

Subscriber access provided by RMIT University Library

Communication

Intermolecular Reductive C–N Cross Coupling of Nitroarenes and Boronic Acids by PIII/PV=O Catalysis

Trevor V. Nykaza, Julian C. Cooper, Gen Li, Nolwenn Mahieu, Antonio Ramirez, Michael R. Luzung, and Alexander T. Radosevich

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b10769 • Publication Date (Web): 29 Oct 2018 Downloaded from http://pubs.acs.org on October 29, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9

10 11

12 13

14

15

16

17 18 19

20 21

22

23

24

25

26

27

28

29

30

31

32 33

34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Intermolecular Reductive C–N Cross Coupling of Nitroarenes and Boronic Acids by P^{III}/P^V=O Catalysis

Trevor V. Nykaza,^{†§} Julian C. Cooper,^{†§} Gen Li,[†] Nolwenn Mahieu,[†] Antonio Ramirez,[‡] Michael R. Luzung,[‡] Alexander T. Radosevich[†]*

[†] Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

[‡] Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States.

§ Authors contributed equally.

Supporting Information Placeholder

ABSTRACT: A main group-catalyzed method for the synthesis of aryl- and heteroarylamines by intermolecular C–N coupling is reported. The method employs a small-ring organophosphorus-based catalyst (1,2,2,3,4,4-hexamethylphosphetane) and a terminal hydrosilane reductant (phenylsilane) to drive reductive intermolecular coupling of nitro(hetero)arenes with boronic acids. Applications to the construction of both C_{sp2}–N (from arylboronic acids) and C_{sp3}–N bonds (from alkylboronic acids) are demonstrated; the reaction is stereospecific with respect to C_{sp3}–N bond formation. The method constitutes a new route from readily available building blocks to valuable nitrogen-containing products with complementarity in both scope and chemoselectivity to existing catalytic C–N coupling methods.

Aryl- and heteroarylamines comprise a diverse class of organic compounds with significant value as pharmaceuticals, agrochemicals, fine chemicals, and optoelectronic materials. The prevailing strategy for the preparation of these useful compounds-Narylation of the parent aniline through carbon-nitrogen (C-N) coupling (Figure 1A)-is currently shaped by transition metal catalyzed methods (e.g. Buchwald-Hartwig, Ullmann, Chan-Lam couplings).^{1,2} Herein, we describe an alternative main group approach to catalytic intermolecular C-N bond construction that does not rely on transition metals, enabling a complementary route from readily accessible components to (hetero)arylamines. Specifically, we show that a redox active organophosphorusbased catalyst operating in the P^{III}/P^V=O manifold drives reductive coupling of nitroarenes and boronic acids with C-N bond formation to give (hetero)arylamine products (Figure 1B) in a manner functionally distinct from current catalytic practice.

Nitroarenes are common intermediates in synthesis (most typically as aniline precursors), but are relatively underutilized for direct catalytic C–N bond forming reactions.³ Notable exceptions include the work of Nicholas⁴ and Baran,⁵ who have reported iron-catalyzed reductive C–N bond construction by reaction of nitroarenes with alkynes and alkenes, respectively. Hu has reported a related iron-catalyzed reductive C–N bond formation by reaction of nitroarenes with alkyl⁶ and acyl⁷ electrophiles. Stoichiometric main group metal approaches have also been described; Knochel,⁸ Kürti,⁹ and Niggemann¹⁰ have demonstrated reductive conversion of nitroarenes to *N*-arylanilines.

Readily available coupling partners Orthogonal to other C–N methods
Main group catalyzed

Figure 1. A) Established methods for intermolecular C–N coupling. B) This work: P^{III}/P^V =O-catalyzed reductive C–N coupling of nitroarenes and boronic acids.

