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ABSTRACT: A main group-catalyzed method for the synthesis 

of aryl- and heteroarylamines by intermolecular C–N coupling is 

reported. The method employs a small-ring organophosphorus-

based catalyst (1,2,2,3,4,4-hexamethylphosphetane) and a termi-

nal hydrosilane reductant (phenylsilane) to drive reductive inter-

molecular coupling of nitro(hetero)arenes with boronic acids. 

Applications to the construction of both Csp2–N (from arylboronic 

acids) and Csp3–N bonds (from alkylboronic acids) are demon-

strated; the reaction is stereospecific with respect to Csp3–N bond 

formation. The method constitutes a new route from readily avail-

able building blocks to valuable nitrogen-containing products with 

complementarity in both scope and chemoselectivity to existing 

catalytic C–N coupling methods.  

Aryl- and heteroarylamines comprise a diverse class of organic 

compounds with significant value as pharmaceuticals, agrochemi-

cals, fine chemicals, and optoelectronic materials. The prevailing 

strategy for the preparation of these useful compounds—N-

arylation of the parent aniline through carbon-nitrogen (C–N) 

coupling (Figure 1A)—is currently shaped by transition metal 

catalyzed methods (e.g. Buchwald-Hartwig, Ullmann, Chan-Lam 

couplings).1,2 Herein, we describe an alternative main group ap-

proach to catalytic intermolecular C–N bond construction that 

does not rely on transition metals, enabling a complementary 

route from readily accessible components to (hetero)arylamines. 

Specifically, we show that a redox active organophosphorus-

based catalyst operating in the PIII/PV=O manifold drives reduc-

tive coupling of nitroarenes and boronic acids with C–N bond 

formation to give (hetero)arylamine products (Figure 1B) in a 

manner functionally distinct from current catalytic practice. 

Nitroarenes are common intermediates in synthesis (most typi-

cally as aniline precursors), but are relatively underutilized for 

direct catalytic C–N bond forming reactions.3 Notable exceptions 

include the work of Nicholas4 and Baran,5 who have reported 

iron-catalyzed reductive C–N bond construction by reaction of 

nitroarenes with alkynes and alkenes, respectively. Hu has report-

ed a related iron-catalyzed reductive C–N bond formation by reac-

tion of nitroarenes with alkyl6 and acyl7 electrophiles. Stoichio-

metric main group metal approaches have also been described; 

Knochel,8 Kürti,9 and Niggemann10 have demonstrated reductive 

conversion of nitroarenes to N-arylanilines. 

Figure 1. A) Established methods for intermolecular C–N cou-

pling. B) This work: PIII/PV=O-catalyzed reductive C–N coupling 

of nitroarenes and boronic acids. 

Our entry into nitroarene functionalization has centered on the 

use of a redox-active small-ring phosphorus-based compound. We 

have previously reported that a simple trialkylphosphine catalyst 

containing a core four-membered ring, in combination with 

phenylsilane as a terminal reductant, constitutes a competent sys-

tem for the catalytic transformation of nitroaromatic substrates 

into azaheterocycles through intramolecular C–N bond forming 

Cadogan cyclization.11,12 In this chemistry, the phosphacyclic 

catalyst promotes reductive O-atom transfer from the nitroarene 

substrates by cycling in the PIII/PV=O catalytic couple.13-16 We 

considered whether introduction of a suitable exogenous coupling 

partner to the PIII/PV=O catalytic conditions might enable the con-

struction of C–N bonds in an intermolecular manner.  

The reaction of nitrobenzene (1) and phenylboronic acid (2a) to 

give diphenylamine (3) was chosen for discovery and optimiza-

tion studies (Table 1). An initial attempt at reductive coupling 

using conditions previously reported for Cadogan cyclization 

proved promising, providing diphenylamine in an unoptimized 

59% yield (Fig. S1). Using the Design of Experiments approach 

to evaluate the impact of temperature, concentration, and reagent 
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equivalencies on the reaction outcome (Fig. S2), optimization 

studies converged on the conditions outlined in Table 1 (entry 1, 

1.1 equiv of 2a, 15 mol % of 4•[O], 0.5 M in m-xylene, 120 °C). 

