

Available online at www.sciencedirect.com

Bioorganic Chemistry 34 (2006) 26-38

BIOORGANIC CHEMISTRY

www.elsevier.com/locate/bioorg

Parallel synthesis of 5-cyano-6-aryl-2-thiouracil derivatives as inhibitors for hepatitis C viral NS5B RNA-dependent RNA polymerase

Yili Ding *, Jean-Luc Girardet, Kenneth L. Smith, Gary Larson, Brett Prigaro, Jim Z. Wu, Nanhua Yao

Valeant Pharmaceuticals International, 3300 Hyland Avenue Costa Mesa, CA 92626, USA

Received 17 August 2005 Available online 19 December 2005

Abstract

From random screening of our compound libraries, we identified a hit compound with an IC₅₀ of 27 μ M against hepatitis C viral NS5B RNA-dependent RNA polymerase. By using a parallel synthetic strategy, a series of its derivatives were synthesized. From their anti-HCV activity screening, compounds with single digital 3.8 micromolar activity were obtained. © 2005 Elsevier Inc. All rights reserved.

Keywords: HCV; NS5B; 5-Cyano-6-aryl-2-thiouracil derivatives; Inhibitors

1. Introduction

Chronic viral infection caused by hepatitis C virus (HCV) has been recognized as one of the leading causes of liver impairment such as cirrhosis and hepatocellular carcinoma. It is estimated that 3% of the world population or about 170 million people are infected with hepatitis C virus [1]. The recommended standard of care treatment, the pegylated interferon α in the combination with ribavirin, provides a sustained response in about 50% of the treated patients, but side effects could be severe [2]. The need of a more efficacious and

Corresponding author. E-mail address: yding@valeant.com (Y. Ding).

better tolerated treatment has spurred intense research efforts in pharmaceutical industry to develop novel anti-HCV agents.

HCV is a 9.6 kb positive strand RNA virus of the flaviviridae, genus *Hepacivirus*. It contains a single open reading frame coding for a ~3000 amino acid polyprotein, which is further processed into various structural and non-structural viral proteins by host and viral proteases. The NS5B RNA-dependent RNA polymerase (RdRp) is the central enzyme that is responsible for replication of the viral genome, and has since become a target of choice for the screening and design of small molecular inhibitors, which in principle, should interfere with viral replication [3]. Various institutions and pharmaceutical companies have reported structurally diverse non-nucleoside small molecular inhibitors of NS5B polymerase [4].

Our efforts towards identifying an HCV NS5B RdRp inhibitor started with a high throughput screening of compound libraries using an NS5B RdRp directed RNA synthesis assay [5]. The effort culminated in identification of a 5-cyano-6-aryl-2-thiouracil compound **1** that had an IC₅₀ (inhibitor concentration for 50% inhibition) of 27 μ M. Although its potency was not impressive, compound **1** had no apparent structural liability and seemed to possess a pharmacophore of uracil, the nucleobase of uridine that is utilized by an RNA polymerase. In addition, this class of molecule has been previously reported to possess antiviral activity against polio, coxsackie, and semliki forest viruses [6]. A recent patent application also revealed that 5-cyano-6-aryl-2-thiouracils are active against HCV NS3 helicase [7]. In this communication, we report the synthesis of various thiouracil derivatives with different substituents across the ring skeleton and their inhibitory activity against HCV NS5B RdRp.

2. Results and discussion

Based on the structure of compound 1, we made the chemical modifications on aryl group at C-6 of the ring, alkylation on the S atom, and substitutions on the N of the ring through the parallel synthesis strategy. We like to find out the structure–activity relation of these modifications. The efficient synthetic strategy is summarized in Scheme 1. The thioxopyrimidine heterocyclic cores were constructed by a cyclo-condensation of equivalent molar quantities of 10 substituted aromatic aldehydes 1a–1j, thiourea, and ethyl cyanoacetate in the parallel fashion. After neutralization with acetic acid, the desired 5-cyano-4-oxo-6-aryl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine derivatives 2a–2j were obtained as solids.

Benzylation of compounds 2a-2j with different substituted benzyl bromides in ethanol in the presence of K₂CO₃ gave 6-aryl-5-cyano-2-benzylthio-4-oxopyrimidines 3aa-3je in high yields. During these reactions, in some cases, the S and N disubstituted pyrimidine derivatives such as compound 3a were also isolated from the reaction mixture as minor products.

Alkylation of compounds 2a–2h, and 2j with various alkyl bromides in DMF in the presence of triethylamine provided the 6-aryl-5-cyano-2-alkylthio-4-oxopyrimidines 4aa–4ha, 4ja–4jc. Treatment of compounds 2a, 2b, 2e, 2f, 2g, and 2i with 1,2-dibromoethylene or 1,3-dibromopropane in DMF in the presence of triethylamine afforded the five-membered ring bicyclic thiazolo[3,2-*a*]pyrimidines 5b, 5e, 5f, 5g, 5i, and the six-membered ring bicyclic derivatives from the reactions with 1,4-dibromobutane, however, no desired compound was isolated from the reaction mixture even under strong reaction conditions (higher temperature and longer reaction time in DMF or DMSO).

Compound **3ce** was halogenated from the reaction with phosphoryl chloride to yield 6-(4bromophenyl)-4-chloro-2-(2-trifluoromethyl-benzylthio)-pyrimidine-5-carbonitrile (7). This highly activated intermediate was then reacted with different amines to yield 6-(4-bromophenyl)-4-alkylamino-2-(2-trifluoromethyl-benzylthio)-pyridine- 5-carbonitriles **7a**–**7j**.

