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Tuning Gold Nanoparticles with Chelating Ligands for Highly

Efficient Electrocatalytic CO, Reduction

Zhi Cao®, Samson B. Zacate®, Xiaodong Sun’, Jinjia Liu, Elizabeth M. Hale, William
Tyndall, Jun Xu, Xingwu Liu, Xingchen Liu, Chang Song, Jheng-hua Luo, Mu-Jeng

Wen’ and Wei Liu’

Abstract: We report the capped chelating organic molecules as a
design principle for tuning heterogeneous nanoparticles for
electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized
with a chelating tetradentate porphyrin ligand show a 110-fold
enhancement, compared to the oleylamine-coated AuNP, in current
density for electrochemical reduction of CO, to CO in water at an
overpotential of 340 mV with Faradaic efficiencies (FEs) of 93%.
These catalysts also show excellent stability without deactivation,
<5% productivity loss, within 72 hours of electrolysis. DFT
calculation results further confirm the chelation effect in stabilizing
molecule/NP interface and tailoring catalytic activity. This general
approach is thus anticipated to be complementary to current NP
catalyst design approaches.
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The successful attachment of P1 to the surface of Au NPs
was first identified by UV-Vis spectroscopy (Figure 1a). The UV—
Vis spectrum of OAm-AuNP displays a characteristic Au NP
absorption at ca. 525 nm,*” whereas P1 exhibits a strong Soret
band at 425 nm. Upon ligand exchange, the characteristic
absorption peak position red-shifts to 540 nm, retaining a
shoulder peak at 425 nm as the signature of porphyrin Soret
band. In addition, the FT-IR spectrum (Figure 1b) of OAmM-—
AuNP contains alkyl C-H stretches originated from the surface-
capped oleylamine ligands.”® The significantly reduced signal of
C-H stretching upon P1 functionalization and the additional
spectral features resembling of the free P1 ligand reveal a close-
to-completion ligand exchange. The peak intensity at 1680 cm™,
corresponding to the C=0 stretches of the thioacetate terminal
group,®® drastically decreases upon P1 functionalization,
suggesting the in-situ cleavage of the thioacetate groups and
formation of Au-S bonds (Figure 1b). The completion of ligand
exchange was further corroborated by high-resolution N1s and
S2p X-ray photoelectron spectroscopy (XPS). The N1s peak at
399.5 eV is consistent with previously reported spectra assigned
to a surface-capped porphyrin layer,”® 39 revealing the
existence of porphyrin on Au surface (Figure 1c) and the minor
peak at ca. 400.3 eV is associated with amide moieties.”” The
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S2p peak centered at 162.3 eV matches the thiolate peak,?®
further supporting the Au-S linkages (Figure 1d). High-resolution
transmission electron microscopy studies reveal that P1-AuNP
(Figure 1f, S1b) possesses almost identical morphology to
OAmM-AuNP (Figure 1e, S1a). The size distribution analysis
reveals an average particle size of approximately 7.2 nm for
both particles (Figure S2). The crystallinity of the particles is also
similar, as evidenced by X-ray diffraction studies (Figure S3).
Finally, coordination of P1 to the Au surface was verified by solid
state "*C NMR spectroscopy (Figure S4).
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We then conducted controlled potential electrolysis (CPE) in
CO,-saturated KHCO; buffers under different applied potentials
between -0.30 V and -0.70 V to quantify the products of CO,
reduction. Analysis of the head-space and electrolyte solutions
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To und®rstand how P1 contributes to the observed
vements of catalytic activity and selectivity, we first
jgated the electrochemically active surface area (ECSA) of
m-AuNP and P1-AuNP by a Pb underpotential
) method (Figure 2d).? 3% 4™ The calculated
uNP is 3.2-fold larger than that of OAm-AuNP,
most likely due to more exposed Au sites as anticipated in ligand
design. To further confirm this hypothesis, we also acquired the
ECSA of naked-AuNP. It turns out that naked-AuNP and P1-
possess comparable ECSA (1.17:1) and similar TEM
(Figure S6), suggesting that both catalysts expose
lar numbers of Au sites for CO,RR.

