

3. Results and discussion 

3.1. Dye structures and syntheses 

The synthesis of dyes T-1 and T-2 are summarized in Scheme 1. The 
POZ was synthesized following our published procedure [34], porphyrin 
core, and the A-π-A unit was synthesized via procedures from the liter-
ature [30,40]. The synthetic details are shown in Scheme S1, and the 
results of intermediates are provided in the Supporting. 

Compound 11. Compound 5 (0.75 g, 0.53 mmol), compound 10 
(0.12 g, 0.42 mmol), Pd2(dba)3 (0.19 g, 0.21 mmol) and AsPh3 (0.28 g, 
0.90 mmol) were dissolved in THF (60 mL) and Et3N (20 mL). After the 
solution was stirred at 55 ◦C under argon for 6 h. The solvent was 
removed under reduced pressure and the residue was purified by column 
chromatography on silica gel using petroleum ether/CH2Cl2 (1:1, v:v) to 
give compound 11 as green powders (0.22 g, yield: 25.5%). 1H NMR 
(CDCl3, 500 MHz, ppm) δ 10.03–10.01 (d, 2H), 9.63–9.60 (d, 2H), 
9.00–8.98 (d, 2H), 8.88–8.87 (d, 2H), 8.18–8.16 (d, 1H), 8.09–8.06 (d, 
2H), 7.99–7.95 (d, 2H), 7.76–7.73 (s, 3H), 7.08–7.04 (d, 4H), 4.01–3.98 
(s, 3H), 3.92–3.89 (m, 8H), 1.35–1.02 (m, 28H), 1.01–0.88 (m, 18H), 
0.86–0.74 (m, 20H), 0.65–0.35 (m, 26H). MS: m/z = 1633.77. 

Compound 13a. Compound 11 (83.00 mg, 0.05 mmol), compound 
12a (0.25 g, 0.10 mmol) and CH3COOK (14.70 mg, 0.15 mmol) were 
dissolved in THF/H2O (33 mL, 10/1, v/v) and Pd(pph3)4 (115.56 mg, 
0.10 mmol) were added at 70 ◦C under argon for 12 h. Then the solvent 
was removed under reduced pressure, and the residue was dissolved in 
CH2Cl2 and washed with water, dried over anhydrous Na2SO4 and 
evaporated. The residue was purified by column chromatography on 
silica gel using petroleum ether/CH2Cl2 (1:1, v:v) to give compound 13a 
as green powders (74.30 mg, yield: 82.7%). 1H NMR (CDCl3, 500 MHz, 
ppm) δ 10.16–10.13 (d, 1H), 10.11–10.09 (d, 1H), 9.28–9.24 (d, 1H), 
9.12–9.07 (d, 1H), 9.06–9.03 (d, 1H), 9.00–8.97 (d, 1H), 8.96–8.92 (d, 
1H), 8.88–8.85 (d, 1H), 8.33–8.28 (t, 1H), 8.07–8.21 (t, 2H), 8.18–8.15 
(d, 1H), 8.09–8.04 (d, 1H), 7.96–7.90 (t, 1H), 7.76–7.70 (t, 2H), 
7.43–7.41 (d, 4H), 7.34–7.31 (d, 1H), 7.24–7.20 (t, 2H), 7.17–7.12 (t, 
2H), 7.08–7.06 (d, 2H), 7.05–7.04 (d, 2H), 4.03–4.00 (s, 3H), 3.93–3.84 
(m, 8H), 1.25–1.12 (m, 10H), 1.08–0.97 (m, 20H), 0.93–0.86 (m, 10H), 
0.84–0.77 (m, 24H), 0.70–0.62 (m, 8H), 0.61–0.47 (m, 16H), 0.46–0.38 
(m, 8H).MS: m/z = 1796.97. 

Dye T-1. Compound 13a (74.30 mg, 41.35 μmol) and LiOH⋅H2O 
(69.40 mg, 1.65 mmol) were dissolved in THF (30 mL) and H2O (2 mL), 
respectively. Then the mixed solution was stirred at 55 ◦C under argon 
for 6 h. Then the solvent was removed under reduced pressure, and the 
residue was dissolved in CH2Cl2 and washed with water, dried over 
anhydrous Na2SO4 and evaporated. The residue was purified by column 
chromatography on silica gel using CH2Cl2/MeOH (20:1, v:v) to give T-1 
as green powders (64.95 mg, yield: 88.1%). 1H NMR (CDCl3, 500 MHz, 