Each compound was purified on preparative TLC in a parallel fashion. The identity of the compounds described above was confirmed by ESMS (data not shown) and ¹H NMR spectra. They normally had more than 90% purity judged by HPLC and LCMS.

All the compounds were evaluated for inhibitory activity against HCV NS5B RdRp using a publishing procedure [5]. In the assay, a compound was first dissolved in DMSO, and then transferred into the assay buffer. Every compound was tested in duplicate. IC_{50} determined for each compound generally carried with a standard deviation <10%.

A systematic study of importance of the substitution on the aryl ring and benzyl ring for compounds **3aa–3je** is listed in Table 1. The inhibitory activities of 2-alkylthio-6-aryl-3,4-dihydro-6-oxopyrimidine-5-carbonitrile derivatives **4aa–4jc** are listed in Table 2. Some of these compounds showed single digital micromolar activity including compounds **3ce** (7.1 μ M), **3cf** (8.7 μ M), **3dd** (8.6 μ M), **3hd** (9.2 μ M), **3jc** (3.8 μ M), and **3je** (9.9 μ M) against hepatitis C viral NS5B RNA-dependent RNA polymerase. The best compound **3jc** was further assayed for its ability to inhibit hepatitis C viral subgenome replication assay in Huh-7 cells. Its activity was weak with an EC₅₀ of 32 μ M.

The *para*-substitution on both C-6 aryl group and the S-benzyl group improved the inhibitory activity two-fold over the lead compound. However, a combination of *para*-substitution on C-6 aryl group and a *ortho*-substitution on S-benzyl group led to a five-fold increase over the lead compound activity. Non-benzyl alkyl substitution on sulfur did not improve the activity very much.

Five-membered ring bicyclic heterocycles **5b**, **5e**, **5f**, **5g**, and **5f**, six-membered ring bicyclic heterocycles **6a**, **6b**, **6e**, **6f**, **6g**, and **6i**, 4-alkylamino-6-(4-bromophenyl)-2-(2-trifluoromethyl-benzylthio)-pyrimidine-5-carbonitrile analogues **7a**–**7j**, and the S and N disubstituted pyrimidine derivative **3a** did not show any inhibitory activity ($IC_{50} > 100 \mu M$). All of these compounds have the substitution at N of the ring, indicating free NH of the ring is necessary for the activity.

Scheme 1. Reagents and conditions: (a) **1a**–**1***j*, thiourea, K₂CO₃, ethanol, refluxing; (b) **2a**–**2***j*, substituted benzyl bromides, K₂CO₃, DMF, room temperature, 10 h; (c) **2a**–**2h**, **2j**, alkyl bromides, triethylamine, DMF, 80 °C, 10 h; (d) **2b**, **2e**, **2f**, **2g**, and **2i**, BrCH₂CH₂Br, triethylamine, DMF, 80 °C, 10 h; (e) **2a**, **2b**, **2e**, **2f**, **2g**, and **2i**, BrCH₂CH₂Br, triethylamine, DMF, 80 °C, 10 h; (f) **3ce**, POCl₃, 70 °C, 100%; (g) **7**, alkyl amines, triethylamine, CH₃CN, room temperature, 10 h.

Table 1							
SAR of	the substitution	on the a	aryl and	benzyl	groups	of compou	nd 1

	N R		
Compound		R ₂	IC ₅₀ (μM)
3aa	F-	MeO	19
3ab	F-	MeO Me	57
3ac	F-	Br	13
3ad	F-	O ₂ N	32
3ba	CI-CI	MeO	34
3bb	CI-CI	Me	33
3bc	CI-CI	F ₃ CO-	11
3са	Br	MeO	13
3cb	Br-	Me Me	11
3cc	Br	Br	10
3cd	Br	°₂N	14
3ce	Br	CF ₃	7.1
3cf	Br	F3CO-	8.7
3da	Me	MeO MeO	30

30

Table 1 (continued)

Compound	R ₁	R ₂	IC ₅₀ (µM)
3db	Me	Me	22
3dc	Me	O ₂ N	20
3dd	Me	F3CO-	8.6
3ea	F ₃ C	MeO	11
3eb	F ₃ C	Me	14
3ec	F ₃ C	O ₂ N	13
3fa	Me	MeO	25
3fb	Me	Me	14
3fc	Me	Br	32
3fd	Me	O ₂ N	37
3ga	F	MeO MeO	15
3gb	F	Me	27
3ha		MeO	12
3hb	CF3	MeO Me	14
3hc	CF3	⟨ B r	21
3hd	CF3	F ₃ CO-	9.2

(continued on next page)

Compound	R_1	\mathbf{R}_2	$IC_{50} (\mu M)$
3ia		MeO MeO	34
3ib		Me	29
3ja	\rightarrow	MeO MeO	25
3jb	\succ	Me	12
3jc	\succ	Br	3.8
3jd	\rightarrow	O ₂ N	10
3je	\rightarrow	F3CO-	9.9

Table 1 (continued)

All the compounds described here were tested for cellular activity using a cell-based HCV subgenomic replicon assay. They did not show any toxicity up to $250 \,\mu$ M.