Our entry into nitroarene functionalization has centered on the use of a redox-active small-ring phosphorus-based compound. We have previously reported that a simple trialkylphosphine catalyst containing a core four-membered ring, in combination with phenylsilane as a terminal reductant, constitutes a competent system for the catalytic transformation of nitroaromatic substrates into azaheterocycles through intramolecular C–N bond forming Cadogan cyclization.^{11,12} In this chemistry, the phosphacyclic catalyst promotes reductive *O*-atom transfer from the nitroarene substrates by cycling in the P^{III}/P^V=O catalytic couple.¹³⁻¹⁶ We considered whether introduction of a suitable exogenous coupling partner to the P^{III}/P^V=O catalytic conditions might enable the construction of C–N bonds in an intermolecular manner.

The reaction of nitrobenzene (1) and phenylboronic acid (2a) to give diphenylamine (3) was chosen for discovery and optimization studies (Table 1). An initial attempt at reductive coupling using conditions previously reported for Cadogan cyclization proved promising, providing diphenylamine in an unoptimized 59% yield (Fig. S1). Using the Design of Experiments approach to evaluate the impact of temperature, concentration, and reagent

equivalencies on the reaction outcome (Fig. S2), optimization studies converged on the conditions outlined in Table 1 (entry 1, 1.1 equiv of 2a, 15 mol % of 4•[O], 0.5 M in *m*-xylene, 120 °C). Under these conditions, the organophosphorus-catalyzed reductive coupling of nitrobenzene and phenylboronic acid gave diphenylamine in 86% GC yield, and 80% isolated yield on a one millimole scale. A comparable performance is observed if the corresponding tricoordinate phosphacycle 4 is employed as catalyst (entry 2), consistent with the interconversion of P^{III} and $P^{V}=O$ oxidation states by catalytic cycling. Relatedly, a stoichiometric implementation of the reductive coupling of 1 and 2a employing 3 equivalents of phosphetane 4 is successful (89% yield) (Table S2).¹⁷ Control experiments omitting either the phosphorus catalyst (entry 3) or the terminal silane reductant (entry 4) do not give the desired product. The reaction performed well in a variety of nonpolar solvents (entries 1,5,6), but was less efficient in a solvent of high donicity (entry 7). The identity of the boron reagent was found to play a significant role in the success of the reaction (Table 1); both phenylboronic acid (2a) and phenylboroxine (2b, entry 8) were successfully aminated by nitrobenzene to give diphenylamine 3 under standard catalytic conditions. However, other common phenylboronic esters are either less productive (catecholatoboronate 2c - entry 9) or unproductive (pinacolatoboronate 2d – entry 10) when employed as the aryl donor in the catalytic C-N coupling reaction, suggesting the possibility of chemoselective differentiation of boryl moieties (vide infra).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

A qualitative assessment of the electronic demand of the reaction was undertaken (Figure 2A). For a series of differentially para-substituted nitroarenes, an empirical electronic trend is observed where increasingly electron-withdrawing para substituents lead to faster qualitative rates and higher yields of C-N coupling (cf. 5-8). Complementarily, the inverse empirical trend with respect to electron demand of the arylboronic acid moiety is observed, where increasingly electron-donating para substituents result in higher yields of C-N coupling (cf. 9-12). The consequence of these two differing trends is that the organophosphoruscatalyzed C-N coupling reaction is most productive for union of electron deficient nitroarenes with electron rich arylboronic acids, as illustrated in the synthesis of 15 in 88% by the coupling of electron-deficient nitroarene 13 with electronic-rich boronic acid 14 (Figure 2A). This observed electronic preference serves as a point of distinction with respect to palladium-catalyzed C-N coupling, where the arylation of electron-deficient arylamine substrates are among the most persistently challenging.¹⁸ The current organophosphorus-catalyzed method may therefore provide a route to construction of otherwise electronically deactivated C-N bonds.