Fig. 1. Molecular structures of the T-1 and T-2.  
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ppm) δ 10.12–10.09 (d, 1H), 10.07–10.03 (d, 1H), 9.05–9.03 (d, 1H), 
9.02–9.00 (d, 1H), 8.99–8.96 (d, 1H), 8.95–8.93 (d, 1H), 8.90–8.85 (m, 
2H), 8.30–8.26 (d, 1H), 8.25–8.20 (d, 2H), 8.16–8.10 (d, 3H), 8.09–8.03 
(d, 2H), 7.93–7.86 (t, 2H), 7.79–7.70 (m, 4H), 7.42–7.38 (m, 6H), 
7.08–7.02 (m, 6H), 3.91–3.87 (t, 8H), 1.25–1.12 (m, 10H), 1.08–0.97 
(m, 20H), 0.93–0.86 (m, 10H), 0.84–0.77 (m, 20H), 0.70–0.62 (m, 8H), 
0.61–0.47 (m, 16H), 0.46–0.38 (m, 8H). MS: m/z = 1782.95. 

Compound 13b. Compound 13b was synthesized following the 
same procedure as that for compound 13a, except that compound 12b 
(0.25 g, 0.60 mmol) was used instead of compound 12a. Green powders, 
yield: 48.76 mg, 87.9%. 1H NMR (CDCl3, 500 MHz, ppm) δ 10.18–10.13 
(d, 2H), 9.20–9.14 (d, 1H), 9.07–9.03 (m, 3H), 8.99–8.94 (d, 1H), 
8.86–8.84 (d, 1H), 8.35–8.32 (d, 1H), 8.30–8.27 (d, 2H), 8.22–8.19 (d, 
2H), 8.01–7.95 (t, 3H), 7.78–7.73 (d, 1H), 7.40–7.35 (d, 1H), 7.08–7.04 
(d, 2H), 6.92–6.88 (d, 2H), 6.75–6.71 (d, 3H), 6.66–6.63 (d, 1H), 
6.56–6.53 (d, 1H), 4.03–4.02 (s, 3H), 3.97–3.76 (m, 8H), 2.07–2.02 (m, 
1H), 1.35–1.25 (m, 46H), 0.93–0.88 (m, 15H), 0.82–0.77 (m, 15H), 
0.70–0.61 (m, 8H), 0.55–0.43 (m, 16H). MS: m/z = 1847.04. 

Dye T-2. T-2 was synthesized following the same procedure as that 
for T-1, except that compound 13b (48.76 mg, 26.37 μmol) was used 
instead of compound 13a. Green powders, yield: 41.47 mg, 85.7%. 1H 
NMR (CDCl3, 500 MHz, ppm) δ 10.17–10.13 (d, 1H), 10.11–10.07 (d, 
1H), 9.07–9.02 (d, 2H), 9.02–8.99 (t, 1H), 8.98–8.94 (d, 1H), 8.89–8.80 
(m, 2H), 8.35–8.27 (m, 3H), 8.22–8.20 (d, 1H), 8.02–7.94 (m, 2H), 
7.77–7.70 (m, 2H), 7.60–7.54 (t, 1H), 7.53–7.47 (t, 1H), 7.22–7.18 (d, 
1H), 7.06–7.01 (d, 2H), 6.91–6.88 (d, 1H), 6.75–6.69 (d, 3H), 6.67–6.64 
(d, 1H), 6.58–6.53 (d, 1H), 3.99–3.78 (t, 8H), 1.97–1.91 (m, 1H), 
1.35–1.25 (m, 46H), 0.93–0.88 (m, 15H), 0.82–0.77 (m, 15H), 
0.70–0.61 (m, 8H), 0.55–0.43 (m, 16H). MS: m/z = 1833.03. 

3.2. Optical properties 

Fig. 2 shows the UV–vis absorption spectra of T-1 and T-2 in the 
tetrahydrofuran (THF) solution. Table 1 summarize their corresponding 
absorption maxima (λabs

max) and molar absorptivity (ε) of Soret and Q 
bands. These porphyrin dyes exhibit an intensive Soret band at 400–550 
nm (T-1, λabs

max = 433 nm, ε = 105869.25 M− 1 cm− 1; T-2, λabs
max = 431 nm; 

ε = 115,595 M− 1 cm− 1), due to the characteristic π− π* transition 
localized mainly at the porphyrin core. A moderate Q-band at 600–750 
nm (T-1 λabs

max = 648 nm, ε = 36702.25 M− 1 cm− 1; T-2λabs
max = 645 nm, ε 

= 37861.5 M− 1 cm− 1), which is attributed to π− π* charge-transfer 

transitions of the conjugated molecule and intramolecular charge 
transfer from the donor unit to the acceptor unit of dyes. Our spectral 
test results show that the two dyes have almost the same spectral 

Scheme 1. Synthetic routes of T-1 and T-2.  