Under these conditions, the organophosphorus-catalyzed reduc-

tive coupling of nitrobenzene and phenylboronic acid gave diphe-

nylamine in 86% GC yield, and 80% isolated yield on a one mil-

limole scale. A comparable performance is observed if the corre-

sponding tricoordinate phosphacycle 4 is employed as catalyst 

(entry 2), consistent with the interconversion of PIII and PV=O 

oxidation states by catalytic cycling. Relatedly, a stoichiometric 

implementation of the reductive coupling of 1 and 2a employing 3 

equivalents of phosphetane 4 is successful (89% yield) (Table 

S2).17 Control experiments omitting either the phosphorus catalyst 

(entry 3) or the terminal silane reductant (entry 4) do not give the 

desired product. The reaction performed well in a variety of non-

polar solvents (entries 1,5,6), but was less efficient in a solvent of 

high donicity (entry 7). The identity of the boron reagent was 

found to play a significant role in the success of the reaction (Ta-

ble 1); both phenylboronic acid (2a) and phenylboroxine (2b, 

entry 8) were successfully aminated by nitrobenzene to give di-

phenylamine 3 under standard catalytic conditions. However, 

other common phenylboronic esters are either less productive 

(catecholatoboronate 2c – entry 9) or unproductive (pinacolato-

boronate 2d – entry 10) when employed as the aryl donor in the 

catalytic C–N coupling reaction, suggesting the possibility of 

chemoselective differentiation of boryl moieties (vide infra). 

A qualitative assessment of the electronic demand of the reac-

tion was undertaken (Figure 2A). For a series of differentially 

para-substituted nitroarenes, an empirical electronic trend is ob-

served where increasingly electron-withdrawing para substituents 

lead to faster qualitative rates and higher yields of C–N coupling 

(cf. 5-8). Complementarily, the inverse empirical trend with re-

spect to electron demand of the arylboronic acid moiety is ob-

served, where increasingly electron-donating para substituents 

result in higher yields of C–N coupling (cf. 9-12). The conse-

quence of these two differing trends is that the organophosphorus-

catalyzed C–N coupling reaction is most productive for union of 

electron deficient nitroarenes with electron rich arylboronic acids, 

as illustrated in the synthesis of 15 in 88% by the coupling of 

electron-deficient nitroarene 13 with electronic-rich boronic acid 

14 (Figure 2A). This observed electronic preference serves as a 

point of distinction with respect to palladium-catalyzed C–N cou-

pling, where the arylation of electron-deficient arylamine sub-

strates are among the most persistently challenging.18 The current 

organophosphorus-catalyzed method may therefore provide a 

route to construction of otherwise electronically deactivated C–N 

bonds.  

Additional synthetic examples illustrating the reaction scope 

are collected in Figure 2B. The main group-catalyzed conditions 

for the C–N coupling method show good functional group com-

patibility and provide complementary chemoselectivities with 

respect to established transition metal coupling. Since phosphines 

do not readily undergo oxidative addition to Csp2–X bonds, halo-

gen substitution is well-tolerated on both the nitroarene compo-

nent (7, 19, 20) and the boronic acid (11, 23, 24) component. 

Even very electrophilic 2-chloro and 2-bromopyridyl substrates 

(26, 27), which are known to be excellent electrophiles for both 

SNAr and transition metal-catalyzed substitution, are carried 

through the phosphine-catalyzed reductive C–N coupling without 

undesired cleavage. Protic functional groups such as anilines (18, 

24) and phenols (25) are orthogonal in reactivity to the nitro group 

and are therefore tolerated in the coupling chemistry without ex-

plicit protection. Even multiple distinct nitro or boryl moieties 

within a single reaction pair can be differentiated in select circum-

stances. Due to the aforementioned electronic trends in C–N cou-

pling (Figure 2A), 1,4-dinitrobenzene becomes electronically  

Table 1. Discovery and optimization of the organophosphorus-

catalyzed reductive C–N coupling reaction.a 

 

Entry [B] Solvent R3P=O Yield (%) 

1 2a m-xylene 4•[O] 86% (80%) 

2 2a m-xylene 4 82% 

3 2a m-xylene none 0% 

4 2a m-xylene 4•[O]; no silane 0% 

5 2a dibutyl ether 4•[O] 86% 

6 2a toluene 4•[O] 80% 

7 2a DMF 4•[O] 17% 

8b 2b m-xylene 4•[O] 74% 

9 2c m-xylene 4•[O] 54% 

10 2d m-xylene 4•[O] 2% 

aYields were determined through analysis by gas chromatography 

(GC) with the aid of an internal standard. Yield in parenthesis 

(entry 1) is for isolated material from a 1.0 mmol reaction scale. 
b0.37 mmol of 2b was used. See SI for additional optimization 

experiments. 

deactivated following an initial reductive C–N coupling event, 

such that selective mono-coupling product 28 may be isolated in 

good yield. And notably, only selective C–N cross coupling prod-

uct 29 is observed in the reaction of 4-

pinacolatoborylnitrobenzene and phenylboronic acid; the Bpin 

moiety is inert to the main group-catalyzed conditions, allowing 

for further functionalization by known transition metal-catalyzed 

chemistry if so desired.   