3. Conclusions

From the screening of our compound libraries using an NS5B-directly RNA synthesis assay, we identified a hit compound 1 with an IC_{50} of 27 μ M. By using a parallel synthetic strategy, we were able to synthesize a series of 5-cyano-6-aryl-2-thiouracil derivatives for anti-HCV agent screening. Modification of the hit has resulted in a series of inhibitor with improved potency. The SAR studies suggest that the free NH of the uracil ring seems to be necessary for the inhibitory activity, the *para*-substitution on both C-6 aryl group and the *S*-benzyl group slightly improved the activity, and a combination of the *para*-substitution on the aryl group and an *ortho*-substitution on the sulfur atom increase the activity. Based on these results, further optimization, mechanism of action, and structural studies are in progress to elucidate their mode of action and improve their potency against HCV NS5B RdRp.

4. Experimental

4.1. General

¹H spectra were obtained using a Varian Gemini 300 NMR. The proton NMR spectra were recorded at 300 MHz. All reagents and chemicals were obtained from Aldrich Chem-

Table 2

SAR at the substitution of aryl group and the non-beznyl alkyl group on sulfur atom of the core struct	cture
--	-------

	Ņ	SR2 NH	
	R ₁	CN CN	
Compound	R ₁	R ₂	IC ₅₀ (µM)
4aa	F-	CH ₃ (CH ₂) ₄	12
4ba	CI	CH ₃ (CH ₂) ₄	17
4bb	CI	Ph(CH ₂) ₃	12
4ca	Br	$CH_3(CH_2)_4$	11
4cb	Br	PhCO ₂ (CH ₂) ₂	30
4cc	Br	CO-CH ₂	50
4da	Me	$CH_3(CH_2)_4$	18
4db	Me	CO-CH ₂	>100
4ea	F ₃ C	CH ₃ (CH ₂) ₄	12
4eb	F ₃ C	PhCO ₂ (CH ₂) ₂	13
4fa	Me	CH ₃ (CH ₂) ₄	18
4ga	F F	Ph(CH ₂) ₃	>100
4gb	F F	CH ₂	>100
4ha		$CH_3(CH_2)_4$	20
4ja		CH ₃ (CH ₂) ₄	12
4jb	$\succ \hspace{-1.5mm} \sim \hspace{-1.5mm} \simeq \hspace{-1.5mm} \simeq \hspace{-1.5mm} \simeq \hspace{-1.5mm} \simeq $	Ph(CH ₂) ₃	>100
4jc	$\rightarrow \frown$		17

ical (USA) and were used as received unless otherwise noted. All the reactions were performed in a Reacto-Station RS 6000 synthesizer. Each compound was purified on a preparative TLC. The purity of the compounds was determined by LCMS (waters Micromass ZQ).

4.2. Spectral data: ¹H NMR data

3aa (CD₃OD): δ 7.72 (m, 1H), 7.20 (m, 2H), 6.54 (s, 2H), 6.37 (s, 1H), 4.23 (s, 2H), 3.68 (s, 6H).

3ab ¹H NMR (CD₃OD): δ 7.53 (q, 1H), 7.21 (s, 1H), 7.17–7.01 (m, 5H), 4.33 (s, 2H), 2.29 (s, 3H).

3ac ¹H NMR (CD₃OD): δ 7.56 (m, 2H), 7.23 (t, 1H, J = 7.2 Hz), 7.13 (m, 3H), 4.51 (s, 2H). **3ad** ¹H NMR (CD₃OD): δ 8.31 (s, 1H), 8.09 (d, 1H, J = 8.4 Hz), 7.88 (d, 1H, J = 8.4 Hz), 7.52 (m, 2H), 7.10 (m, 2H), 4.53 (s, 2H).

3a ¹H NMR (CD₃OD): δ 8.27 (s, 1H), 8.19 (m, 1H), 8.12 (s, 1H), 8.06 (d, 1H, J = 8.1 Hz), 7.80 (d, 1H, J = 8.1 Hz), 7.8 (m, 2H), 7.48 (t, 1H, J = 8.1 Hz), 7.37 (m, 1H), 7.01 (m, 2H), 4.46 (d, 2H, J = 8.4 Hz), 4.28 (d, 2H, J = 8.4 Hz).

3ba ¹H NMR (CD₃OD): δ 7.69 (s, 1H), 7.53 (s, 1H), 7.52 (s, 1H), 6.51 (s, 2H), 6.36 (s, 1H), 4.39 (s, 2H), 3.68 (s, 6H).

3bb ¹H NMR (CD₃OD): δ 7.59 (d, 1H, J = 2.1 Hz), 7.45 (dd, 1H, J = 8.7, 2.1 Hz), 7.37 (d, 1H, J = 8.7 Hz), 7.20 (s, 1H), 7.16 (s, 1H), 7.15 (d, 1H, J = 6.6 Hz), 7.02 (d, 1H, J = 6.6 Hz), 4.36 (s, 2H), 2.27 (s, 3H).

3bc ¹H NMR (CD₃OD): δ 7.59 (s, 1H), 7.52 (d, 2H, J = 8.7 Hz), 7.38 (q, 2H, J = 8.4 Hz), 7.16 (d, 2H, J = 8.7 Hz); 4.38 (s, 2H).

3ca ¹H NMR (DMSO- d_6): δ 7.74 (d, 2H, J = 8.7 Hz), 7.68 (d, 2H, J = 8.7 Hz), 6.56 (s, 2H), 6.32 (s, 1H), 4.24 (s, 2H), 3.64 (s, 6H).