Additional synthetic examples illustrating the reaction scope are collected in Figure 2B. The main group-catalyzed conditions for the C-N coupling method show good functional group compatibility and provide complementary chemoselectivities with respect to established transition metal coupling. Since phosphines do not readily undergo oxidative addition to C_{sp2}-X bonds, halogen substitution is well-tolerated on both the nitroarene component (7, 19, 20) and the boronic acid (11, 23, 24) component. Even very electrophilic 2-chloro and 2-bromopyridyl substrates (26, 27), which are known to be excellent electrophiles for both S_NAr and transition metal-catalyzed substitution, are carried through the phosphine-catalyzed reductive C-N coupling without undesired cleavage. Protic functional groups such as anilines (18, 24) and phenols (25) are orthogonal in reactivity to the nitro group and are therefore tolerated in the coupling chemistry without explicit protection. Even multiple distinct nitro or boryl moieties within a single reaction pair can be differentiated in select circumstances. Due to the aforementioned electronic trends in C-N coupling (Figure 2A), 1,4-dinitrobenzene becomes electronically

 Table 1. Discovery and optimization of the organophosphoruscatalyzed reductive C–N coupling reaction.^a

^aYields were determined through analysis by gas chromatography (GC) with the aid of an internal standard. Yield in parenthesis (entry 1) is for isolated material from a 1.0 mmol reaction scale. ^b0.37 mmol of **2b** was used. See SI for additional optimization experiments.

deactivated following an initial reductive C-N coupling event, such that selective mono-coupling product 28 may be isolated in good yield. And notably, only selective C-N cross coupling product 29 is observed in the reaction of 4pinacolatoborylnitrobenzene and phenylboronic acid; the Bpin moiety is inert to the main group-catalyzed conditions, allowing for further functionalization by known transition metal-catalyzed chemistry if so desired.

The reaction is not limited to C_{sp2} –N bond formation; indeed, the amination of nitrobenzene with C_{sp3} boronic acid reagents including methyl (**30**), primary alkyl (**31**), secondary alkyl (**32**), and strained cycloalkyl (**33**) provide serviceable yields of the desired C_{sp3} –N cross coupling products. As a further illustration of the synthetic utility of the transformation, a number of heteroarylamine structures displaying varied substitution on both the nitro and boronic acid components were synthesized. Carboxyesters on either the nitroarene or boronic acid reaction component were well tolerated (**34**, **35**), and both π -deficient (**37**) and π excessive (**39**) heterocycles are readily employed. As a general point, since the organophosphorus catalyst is only weakly Lewis acidic, substrates and products with Lewis basic functionalities (amines, pyridines, sulfides) are not inherently inhibitory under these main group coupling conditions.

To demonstrate the potential synthetic utility of this methodology in the context of pharmaceutical chemistry, mefenamic acid (40) and tolfenamic acid (41) (Figure 3A)—members of the fenamate group of nonsteroidal anti-inflammatory drugs (NSAIDs) marketed under the tradenames Ponstel and Clotam, respectively—were synthesized with 67% and 73% yields on 1 millimole scale in one-pot by organophosphorus-catalyzed reductive C–N cross coupling of 2-nitrobenzonitrile and either 2,3dimethylphenylboronic acid or 3-chloro-2-methylphenylboronic

Figure 2. Examples of catalytic reductive C–N coupling. (A) Electronic effects on C–N coupling. (B) Synthetic examples of C–N coupling. See SI for full experimental details and conditions. Yields are reported for isolated material following purification on a 1 mmol scale, except as noted. Compounds **5-12** were prepared on 2 mmol scale; compound **26** was prepared on a 3 mmol scale; and compounds **34-39** were prepared on 1 gram scale. Preparation of **22** used 1.3 equivalents of boronic acid. Compound **36** was isolated as its hydrochloride salt.