The reaction is not limited to Csp2–N bond formation; indeed, 

the amination of nitrobenzene with Csp3 boronic acid reagents 

including methyl (30), primary alkyl (31), secondary alkyl (32), 

and strained cycloalkyl (33) provide serviceable yields of the 

desired Csp3–N cross coupling products. As a further illustration 

of the synthetic utility of the transformation, a number of het-

eroarylamine structures displaying varied substitution on both the 

nitro and boronic acid components were synthesized. Carboxyes-

ters on either the nitroarene or boronic acid reaction component 

were well tolerated (34, 35), and both π-deficient (37) and π-

excessive (39) heterocycles are readily employed. As a general 

point, since the organophosphorus catalyst is only weakly Lewis 

acidic, substrates and products with Lewis basic functionalities 

(amines, pyridines, sulfides) are not inherently inhibitory under 

these main group coupling conditions. 

To demonstrate the potential synthetic utility of this methodol-

ogy in the context of pharmaceutical chemistry, mefenamic acid 

(40) and tolfenamic acid (41) (Figure 3A)—members of the 

fenamate group of nonsteroidal anti-inflammatory drugs 

(NSAIDs) marketed under the tradenames Ponstel and Clotam, 

respectively—were synthesized with 67% and 73% yields on 1 

millimole scale in one-pot by organophosphorus-catalyzed reduc-

tive C–N cross coupling of 2-nitrobenzonitrile and either 2,3-

dimethylphenylboronic acid or 3-chloro-2-methylphenylboronic 
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acid, followed by alkaline nitrile hydrolysis according to a known 

procedure.19 

The stereospecificity of the catalytic C–N coupling reaction 

was evaluated by amination of stereochemical probe molecules 

(Fig. 3B). Reductive coupling of anti-phenylcyclopropylboronic 

acid (anti-42) with nitrobenzene under standard main group-

catalyzed conditions gave the N-phenyl tranylcypromine deriva-

tive anti-43 in 71% NMR yield with retention of configuration. 

Relatedly, reductive coupling of the syn-cyclopropane epimer 

(syn-42) with nitrobenzene furnished syn-43, in 61% NMR yield 

with stereochemical retention. Consistent with related protocols 

for amination of boron derivatives,20 the reductive C–N coupling 

reaction is stereospecific with respect to the boronic acid compo-

nent, permitting its potential implementation in stereoselective 

synthesis.  

The complementarity of the current main group method for C–

N coupling with respect to existing transition metal strategies is 

exemplified by the diversification of 1,3,5-trisubstituted arene 44 

(Figure 3C). Whereas C–N coupling under existing Cu-mediated 

(Chan-Lam) or Pd-catalyzed (Buchwald-Hartwig) methods per-

mits chemoselective functionalization at the anilide (site b, 46) or 

arylbromide (site c, 47) positions, respectively, catalytic arylami-

nation by the newly developed organophosphorus-catalyzed cou-

pling approach results in selective functionalization at the nitro 

moiety (site a, 45) in 81% yield. These results suggest a strategic 

orthogonality between the bond constructions possible with the 

various C–N coupling methods. Viewed in this light, we envision 

that the main group method will augment technical capacity by 

providing new freedom to synthesize valuable arylamine products 

from diverse and readily available building blocks. 

 

Figure 2. Examples of catalytic reductive C–N coupling. (A) Electronic effects on C–N coupling. (B) Synthetic examples of C–N cou-

pling. See SI for full experimental details and conditions. Yields are reported for isolated material following purification on a 1 mmol 

scale, except as noted. Compounds 5-12 were prepared on 2 mmol scale; compound 26 was prepared on a 3 mmol scale; and compounds 

34-39 were prepared on 1 gram scale. Preparation of 22 used 1.3 equivalents of boronic acid. Compound 36 was isolated as its hydrochlo-

ride salt. 
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Figure 3. Synthetic applications of the catalytic reductive C–N 

coupling reaction. (A) Synthesis of mefenamic acid and tolfenam-

ic acid. (B) Demonstration of the stereospecificity of C–N cou-

pling. Yields determined by NMR spectroscopy. (C) Selectivity 

and complementarity in the functionalization of 44 by C–N cou-

pling methods. See SI for full experimental details and conditions. 

The foregoing results constitute a practical, scalable, and opera-

tionally robust organophosphorus-catalyzed protocol for intermo-

lecular C–N coupling of nitroarenes and boronic acid partners. 

These findings expand the biphilic reactivity of phosphetanes as 

platforms for catalytic reductive O-atom transfer operating in the 

PIII/PV=O redox couple, providing further precedent for the cata-

lytic potential of main group compounds in reaction classes here-

tofore dominated by transition metal catalysis. 
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