Fig. 2. UV–vis absorption spectra of PTZ-3 and PTZ-5 in THF.  

Table 1 
Photophysical and electrochemical date of T-1 and T-2.  

dye λabs
max

a 

/nm  
εabs

max
a 

/M− 1cm− 1  
λpl

max
a 

/nm  
E0− 0

b 

/eV  
EOX

c 

/V  
E∗

OX
d 

/V  

T-1 433 
648 

1.05969.25 
36702.25 

711 1.84 0.61 − 1.23 

T-2 431 
645 

115,595 
37861.5 

708 1.85 0.63 − 1.22  

a The maximum absorption wavelength (λabs
max ), the maximum molar absorp-

tion coefficient (εabs
max) and the maximum emission wavelength (λpl

max) were 
derived from the steady-state absorption-emission spectra of the dye in THF. The 
molar absorption coefficient(ε) were calculated by the equation ε = A/(cl), 
where A is absorbance, c is concentration in moles per liter and l is path length in 
centimeters. 

b The 0-0 transition energy (E0-0) was estimated from the intersection of the 
normalized absorption and emission spectra. 

c The ground state redox electricity (EOX) was referenced to Fc+/Fc. 
d The excited redox potential (E∗

OX) was derived from the formula E∗
OX = EOX −

E0− 0/e without considering the entropy change in the light excitation process. 
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response range, and the ε of T-2 is slightly higher than that of T-1, 
especially in the range of 400–600 nm. Moreover, the steady-state 
emission spectra of T-1 and T-2 dyes were measured in THF and are 
shown in Fig. S12 and Table 1. The optical band gap width (E0− 0) can be 
estimated from the intersections of the normalized UV–visible absorp-
tion spectrum and emission spectrum, as shown in Fig. 3. According to 
the transition bandgap formula: E0− 0 = 1240/λ, the calculated E0− 0 of 
T-1 and T-2 are 1.84 and 1.85 eV, respectively. 

3.3. Electrochemical properties 

To obtain the electrochemical properties of T-1 and T-2, we con-
ducted measurements using cyclic voltammetry (CV). Table 1 and Fig. 4 
summarize the CV results of T-1 and T-2. Both T-1 and T-2 exhibit 
reversible waves for the first oxidation peaks (EOX), corresponding to the 
HOMO of the dye and indicating that oxidation happens at the donor. 
The estimated ground state oxidation potentials EOX of T-1 and T-2 are 
0.61 and 0.63 V, respectively, versus the normal hydrogen electrode 
(NHE). Hence, both T-1 and T-2 show sufficiently higher potentials than 
the I− /I3− redox electrolyte (0.4 V) redox couple, indicating enough 
driving force for regenerating the oxidized dyes by I− /I3− redox elec-
trolytes. The expression E∗

OX = EOX − E0− 0/e was used to calculate the 
excited state oxidation potential (E∗

OX) of T-1 and T-2, and the corre-
sponding values are − 1.71 and − 1.70 V, respectively. Thus, there are 
enough driving forces for injecting electrons from T-1 and T-2 into the 
conduction band edge (ECB) of TiO2 (− 0.5 V) (Fig. 5). 

3.4. Theoretical calculations 

To gain insight into the molecular structures as well as the influence 
of different substituents on the electron distribution of dyes T-1 and T-2, 
we performed DFT and TD-DFT calculations using the functional basis 
set B3LYP/6-31G(d, p). Figs. 6 and 7 show the optimized molecular 
structure and frontier molecular orbitals (FMOs) of T-1 and T-2 dyes. As 
shown in Fig. 7, the HOMO orbitals are mainly distributed in the donor 
unit and the porphyrin macrocycle. In contrast, the LUMO orbitals are 
predominantly delocalized over the acceptor unit and the porphyrin 
macrocycle. This distribution means that the electrons can be effectively 
transported from the HOMO orbital to the LUMO orbital. In other words, 
the electronic transfer process from the donor to the benzoic acid 
acceptor can be easily transported, followed by facilitating the electron 
injection from the dyes to the TiO2 surface. The simulated UV–vis ab-
sorption spectra of the dyes in THF solvent are presented in Fig. S13 and 
the corresponding data are collected in Table S1. The intense Soret band 
around 450 nm and moderate Q-band around 600 nm corresponds to the 
local excitation of the zinc-porphyrin and intramolecular charge trans-
fer, respectively, which are very consistent with our spectral test results. 