acid, followed by alkaline nitrile hydrolysis according to a known procedure.¹⁹

The stereospecificity of the catalytic C–N coupling reaction was evaluated by amination of stereochemical probe molecules (Fig. 3B). Reductive coupling of *anti*-phenylcyclopropylboronic acid (*anti*-42) with nitrobenzene under standard main groupcatalyzed conditions gave the *N*-phenyl tranylcypromine derivative *anti*-43 in 71% NMR yield with retention of configuration. Relatedly, reductive coupling of the *syn*-cyclopropane epimer (*syn*-42) with nitrobenzene furnished *syn*-43, in 61% NMR yield with stereochemical retention. Consistent with related protocols for amination of boron derivatives,²⁰ the reductive C–N coupling reaction is stereospecific with respect to the boronic acid component, permitting its potential implementation in stereoselective synthesis. The complementarity of the current main group method for C– N coupling with respect to existing transition metal strategies is exemplified by the diversification of 1,3,5-trisubstituted arene **44** (Figure 3C). Whereas C–N coupling under existing Cu-mediated (Chan-Lam) or Pd-catalyzed (Buchwald-Hartwig) methods permits chemoselective functionalization at the anilide (site b, **46**) or arylbromide (site c, **47**) positions, respectively, catalytic arylamination by the newly developed organophosphorus-catalyzed coupling approach results in selective functionalization at the nitro moiety (site a, **45**) in 81% yield. These results suggest a strategic orthogonality between the bond constructions possible with the various C–N coupling methods. Viewed in this light, we envision that the main group method will augment technical capacity by providing new freedom to synthesize valuable arylamine products from diverse and readily available building blocks.

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Figure 3. Synthetic applications of the catalytic reductive C-N coupling reaction. (A) Synthesis of mefenamic acid and tolfenamic acid. (B) Demonstration of the stereospecificity of C-N coupling. Yields determined by NMR spectroscopy. (C) Selectivity and complementarity in the functionalization of 44 by C-N coupling methods. See SI for full experimental details and conditions.

The foregoing results constitute a practical, scalable, and operationally robust organophosphorus-catalyzed protocol for intermolecular C-N coupling of nitroarenes and boronic acid partners. These findings expand the biphilic reactivity of phosphetanes as platforms for catalytic reductive O-atom transfer operating in the P^{III}/P^V=O redox couple, providing further precedent for the catalytic potential of main group compounds in reaction classes heretofore dominated by transition metal catalysis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Additional optimization results and synthetic procedures (.pdf) ¹H, ¹³C, and ³¹P NMR spectra (.pdf)

AUTHOR INFORMATION

Corresponding Author

*mike@kallyope.com *radosevich@mit.edu

Present Addresses

Kallyope, 430 E. 29th St., Suite 1050, New York, NY 10016

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

Funding was provided by NIH NIGMS (GM114547), MIT, and Bristol-Myers Squibb. We thank Prof. Stephen Buchwald for valuable discussions and for access to equipment and chemicals.

REFERENCES

¹ (a) Hartwig, J. F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angew. Chem. Int. Ed. 1998, 37, 2046. (b) Jiang, L.; Buchwald, S. L. Palladium-Catalyzed Aromatic Carbon-Nitrogen Bond Formation, in Metal-Catalyzed Cross-Coupling Reactions. De Meijere, A.; Diderich, F., Eds.; Wiley-Blackwell: Hoboken, NJ, 2008; ed. 2, pp. 699-760. (c) Jiang, Y.; Ma, D. Copper - Catalyzed Ligand Promoted Ullmann - type Coupling Reactions in Catalysis without Precious Metals. Bullock, R. M. Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010; pp 213-233. (d) Bariwal, J.; Eycken, E. V. der. C-N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 2013, 42, 9283. (e) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 2016, 353, 279.

² (a) Schlummer, B.; Scholz, U. Palladium-Catalyzed C-N and C-O Coupling-A Practical Guide from an Industrial Vantage Point. Adv. Synth. Catal. 2004, 346, 1599. (b) Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027. (c) Yin, J. "Selected Applications of Pd- and Cu-Catalyzed Carbon-Heteroatom Cross Coupling Reactions in the Pharmaceutical Industry." In Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective, Crawley, M. L.; Trost, B. M. Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2012; pp 97-163. (d) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.