3cb ¹H NMR (DMSO- d_6): δ 7.79 (d, 2H, J = 8.4 Hz), 7.73 (d, 2H, J = 8.4 Hz), 7.18 (m, 2H), 7.16, (s, 1H), 7.04 (m, 1H), 4.35 (s, 2H), 2.22 (s, 3H).

3cc ¹H NMR (DMSO- d_6): δ 7.86 (d, 2H, J = 6.9 Hz), 7.79 (d, 2H, J = 6.9 Hz), 7.64 (d, 1H, J = 6.9 Hz), 7.53 (d, 1H, J = 6.9 Hz), 7.32 (t, 1H, J = 6.9 Hz), 7.23 (t, 1H, J = 6.9 Hz), 4.60 (s, 2H).

3cd ¹H NMR (CD₃OD): δ 8.33 (s, 1H), 8.09 (d, 2H, J = 8.1 Hz), 7.86 (d, 2H, J = 8.1 Hz), 7.73 (d, 2H, J = 8.7 Hz), 7.64 (d, 2H, J = 8.7 Hz), 7.52 (t, 1H, J = 8.1 Hz), 4.51 (s, 2H).

3ce ¹H NMR (DMSO- d_6): δ 7.78 (m, 6H), 7.64 (t, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.5 Hz), 4.68 (s, 2H).

3cf ¹H NMR (CD₃OD): δ 7.71 (d, 2H, J = 8.4 Hz), 7.63 (d, 2H, J = 8.4 Hz), 7.53 (d, 1H, J = 8.2 Hz), 7.17 (d, 2H, J = 8.2 Hz), 4.41 (s, 2H).

3da ¹H NMR (CD₃OD): δ 7.78 (s, 1H), 7.76 (d, 1H), 7.41 (m, 2H), 6.59 (s, 2H), 6.36 (s, 1H), 4.47 (s, 2H), 3.64 (s, 6H), 2.43 (s, 3H).

3db ¹H NMR (CD₃OD): δ 7.61 (s, 2H), 7.33 (m, 2H), 7.17 (m, 3H), 7.01 (d, 1H, J = 6.0 Hz), 4.40 (s, 2H), 2.39 (s, 3H), 2.27 (s, 3H).

3dc ¹H NMR (DMSO- d_6): δ 8.27 (s, 1H), 8.06 (d, 1H, J = 8.1 Hz), 7.87 (d, 1H, J = 8.1 Hz), 7.58 (t, 1H, J = 8.1 Hz), 7.49 (d, 1H), 7.48 (s, 1H), 7.31 (t, 1H, J = 8.1 Hz), 7.24 (t, 1H, J = 8.1 Hz), 4.38 (s, 2H), 2.33 (s, 3H).

3dd ¹H NMR (CDCl₃): δ 7.47 (d, 1H), 7.44 (s, 1H), 7.11 (m, 4H), 6.89 (d, 2H, J = 8.1 Hz), 4.12 (s, 2H), 2.15 (s, 3H).

3ea ¹H NMR (CD₃OD): δ 8.30 (s, 1H), 8.25 (d, 1H, J = 6.9 Hz), 7.90 (d, 1H, J = 6.9 Hz), 7.77 (t, 1H, J = 6.9 Hz), 6.57 (s, 2H), 6.36 (s, 1H), 4.49 (s, 2H), 3.65 (s, 6H). **3eb** ¹H NMR (CD₃OD): δ 8.10 (s, 1H), 8.07 (d, 1H, J = 8.8 Hz), 7.80 (d, 1H, J = 7.8 Hz), 7.68 (t, 1H, J = 8.8 Hz), 7.23 (s, 1H), 7.19 (d, 1H, J = 8.8 Hz), 7.14 (t, 1H, J = 8.8 Hz), 7.02 (d, 1H, J = 8.8 Hz), 4.35 (s, 2H), 2.28 (s, 3H).

3ec ¹H NMR (DMSO- d_6): δ 8.27 (s, 1H), 8.05 (t, 1H, J = 9.0 Hz), 7.99 (s, 1H), 7.86 (d, 1H, J = 7.5 Hz), 7.83 (d, 1H, J = 7.5 Hz), 7.69 (t, 1H, J = 9.0 Hz), 7.57 (t, 1H, J = 9.0 Hz), 4.39 (s, 2H).

3fa ¹H NMR (CD₃OD): *δ* 7.20 (m, 4H), 6.56 (s, 2H), 6.34 (s, 1H), 4.40 (s, 2H), 3.66 (s, 6H), 2.32 (s, 3H).

3fb ¹H NMR (CD₃OD): δ 7.38–7.11 (m, 7H), 7.02 (d, 1H, J = 6.6 Hz), 4.33 (s, 2H), 2.27 (s, 3H), 2.28 (s, 3H).

3fc ¹H NMR (CD₃OD): δ 7.40–7.11 (m, 7H), 7.02 (d, 1H, J = 6.6 Hz), 4.38 (s, 2H), 2.27 (s, 3H).

3fd ¹H NMR (CDCl₃): δ 8.20 (s, 1H), 8.02 (t, 1H), 7.82 (d, 1H, J = 7.5 Hz), 7.60 (t, 1H), 7.20 (m, 4H), 4.20 (s, 2H), 2.20 (s, 3H).

3ga ¹H NMR (CD₃OD): δ 7.59 (d, 1H), 7.57 (d, 1H), 7.22 (m, 1H), 6.58 (s, 2H), 6.37 (s, 1H), 4.24 (s, 2H), 3.69 (s, 6H).