Longer-term CPE experiments at the potential of -0.45 V
how that P1-AuNP maintains its catalytic activity and high FE
for CO generation for up to 72 h. In contrast, the activity of
OAmM-AuNP drastically lowers in the first 12 h and meanwhile
the FE drops from 62% to ~10% (Figure 2e). As the persistence
of the surface capped or ligated ligands is believed to be crucial
to the associated durability of P1-AuNP,"""?? we thus further
evaluated the post-electrochemical stability (24 h) of P1-AuNP
by FT-IR, XPS, UPD, and consecutive voltammetry
characterizations. The FT-IR spectrum contains attenuated C-H
stretches at ca. 2900-2700 cm'1, which is likely attributed to
reductive desorption of residual oleylamine ligand present on the
Au surface. In contrast, the IR signals from the ligated P1 (ca.
1800-800 cm™) remain almost intact (Figure S7). Both N 1s and
S 2p signals are quite consistent with prior features according to
the XPS studies (Figure S8). The decreased intensities of signal
peaks are likely resultant from the detachment of the non-
covalently surface coated porphyrins (either physically adsorbed
porphyrins or stacking of the porphyrins via -1 interactions) or
blockage of the surface sites by residual electrolyte.
Furthermore, the electrochemically accessible Au surface area
of P1-AuNP electrode before and after electrolysis is also similar
as evidenced by the comparable peak areas of Au (111) and
(110) in the UPD studies (Figure S9). Finally, improved durability
of the catalytic interface has been confirmed by the consecutive
voltammetry study'® under CO, atmosphere, which showed that
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the CV curves nearly coincide
(Figure S10).
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Figure 2. (a) CV scans of OAm-AuNP and P1-AuNP electro,
saturated 0.5 M KHCO; at pH 7.3. (b) FEs of CO produce
and P1-AuNP electrodes. (c) Specific current densities o
OAm-AuNP and P1-AuNP electrodes. (d) Pb-upd profile
and P1-AuNP electrodes in 0.1 M NaOH solution contai
Pb(OAc),, scan rate 50 mV/s. (e) Controlled potential electrolysis
AuNP and P1-AuNP electrode at -0.45 V over a 72 h time course. (g)
plots of OAm-AuNP and P1-AuNP electrodes.

pathways for CO, reduction. A
observed for OAmM-AuNP, c
rate-determining single;
adsorbed CO; to ge
contrast, the Tafel
reflecting the possibility t
equilibrating one-electron tra
chemical step. g

Finally, we
computational hydr
Au(111) and P1-Au

9 mV/decade,
undergo a pre-
r followed by a rate-limiting

tional theory (DFT) and

on the Au surface and its reactivity
d that the adsorption of CO, on
these two mo y favored, as evidenced by their
adsorption energy of -0.29 eV for Au (111) and -0.68 eV for P1-
Au(111) (Figure S12). We then calculated the possible pathways
of CO; reduction into CO on both models. In particular, the total

10.1002/anie.201805696

WILEY-VCH

energy of each surface model was computed and converted to
free energy at 25 °C, 1 atm, and -0.11 V, the theoretical
equilibrium potential of CO, reduction into COP* *? (details in
Supporting Information). The initial step of CO, hydrogenation
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ther than the bare Au(111), we were also interested in
ing free energy diagram of OAm-coated Au(111) and the
computation was then conducted on a simplified model
111) (Figure S14a; details in Sl). In brief, the
reaction monitored on the CH3;NHz-Au(111) is also
energetically less favored than that on P1-Au(111) (Figure S15)
in the CO, reduction to CO. Furthermore, to understand
influence of possible electronic effect, induced by the Au-S
g at the interface, on the free energy profile, we have
d out additional control calculations to probe the free
rgy diagram on a simplified model of CH;SH-Au(111) (Figure
4b; details in Sl), which is an effective representative for
onodentate alkylthiol. In short, our results confirm that the
influence of aforementioned electronic effect on the CO,RR path
is trivial (Figure S15). Particularly, the AG calculated from the
simplified models is expected to be slightly larger than the real
cases, but the variance is negligible (details in Sl).
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Figure 3. Free energy diagrams for CO, reduction to CO on Au(111) and P1-
Au(111).
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In summary, we have developed a molecular approach to
tuning the surface properties of metal nanoparticles for
electrocatalysis. The tetradendate ligand enables the formation
of hollow scaffold on gold nanoparticle surface, leaving the
exposed gold sites electrochemically accessible. The prepared
molecular/material hybrid electrode, P1-AuNP, efficiently
catalyzes the reduction of CO, to CO with a high activity (2
mA/cm? at 340 mV over-potential) and selectivity (FE = 93 %).
Furthermore, the catalytic stability is significantly improved by
the chelation effect of the multi-dentate porphyrin ligand, with
negligible decay of FE and current over a 72-hour electrolysis.
Theoretical calculations demonstrate that the reduction of CO, to
CO on porphyrin-ligated Au surface is thermodynamically more
favored. We envision that tuning heterogeneous nanoparticle
surface with molecularly-tunable multidentate ligands will be a
powerful strategy for the development of novel catalysts for
many sub-fields of heterogeneous catalysis.
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