³ Lower oxygenates of nitrogen or alternative nitrogen reagents are more common in C-N bond formation with boronic acids. Nitrosoarenes: (a) Yu, Y.; Srogl, J.; Liebeskind, L. S. Cu(I)-Mediated Reductive Amination of Boronic Acids with Nitroso Aromatics. Org. Lett. 2004, 6, 2631. (b) Roscales, S.; Csákÿ, A. G. Synthesis of Di(hetero)arylamines from Nitrosoarenes and Boronic Acids: A General, Mild, and Transition-Metal-Free Coupling. Org. Lett. 2018, 20, 1667.; N-Alkyl hydroxylamines: (c) Sun, H.-B.; Gong, L.; Tian, Y.-B.; Wu, J.-G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Metal- and Base-Free Room-Temperature Amination of Organoboronic Acids with N-Alkyl Hydroxylamines. Angew. Chem. Int. Ed. 2018, 57, 9456.; Azides: (d) Ou, L.; Shao, J.; Zhang, G.; Yu, Y. Metal-Free Carbon-nitrogen Bond-Forming Coupling Reaction between Arylboronic Acids and Organic Azides. Tetrahedron Lett. 2011, 52, 1430. Tosyl triazenes: (e) Sarma, M. J.; Phukan, P. Metal-Free Synthesis of Secondary Amines by the Reaction of Tosyl Triazene and Aryl Boronic Acid. Synth. Commun. 2018, 48, 656.

Srivastava, R. S.; Nicholas, K. M. Kinetics of the Allylic Amination of Olefins by Nitroarenes Catalyzed by [CpFe(CO)2]2. Organometallics 2005. 24. 1563.

⁶ Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Practical olefin hydroamination with nitroarenes. Science 2015, 348, 886.

⁶ Cheung, C. W.; Hu, X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun. 2016, 7, 12494.

Cheung, C. W.; Hu, X. Nickel-Catalyzed Reductive Transamidation of Secondary Amides with Nitroarenes. ACS Catal. 2017, 7, 7092.

⁸ (a) Sapountzis, I.; Knochel, P. A New General Preparation of Polyfunctional Diarylamines by the Addition of Functionalized Arylmagnesium Compounds to Nitroarenes. J. Am. Chem. Soc. 2002, 124, 9390. (b) Doyle, W.; Staubitz, A.; Knochel, P. Mild Synthesis of Polyfunctional Benzimidazoles and Indoles by the Reduction of Functionalized Nitroarenes with Phenylmagnesium Chloride. Chem. Eur. J. 2003, 9, 5323. (c) Kopp, F.; Sapountzis, I.; Knochel, P. Preparation of Polyfunctionalized Amines by the Addition of Functionalized Organomagnesium Reagents to Nitrosoarenes Synlett, 2003, 885. (d) Sapountzis, I.; Knochel, P. A New Method for the Selective Amination of 1,3- and 1,4-Dinitrobenzenes and Protected Nitroanilines Leading to Polyfunctional 1,3- and 1,4- Disubstituted Anilines. Synlett 2004, 955. (e) Dhayalan, V.; Saemann, C.; Knochel, P. Synthesis of polyfunctional secondary amines by the addition of functionalized zinc reagents to nitrosoarenes. Chem. Commun. 2015, 51, 3239.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

58 59

60

⁹ Gao, H.; Xu, Q.-L.; Ess, D. H.; Kürti, L. Transition-Metal-Free, Low-Temperature Intramolecular Amination of Aromatic C-H Bonds: Rapid Synthesis of Fused Heterocycles." *Angew. Chem. Int. Ed.* **2014**, *53*, 2701. ¹⁰ Rauser, M.; Ascheberg, C.; Niggemann, M. Electrophilic Amination

with Nitroarenes. Angew. Chem. Int. Ed. 2017, 56, 11570.

¹¹ (a) Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. A Biphilic Phosphetane Catalyzes N–N Bond-Forming Cadogan Heterocyclization via P^{III}/P^V=O Redox Cycling. *J. Am. Chem. Soc.* **2017**, *139*, 6839. (b) Nykaza, T. V.; Ramirez, A.; Harrison, T. S.; Luzung, M. R.; Radosevich, A. T. Biphilic Organophosphorus-Catalyzed Intramolecular C_{sp2}-H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. *J. Am. Chem. Soc.* **2018**, *140*, 3103.