3gb ¹H NMR (CD₃OD): δ 7.41 (m, 2H), 7.23 (s, 1H), 7.17 (d, 1H, J = 7.5 Hz), 7.15 (t, 1H, J = 7.5 Hz), 7.06 (m, 1H), 7.02 (d, 1H, J = 7.5 Hz), 4.34 (s, 2H), 2.29 (s, 3H).

3ha ¹H NMR (CD₃OD): δ 7.91 (d, 1H, J = 7.2 Hz), 7.77 (t, 2H, J = 7.2 Hz), 7.62 (d, 1H, J = 7.2 Hz), 6.47 (s, 2H) 6.34 (s, 1H), 4.37 (s, 2H), 3.64 (s, 6H).

3hb ¹H NMR (CD₃OD): δ 7.81 (d, 1H, J = 7.5 Hz), 7.68 (q, 2H, J = 7.5 Hz), 7.47 (d, 1H, J = 7.5 Hz), 7.19 (s, 1H), 7.14 (m, 2H), 7.01 (d, 1H, J = 6.0 Hz), 4.31 (s, 2H), 2.28 (s, 3H).

3hc ¹H NMR (CD₃OD): δ 7.82 (d, 1H, J = 8.4 Hz), 7.72 (t, 2H, J = 8.4 Hz), 7.66 (d, 1H, J = 8.4 Hz), 7.55 (d, 1H, J = 8.4 Hz), 7.53 (d, 1H, J = 8.4 Hz), 7.47 (d, 1H, J = 8.4 Hz), 7.21 (t, 1H, J = 8.4 Hz), 7.12 (t, 1H, J = 8.4 Hz), 4.49 (s, 2H).

3hd ¹H NMR (CDCl₃): δ 7.67 (d, 1H, J = 7.8 Hz), 7.45 (t, 1H, J = 7.8 Hz), 7.33 (t, 1H, J = 7.8 Hz), 7.16 (d, 2H, J = 8.4 Hz), 7.09 (d, 2H, J = 7.8 Hz), 6.93 (d, 2H, J = 8.4 Hz), 4.15 (s, 2H).

3ia ¹H NMR (CD₃OD): δ 7.77 (s, 2H), 7.58 (s, 1H), 6.60 (s, 2H), 6.33 (s, 1H), 3.77 (s, 2H), 3.72 (s, 6H).

3ib ¹H NMR (CD₃OD): δ 7.75 (d, 2H, J = 2.1 Hz), 7.57 (t, 1H, J = 2.1 Hz), 7.24 (s, 1H), 7.18 (s, 1H), 7.04 (s, 1H), 7.02 (s, 1H), 4.33 (s, 2H), 2.29 (s, 3H).

3ja ¹H NMR (DMSO-*d*₆): δ 7.90 (d, 2H, J = 9.1 Hz), 7.43, (d, 2H, J = 9.1 Hz), 6.57 (s, 2H), 6.34 (s, 1H), 4.43 (s, 2H), 4.36 (s, 1H, NH), 3.55 (s, 6H), 2.96 (m, 1H), 1.27 (d, 6H, J = 6.9 Hz).

3jb ¹H NMR (CD₃OD): δ 7.75 (s, 1H), 7.74 (s, 1H), 7.57 (t, 1H, J = 2.1 Hz), 7.24 (s, 1H), 7.18 (s, 1H), 7.14 (d, 1H), 7.02 (d, 1H), 4.33 (s, 2H), 2.29 (s, 3H).

3jc ¹H NMR (DMSO- d_6): δ 7.84 (d, 2H, J = 7.8 Hz), 7.38 (d, 1H, J = 7.8 Hz), 7.30 (d, 1H, J = 7.8 Hz), 7.13 (d, 2H, J = 7.8 Hz), 6.96 (t, 2H, J = 7.8 Hz), 4.36 (s, 2H), 2.85 (m, 1H), 1.29 (d, 6H, J = 6.6 Hz).

3jd ¹H NMR (CD₃OD): δ 8.34 (s, 1H), 8.12 (d, 1H, J = 9.3 Hz), 7.88 (d, 2H, J = 8.4 Hz), 7.84 (d, 1H, J = 9.3 Hz), 7.54 (t, 1H, J = 9.3 Hz), 7.40 (d, 2H, J = 8.4 Hz), 4.65 (s, 2H), 3.02 (m, 1H), 1.30 (d, 6H, J = 6.6 Hz).

3je ¹H NMR (CDCl₃): δ 7.61 (d, 2H, J = 8.1 Hz), 7.04 (m, 4H), 6.83 (d, 4H, J = 8.1 Hz), 4.03 (s, 2H), 2.80 (m, 1H), 1.13 (d, 6H, J = 6.6 Hz).

4aa ¹H NMR (CD₃OD): δ 7.58 (q, 1H, J = 8.4 Hz), 7.08 (t, 2H, J = 8.4 Hz), 3.09 (t, 2H, J = 7.6 Hz), 1.70 (m, 2H), 1.36 (m, 4H), 0.90 (t, 3H, J = 7.6 Hz).

4ba ¹H NMR (CD₃OD): δ 7.59 (s, 1H), 7.43 (m, 2H), 3.09 (t, 2H, J = 7.6 Hz), 1.70 (m, 2H), 1.36 (m, 4H), 0.90 (t, 3H, J = 7.6 Hz).