3.5. Photovoltaic performance of DSSC 

The dyes were used to fabricate DSSC, and the corresponding 
photovoltaic parameters are summarized in Table 2. Figs. 8 and 9 show 
the photocurrent− voltage curves (J-V) and the incident photon-to- 
current conversion efficiency (IPCE) action spectra. Both T1 and T2 
show a broad IPCE action spectrum from 300 nm to 800 nm, suggesting 
that they can effectively convert visible light into photocurrent. The 
IPCE values of T-2 are significantly higher than those of T-1, which is 
mainly attributed to the higher ε of T-2 and the extra alkyl chain on POZ, 
which can suppress the recombination of interfacial electrical to reduce 
the dark current. Therefore, T-2 exhibited higher IPCE and short-circuit 
current density (Jsc) values of 16.35 mA cm− 2. Open-circuit voltage (Voc) 
is also an essential parameter for DSSC. Compared with T-1 (Voc = 610 
mV; PCE = 4.12%), T-2 exhibited higher Voc of 670 mV and PCE of 
7.64%. 

3.6. Electrochemical impedance spectroscopy 

To further understand the photovoltaic behavior of DSSC based on 
these two dyes, we performed electrochemical impedance spectroscopy 
(EIS) in the dark. As we all know, the Voc of DSSC represents the po-
tential difference between the quasi-Fermi level (Ef) of TiO2 and the 

Fig. 3. Normalized electronic absorption and emission spectra of the T-1 and T- 
2 in THF. 

Fig. 4. Cyclic voltammetry of T-1 and T-2 in THF.  

Fig. 5. Energy diagrams of T-1 and T-2.  
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redox electrolyte. Since the redox electrolyte is fixed in the experiment, 
the change of Voc is related to the value of Ef, which can be inferred from 
the chemical capacitance (Cμ). Besides, Voc is in connection with elec-
tron lifetime (τ), which can reflect the injected electron density. As 

shown in Fig. 10a, the Cμ of the T-1 and T-2 DSSCs are almost identical, 
which indicates a negligible impact of the conduction band position of 
TiO2 on Voc variation. In addition, the dependence of electron lifetimes 
(τ) on bias voltage is plotted in Fig. 10b. In general, a longer electron 
lifetime implies a slower charge recombination rate at the dye-sensitized 
TiO2− electrolyte interface. The longer τ of T-2 causing higher injected 
electron density (Fig. 10b), which is consistent with that of Voc, ranking 
as T-1 < T-2. These results indicate that the charge recombination 
process determined the Voc values of DSSC. 

4. Conclusions 

In summary, a novel porphyrin sensitizer (T-2) containing a 

Fig. 6. Simulated optimized structure structure of dyes.  

Fig. 7. Electron cloud distribution of dyes at the B3LYP/6-31G(d,p) level with Gaussian09.  

Table 2 
Photovoltaic parameters of cells measured at an irradiation of 100 mW cm− 2, 
simulated AM 1.5 sunlight.  

dyes Voc/V Jsc/mA⋅cm− 2 FF% PCE% 

T-1 0.61 ± 0.03  9.13 ± 0.66  73.45 ± 4.62  4.12 ± 0.28  
T-2 0.67 ± 0.01  16.35 ± 1.90  70.13 ± 0.7  7.64 ± 0.69  
N719 0.71 16.92 70.45 8.45  

Fig. 8. J–V characteristics measured under irradiation of 100 mW cm− 2 

simulated AM 1.5 sunlight. 

Fig. 9. Incident photon-to-electron conversion efficiency (IPCE) spectra of the 
dyes T-1 and T-2. 
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phenoxazine (POZ) as an electron donor has been designed and syn-
thesized for DSSC. Compared to T-1 with triphenylamine donor unit, T-2 
exhibits higher efficiency of 7.64% due to the distinctive structure and 
strong electron-donating capability of POZ. Our results indicate that 
POZ is a very promising donor unit for developing high-efficiency 
porphyrin dyes for DSSC. 
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