¹² (a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. 896. The Reactivity of Organophosphorus Compounds. Part XIX. Reduction of Nitro-Compounds by Triethyl Phosphite: A Convenient New Route to Carbazoles, Indoles, Indazoles, Triazoles, and Related Compounds. J. Chem. Soc. 1965, 0, 4831. (b) Cadogan, J. I. G. Reduction of Nitro- and Nitroso-Compounds by Tervalent Phosphorus Reagents. Q. Rev. Chem. Soc. 1968, 22, 222.

¹³ For a review of P^{III}/P^V=O redox cycling, see: Marsden, S. P. Catalytic Variants of Phosphine Oxide-Mediated Organic Transformations in *Sustainable Catalysis*; Dunn, P. J., Hii, K. K., Krische, M. J., Williams, M. T., Eds.; John Wiley & Sons, Inc.: New York, 2013; pp 339–361.

¹⁴ For recent examples of P^{III}/P^V=O redox cycling, see: (a) O'Brien, C. 18 J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; 19 Przeworski, K. C.; Chass, G. A. Recycling the Waste: The Development 20 of a Catalytic Wittig Reaction Angew. Chem. Int. Ed. 2009, 48, 6836. (b) 21 O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J. 22 Breaking the Ring through a Room Temperature Catalytic Wittig Reaction Chem. Eur. J. 2013, 19, 5854. (c) O'Brien, C. J.; Nixon, Z. S.; Holohan, 23 A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.; 24 Kang, L. J.; Przeworski, K. C. Part I: The Development of the Catalytic 25 Wittig Reaction Chem. Eur. J. 2013, 19, 15281. (d) Coyle, E. E.; Doonan, B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O'Brien, 26 C. J. Catalytic Wittig Reactions of Semi- and Nonstabilized Ylides Ena-27 bledby Ylide Tuning Angew. Chem. Int. Ed. 2014, 53, 12907. (e) van 28 Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. In Situ Phosphine Oxide Reduction: A Catalytic 29 Appel Reaction Chem. Eur. J. 2011, 17, 11290. (f) van Kalkeren, H. A.; 30 Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Organophosphorus-31 Catalysed Staudinger Reduction Adv. Synth. Catal. 2012, 354, 1417. (g) Zhao, W.; Yan, P. K.; Radosevich, A. T. Phosphetane catalyzes deoxy-32 genative condensation of α -keto esters and carboxylic acids via $P^{III}/P^V=O$ 33 redox cycling. J. Am. Chem. Soc. 2015, 137, 616. (h) Lee, C.; Chang, T.; 34 Yu, J.; Reddy, G. M.; Hsiao, M.; Lin, W. Synthesis of functionalized 35 furans via chemoselective reduction/Wittig reaction using catalytic triethylamine and phosphine. Org. Lett. 2016, 18, 3758. (i) Saleh, N.; Voi-36 turiez, A. Synthesis of 9H-pyrrolo[1,2-a]indole and 3H-pyrrolizine deriva-37 tives via a phosphine-catalyzed umpolung addition/intramolecular Wittig 38 reaction. J. Org. Chem. 2016, 81, 4371. (j) Saleh, N.; Blanchard, F.; Voituriez, A. Synthesis of nitrogen containing heterocycles and cyclopente-39 none derivatives via phosphine catalyzed Michael addition/intramolecular 40 Wittig reaction. Adv. Synth. Catal. 2017, 359, 2304. (k) Zhang, K.; Cai, 41 L.; Yang, Z.; Houk, K. N.; Kwon, O. Bridged [2.2.1] bicyclic phosphine oxide facilitates catalytic y-umpolung addition-Wittig olefination. Chem. 42 Sci. 2018, 9, 1867.