4bb ¹H NMR (CD₃OD): δ 7.59 (s, 1H), 7.43 (q, 2H, J = 7.6 Hz), 7.21 (m, 5H), 3.09 (t, 2H, J = 7.6 Hz), 2.70 (t, 2H, J = 7.6 Hz), 2.01 (m, 2H).

4ca ¹H NMR (CD₃OD): δ 7.79 (d, 1H, J = 7.5 Hz), 7.63 (t, 2H, J = 7.5 Hz), 3.09 (t, 2H, J = 7.2 Hz), 1.75 (m, 2H), 1.40 (m, 4H), 0.90 (t, 3H, J = 7.2 Hz).

4cb ¹H NMR (CD₃OD): δ 7.74 (d, 2H, J = 6.6 Hz), 7.65 (d, 2H, J = 6.6 Hz), 7.34 (m, 3H), 7.12 (m, 2H), 4.10 (t, 2H, J = 7.4 Hz), 3.40 (d, 1H, J = 7.4 Hz).

4cc ¹H NMR (CD₃OD): δ 7.74 (d, 1H, J = 6.6 Hz), 7.65 (d, 1H, J = 6.6 Hz), 3.95 (dd, 1H, J = 11.1, 2.7 Hz), 3.58 (m, 1H), 3.44 (m, 1H), 3.35 (dd, 1H), 3.08 (q, 1H, J = 13.5 Hz), 1.82 (m, 2H), 1.52 (m, 3H), 1.31 (m, 1H).

4da ¹H NMR (CD₃OD): δ 7.62 (s, 1H), 7.59 (d, 1H, J = 7.2 Hz), 7.31 (m, 2H), 3.09 (t, 2H, J = 7.2 Hz), 1.75 (m, 2H), 1.40 (m, 4H), 0.90 (t, 3H, J = 7.2 Hz).

4db ¹H NMR (DMSO-*d*₆): δ 7.70 (d, 1H, J = 5.7 Hz), 7.67 (s, 1H), 7.42 (t, 1H, J = 5.7 Hz), 7.40 (d, 1H, J = 5.7 Hz), 4.42 (s, 1H, NH), 3.93 (dd, 1H), 3.56 (m, 1H), 3.44 (m, 1H), 3.35 (dd, 1H, J = 14.1, 4.8 Hz), 3.17 (q, 1H, 13.5), 2.19 (s, 3H), 1.82 (m, 2H), 1.52 (m, 3H), 1.35 (m, 1H).

4ea ¹H NMR (CD₃OD): δ 8.11 (s, 1H), 8.10 (d, 1H), 7.80 (d, 1H, J = 7.2 Hz), 7.68 (t, 1H, J = 7.2 Hz), (m, 2H), 3.13 (t, 2H, J = 7.5 Hz), 1.75 (m, 2H), 1.40 (m, 4H), 0.91 (t, 3H, J = 7.2 Hz).

4eb ¹H NMR (CDCl₃): δ 8.15 (s, 1H), 7.95 (m, 2H), 7.89 (m, 2H), 7.60 (m, 3H), 7.38 (m, 2H), 4.61 (t, 2H, J = 6.0 Hz), 3.65 (t, 2H, J = 6.0 Hz).

4fa ¹H NMR (CD₃OD): δ 7.26 (m, 4H), 3.07 (t, 2H, J = 7.5 Hz), 2.27 (s, 3H), 1.75 (m, 2H), 1.40 (m, 4H), 0.91 (t, 3H, J = 7.2 Hz).

4ga ¹H NMR (CD₃OD): δ 7.21 (m, 8H), 4.04 (t, 2H, J = 6.3 Hz), 2.72 (t, 2H, J = 6.3 Hz), 1.92 (m, 2H).

4gb ¹H NMR (CD₃OD): δ 7.50 (m, 2H), 7.10 (m, 1H), 3.95 (dd, 1H, J = 11.1, 2.7 Hz), 3.56 (m, 1H), 3.45 (m, 1H), 3.35 (dd, 1H), 3.12 (q, 1H, J = 13.5 Hz), 1.82 (m, 2H), 1.52 (m, 3H), 1.35 (m, 1H).

4ha ¹H NMR (CD₃OD): δ 7.80 (d, 1H, J = 7.5 Hz), 7.69 (t, 1H, J = 7.5 Hz), 7.64 (t, 1H, J = 7.5 Hz), 7.46 (d, 1H, J = 7.5 Hz), 3.09 (t, 2H, J = 7.2 Hz), 1.70 (m, 2H), 1.36 (m, 4H), 0.90 (t, 3H, J = 7.2 Hz).

4ja ¹H NMR (CD₃OD): δ 7.76 (d, 2H, J = 8.1 Hz), 7.33 (d, 2H, J = 8.1 Hz), 3.11 (t, 2H, J = 7.2 Hz), 2.98 (m, 1H), 1.71 (m, 2H), 1.40 (m, 4H), 1.30 (d, 6H, J = 6.9 Hz), 0.91 (t, 3H, J = 7.2 Hz).

4jb ¹H NMR (CD₃OD): δ 7.77 (d, 2H, J = 8.4 Hz), 7.34 (d, 2H, J = 8.4 Hz), 7.18 (m, 5H), 3.14 (d, 1H, J = 7.2 Hz), 2.98 (m, 1H), 2.75 (t, 2H, J = 7.2 Hz), 2.03 (m, 2H).