43 ¹⁵ For redox-neutral phosphine oxide organophosphorus-catalyzed 44 methods: Aza-Wittig (a) Campbell, T.W.; Monagle, J.J. A New Synthesis of Mono- and Polycarbodiimides. J. Am. Chem. Soc. 1962, 84, 1493. (b) 45 Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Catalytic aza-46 Wittig Cyclizations for Heteroaromatic Synthesis. Org. Lett. 2008, 10, 47 2589. (c) Wang, L.; Qin, R.-Q.; Yan, H.-Y.; Ding, M.-W. New Efficient 48 Synthesis of 1,4-Benzodiazepin-5-Ones by Catalytic Aza-Wittig Reaction. Synthesis 2015, 47, 3522. Appel: (d) Denton, R. M.; An, J.; Adeniran, B. 49 Phosphine Oxide-Catalysed Chlorination Reactions of Alcohols under 50 Appel Conditions. Chem. Commun. 2010, 46, 3025. (e) Denton, R. M.; 51 An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Develop-52 ment of a Catalytic Appel Reaction. J. Org. Chem. 2011, 76, 6749. (f) An, 53 J.; Tang, X.; Moore, J.; Lewis, W.; Denton, R. M. Phosphorus(V)-54 Catalyzed Deoxydichlorination Reactions of Aldehydes. Tetrahedron 2013, 69, 8769. (g) Yu, T.-Y.; Wang, Y.; Xu, P.-F. An Unusual Tri-55 phenylphosphine Oxide Catalyzed Stereoselective 1,3-Dichlorination of 56 Unsaturated Ketoesters. Chem. Eur. J. 2014, 20, 98. 57

¹⁶ For electrophilic phosphonium-catalyzed methods, see: (a) Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Lewis Acidity of Organofluorophosphonium Salts: Hydrodefluorination by a Saturated Acceptor. *Science* **2013**, *341*, 1374. (b) Bayne, J. M.; Stephan, D. W. Phosphorus Lewis Acids: Emerging Reactivity and Applications in Catalysis. *Chem. Soc. Rev.* **2016**, *45*, 765.

 17 Attempted use of other reported phosphacyclic catalysts in the P^{III}/P^V=O literature proved less effective (Table S3).

¹⁸ Pompeo, M.; Farmer, J. L.; Froese, R. D. J.; Organ, M. G. Room-Temperature Amination of Deactivated Aniline and Aryl Halide Partners with Carbonate Base Using a Pd-PEPPSI-IPent^{CL} o-Picoline Catalyst. *Angew. Chem. Int. Ed.* **2014**, *126*, 3287.

¹⁹ (a) Trinus, F. P.; Mokhort, N. A.; Yagupol'skii, L. M.; Fadeicheva, A. G.; Danilenko, V. S.; Ryabukha, T. K.; Fialkov, Y. A.; Kirichek, L. M.; Endel'man, É. S.; Get'man, G. A. Mefenamic acid—A nonsteroid antiinflammatory agent. *Pharm. Chem. J.* **1977**, *11*, 1706. (b) Rao, B.; Zeng, X. Aminocyanation by the Addition of N–CN Bonds to Arynes: Chemoselective Synthesis of 1,2-Bifunctional Aminobenzonitriles. *Org. Lett.* **2014**, *16*, 314.

²⁰ (a) Brown, H. C.; Kim, K. W.; Cole T. E.; Singaram, B. J. Am. Chem. Soc. **1986**, 108, 6761. (b)Matteson, D. S.; Kim, G. Y. Asymmetric Alkyldifluoroboranes and Their Use in Secondary Amine Synthesis. Org. Lett. **2002**, 4, 2153. (c) Bagutski, V.; Elford, T. G.; Aggarwal, V. K. Synthesis of Highly Enantioenriched C-Tertiary Amines from Boronic Esters: Application to the Synthesis of Igmesine. Angew. Chem. Int. Ed., **2011**, 50, 1080. (d) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. Direct Sterospecific Amination of Alkyl and Aryl Pinacol Boronates J. Am. Chem. Soc. **2012**, 134, 16449.

TOC graphic

Readily available coupling partners
 Orthogonal to other C–N coupling methods
 Main group catalyzed