4jc ¹H NMR (CD₃OD): δ 7.76 (d, 2H, J = 8.4 Hz), 7.34 (d, 2H, J = 8.4 Hz), 3.94 (dd, 1H, J = 10.5, 2.7 Hz), 3.67 (m, 1H), 3.44 (m, 1H), 3.33 (dd, 1H, J = 13.8, 4.5 Hz), 3.13 (q, 1H, J = 7.5 Hz), 2.99 (m, 1H), 1.83 (m, 2H), 1.58 (m, 3H), 1.35 (m, 1H), 1.30 (d, 6H, J = 6.9 Hz).

5b ¹H NMR (CD₃OD): δ 7.67 (s, 1H), 7.51 (s, 1H), 7.50 (s, 1H), 4.61 (t, 2H, J = 7.8 Hz), 3.68 (t, 2H, J = 7.8 Hz).

5e ¹H NMR (CDCl₃): δ 7.75 (s, 1H), 7.73 (t, 1H, J = 4.8 Hz), 7.40 (d, 2H, J = 4.8 Hz), 4.57 (t, 2H, J = 7.8 Hz), 3.65 (t, 2H, J = 7.8 Hz).

5f ¹H NMR (CD₃OD): δ 8.23 (s, 1H), 8.22 (d, 1H, J = 6.6 Hz), 7.89 (d, 1H, J = 6.6 Hz), 7.75 (t, 1H, J = 6.6 Hz), 4.59 (t, 2H, J = 7.8 Hz), 3.67 (t, 2H, J = 7.8 Hz).

5g ¹H NMR (CD₃OD): δ 7.25 (m, 4H), 4.60 (t, 2H, J = 7.8 Hz), 3.60 (t, 2H, J = 7.8 Hz), 2.30 (s, 3H).

5i ¹H NMR (CDCl₃): δ 7.96 (d, 2H, J = 8.1 Hz), 7.61 (d, 2H, J = 8.1 Hz), 4.60 (t, 2H, J = 7.8 Hz), 3.60 (t, 2H, J = 7.8 Hz).

6a ¹H NMR (CD₃OD): δ 7.67 (m, 1H), 7.18 (m, 2H), 4.15 (m, 2H), 3.30 (m, 2H), 2.34 (m, 2H).

6b ¹H NMR (CD₃OD): δ 7.65 (s, 1H), 7.48 (s, 1H), 7.47 (s, 1H), 4.17 (t, 2H, J = 7.8 Hz), 3.30 (t, 2H), 2.35 (m, 2H).

6e ¹H NMR (CDCl₃): δ 7.88 (s, 1H), 7.86 (t, 1H, J = 8.1 Hz), 7.69 (d, 2H, J = 8.1 Hz), 4.13 (t, 2H, J = 7.8 Hz), 3.30 (t, 2H), 2.33 (m, 2H).

6f ¹H NMR (CD₃OD): δ 8.213 (s, 1H), 8.22 (d, 1H, J = 7.8 Hz), 7.89 (d, 1H, J = 7.8 Hz), 7.73 (t, 1H, J = 7.8 Hz), 4.16 (t, 2H), 3.30 (t, 2H), 2.34 (m, 2H).

6g ¹H NMR (CDCl₃): δ 7.25 (m, 4H), 4.60 (d, 2H, J = 7.8 Hz), 3.30 (m, 2H), 2.31 (m, 2H), 2.30 (s, 3H).

6i ¹H NMR (CD₃OD): δ 7.65 (s, 1H), 7.49 (m, 2H, J = 6.6 Hz), 4.18 (m, 4H), 2.35 (d, 2H).

7a ¹H NMR (DMSO-*d*₆): δ 8.31 (t, 1H, NH), 7.74 (m, 6H), 7.63 (t, 1H, *J* = 7.8 Hz), 7.51 (d, 1H, *J* = 7.8 Hz), 7.15 (t, 1H, *J* = 7.8 Hz), 6.74 (d, 1H, *J* = 8.1 Hz), 6.72 (s, 1H), 6.70 (d, 1H, *J* = 8.1 Hz), 4.62 (s, 2H), 3.64 (s, 3H), 3.63 (m, 2H), 2.79 (t, 2H, *J* = 7.5 Hz).

7b ¹H NMR (CDCl₃): δ 7.81 (d, 2H, J = 8.4 Hz), 7.69 (d, 1H, J = 7.5 Hz), 7.67 (d, 1H, J = 7.5 Hz), 7.61 (d, 2H, J = 8.4 Hz), 7.48 (t, 1H, J = 7.5 Hz), 7.37 (t, 1H, J = 7.2 Hz), 5.75 (t, 1H, NH), 4.65 (s, 2H), 4.58 (m, 1H), 2.35 (m, 2H), 1.95 (m, 2H), 1.78 (m, 2H).

7c ¹H NMR (CDCl₃): δ 7.81 (d, 2H, J = 8.4 Hz), 7.67 (m, 4H), 7.49 (t, 1H, J = 7.2 Hz), 7.36 (t, 1H, J = 7.2 Hz), 7.28 (m, 3H), 7.16 (d, 2H, J = 7.8 Hz), 5.72 (t, 1H, NH), 4.67 (s, 2H), 3.75 (q, 2H), 2.87 (t, 2H, J = 8.2 Hz).

7d ¹H NMR (CDCl₃): δ 7.84 (d, 2H, J = 8.7 Hz), 7.69 (d, 1H, J = 7.2 Hz), 7.66 (d, 1H, J = 7.2 Hz), 7.62 (d, 2H, J = 8.7 Hz), 7.48 (t, 1H, J = 7.2 Hz), 7.37 (t, 1H, J = 7.2 Hz), 5.64 (t, 1H, NH), 4.65 (s, 2H), 3.46 (t, 2H, J = 6.3 Hz), 1.34 (m, 1H), 1.27 (m, 8H), 0.88 (t, 6H, J = 6.0 Hz).

7e ¹H NMR (CDCl₃): δ 7.73 (d, 2H, J = 8.2 Hz), 7.67 (d, 1H, J = 8.2 Hz), 7.64 (d, 1H, J = 8.15 Hz), 7.60 (d, 2H, J = 8.2 Hz), 7.49 (t, 1H, J = 8.2 Hz), 7.39 (t, 1H, J = 8.2 Hz), 4.61 (s, 2H), 4.58 (m, 1H), 3.18 (s, 3H), 2.95 (m, 2H), 2.31 (s, 3H), 2.00 (m, 3H), 1.80 (m, 3H), 1.10 (m, 1H).

7f ¹H NMR (CDCl₃): δ 7.82 (d, 2H, J = 8.4 Hz), 7.68 (t, 2H, J = 9.0 Hz), 7.65 (d, 2H, J = 8.4 Hz), 7.49 (t, 1H, J = 9.0 Hz), 7.37 (t, 1H, J = 9.0 Hz), 6.82 (d, 1H, J = 8.1 Hz), 6.71 (d, 1H, J = 8.1 Hz), 6.70 (s, 1H), 5.73 (t, 1H, NH), 4.67 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.77 (m, 2H), 2.83 (t, 2H, J = 6.9 Hz).

7g ¹H NMR (CDCl₃): δ 8.21 (m, 1H), 7.74 (d, 2H, J = 8.7 Hz), 7.68 (m, 1H), 7.65 (d, 2H, J = 8.7 Hz), 7.55 (d, 1H), J = 8.4 Hz), 7.53 (t, 1H, J = 8.4 Hz), 7.37 (t, 1H, J = 8.4 Hz), 6.69 (m, 1H), 6.63 (d, 1H, J = 8.4 Hz), 4.64 (s, 2H), 4.06 (t, 4H, J = 4.5 Hz), 3.68 (t, 4H, J = 4.5 Hz).

7h ¹H NMR (CDCl₃): δ 9.5 (s, 1H, NH), 7.81 (d, 2H, J = 8.7 Hz), 7.67 (d, 1H, J = 7.4 Hz), 7.65 (d, 1H, J = 7.4 Hz), 7.58 (d, 2H, J = 8.7 Hz), 7.48 (t, 1H, J = 7.4 Hz), 7.46 (t, 1H, J = 7.4 Hz); 4.65 (s, 2H), 3.80 (m, 1H), 3.50 (td, 1H), 3.20 (m, 1H), 2.80 (m, 1H), 2.60 (m, 1H), 2.38 (s, 3H), 2.02 (dt, 2H), 1.99 (m, 2H), 1.82 (m, 2H).

7i ¹H NMR (CDCl₃): δ 7.85 (d, 2H, J = 8.7 Hz), 7.70 (d, 1H, J = 7.5 Hz), 7.69 (d, 1H, J = 7.5 Hz), 7.65 (d, 2H, J = 8.7 Hz), 7.50 (t, 1H, J = 7.5 Hz), 7.38 (t, 1H, J = 7.5 Hz), 5.99 (t, 1H, NH), 4.65 (s, 2H), 4.20 (m, 2H).

7j ¹H NMR (CDCl₃): δ 7.84 (d, 2H, J = 8.4 Hz), 7.63 (d, 1H, J = 7.5 Hz), 7.61 (d, 2H, J = 7.5 Hz), 7.60 (t, 2H, J = 8.4 Hz), 7.50 (t, 1H, J = 7.5 Hz); 7.39 (t, 1H, J = 7.5 Hz), 6.74 (d, 1H, J = 8.1 Hz), 6.62 (d, 1H, J = 8.1 Hz), 6.61 (s, 1H), 5.94 (s, 2H), 5.72 (t, 1H, NH), 4.66 (s, 2H), 3.70 (m, 2H), 2.78 (t, 2H, J = 6.6 Hz).

References

- [1] M. Berenger, T.L. Wright, Proc. Assoc. Am. Physicians 110 (1998) 98.
- [2] P.L. Beaulieu, M. Llinas-Brunet, Curr. Med. Chem. Anti-infect. Agents 1 (2002) 163.
- [3] A.A. Kolykhalov, K. Mihalik, S.M. Feistone, C.M. Rice, J. Virol. 74 (2002) 2046.
- [4] (a) J.Z. Wu, Z. Hong, Curr. Drug Targets Infect. Disord. 3 (2003) 207;
 (b) P.L. Beaulieu, Y.S. Tsantrizos, Curr. Opin. Investig. Drugs 5 (2004) 838.
- [5] J. Shim, G. Larson, V. Lai, S. Naim, J.Z. Wu, Antiviral Res. 58 (2003) 243.
- [6] V.J. Ram, B. Vanden, A. Dirk, A.J. Vlietinck, Liebigs Ann. Chem. (1987) 797.
- [7] M. Hale, F. Maltais, C. Baker, J. Janetka, Y.C. Moon, WO 01/07027 A2.