Bioorganic & Medicinal Chemistry Letters 23 (2013) 6346-6349

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Discovery, design and synthesis of a selective S1P₃ receptor allosteric agonist

-

CrossMark

Miguel Guerrero^a, Ramulu Poddutoori^a, Mariangela Urbano^a, Xuemei Peng^a, Timothy P. Spicer^b, Peter S. Chase^b, Peter S. Hodder^{b,c}, Marie-Therese Schaeffer^{d,e}, Steven Brown^{d,e}, Hugh Rosen^{d,e,f}, Edward Roberts^{a,*}

^a Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States

^b Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States

^d Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States

^e The Scripps Research Institute Molecular Screening Center, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States

^f Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, United States

ARTICLE INFO

Article history: Received 12 July 2013 Revised 17 September 2013 Accepted 23 September 2013 Available online 1 October 2013

Keywords: S1P₃ receptor Allosteric agonist Cardiovascular functions

ABSTRACT

Potent and selective S1P₃ receptor (S1P₃-R) agonists may represent important proof-of-principle tools used to clarify the receptor biological function and assess the therapeutic potential of the S1P₃-R in cardiovascular, inflammatory and pulmonary diseases. *N*,*N*-Dicyclohexyl-5-propylisoxazole-3-carboxamide was identified by a high-throughput screening of MLSMR library as a promising S1P₃-R agonist. Rational chemical modifications of the hit allowed the identification of *N*,*N*-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide, a S1P₃-R agonist endowed with submicromolar activity and exquisite selectivity over the remaining S1P_{1,2,4,5}-R family members. A combination of ligand competition, site-directed mutagenesis and molecular modeling studies showed that the *N*,*N*-dicyclohexyl-5-cyclopropylisoxazole-3-carboxamide is an allosteric agonist and binds to the S1P₃-R in a manner that does not disrupt the S1P₃-R-S1P binding. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the molecular basis of the receptor function, and provides the bases for further rational design of more potent and drug-like S1P₃-R allosteric agonists.

© 2013 Elsevier Ltd. All rights reserved.

Sphingosine-1-phosphate (S1P) is a naturally occurring lysophospholipid produced in most cell types, regulates fundamental biological processes and functions including cell proliferation, cell growth, angiogenesis, and inhibits apoptosis and lymphocyte trafficking.¹ The generation of S1P is mediated by two cytosolic sphingosine kinase isoforms (SPK1 and SPK2) and occurs preferentially in the plasma membrane.² S1P has two distinct signaling roles, as an intracellular second messenger and as an extracellular ligand for a specific family of G-protein coupled receptors (GPCRs) named S1P₁₋₅-Rs.³ S1P can also affect cell function by either binding or modifying putative intracellular targets or by affecting the relative levels of other lipid products, particularly sphingomyelin and ceramide whose biological effects oppose those of S1P.^{4,2a}

Increasing evidence supports that different subfamilies of ATPbinding cassette (ABC) transporters contribute to, or are involved in, secreting the S1P lipids across the plasma membranes.⁵ The

differential temporal and spatial pattern and intracellular signaling pathways of each S1P-R enable S1P to exert its diverse biological functions. S1P₁₋₃-Rs are widely expressed in almost all organs in mice and humans whereas S1P4-R and S1P5-R expression is restricted to specific organs and cell types.⁶ In humans S1P₃-R is highly expressed in heart, lungs, spleen, kidney and pancreas. S1P₃-R couples with G_{i/o}, G_q, and G_{12/13}. Interestingly, S1P₃-R deficient mice showed no obvious phenotype.⁷ However, clear association of S1P₃-R has been demonstrated in several cardiovascular functions including regulation of heart rate and blood pressure in rodents,⁸ vasorelaxation⁹ and cardiac fibrosis.¹⁰ Additionally, regulation of myocardial perfusion and cardiomyocytes protection in ischemia perfusion injury was dependent on the S1P₃-R.¹¹ Furthermore, studies with S1P₃-R-null mice and PAR1-deficient dendritic cells (DC) have shown that S1P₃-R acts as a downstream component in PAR₁-mediated septic lethality.¹² S1P₃-R is also shown to regulate the endothelial cells in splenic marginal sinus organization¹³ and the stimulation of endothelial progenitor cells.¹⁴ S1P₃-R has also been implicated in mediating and amplifying inflammatory responses in various CNS disorders in autocrine and paracrine fashion.¹⁵ Recently, it has been shown that S1P₃-R

^c Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, United States

^{*} Corresponding author. Tel.: +1 858 784 7770; fax: +1 858 784 7745. *E-mail address*: eroberts@scripps.edu (E. Roberts).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.09.075

is markedly up-regulated in a subset of adenocarcinoma cells, and knock down of this receptor subtype inhibits proliferation and growth of lung adenocarcinoma cells.¹⁶

A wealth of S1P-Rs agonists has been described in the literature. However, the development of subtype selective S1P₃-R agonists as useful pharmacological tools has been limited as a consequence of targeting the orthosteric binding site for receptor activation. The orthosteric binding site displays a high level sequence homology among the S1P-R family subtypes. S1P₁-R and S1P₃-R are the most closely related by sequence, particularly at their agonist binding pockets which consist of a lower hydrophobic and an upper polar region where Leu-276 in S1P1-R and Phe-263 in S1P3-R are the main difference. Receptor structure modeling and ligand docking studies revealed that the S1P₃-R binding pocket is contracted between the lower lipophilic area and the upper polar section by 1.5–1.8 Å compared to the S1P1-R due to the presence of Phe-263. These differences in steric and space constrains in the S1P₃-R orthosteric binding site may explain the difficulty in designing S1P₃-R agonists devoid of S1P₁-R agonist activity.¹

Topologically distinct from the conserved orthosteric binding site, an allosteric site provides a means to overcome important selectivity issues associated with the orthosteric ligands, in particular within GPCRs in which the orthosteric site is highly conserved between subtypes. In addition to offering a potential subtypeselectivity, allosteric ligands may stabilize different conformations and functional states, thus activating a distinct repertoire of receptor signaling and regulatory properties that orthosteric ligands are unable to initiate.¹⁸ The S1P binding site is highly conserved among the S1P-R family thus selective allosteric ligands may be useful pharmacological tools to decipher individual receptor biological functions.

A high-throughput screening (HTS) of the Molecular Libraries-Small Molecule Repository (MLSMR) library identified the *N*,*N*-dicyclohexyl-5-propylisoxazole-3-carboxamide **1a** (Fig. 1) as a S1P₃-R agonist with acceptable in vitro potency/selectivity profile.^{17,19} The structural integrity of the hit was corroborated by the re-synthesis (Scheme 1) of the title compound that showed confirmed EC₅₀'s of 434 nM at S1P₃-R, 7.87 μ M at S1P₁-R and no agonist activity at S1P_{2,4}-Rs at concentrations up to 50 μ M (Fig. 1).

Our SAR studies commenced varying the amide region C. The synthesis and biological results of **1b**–**d** are outlined in Scheme 1. The carboxylic acid **2** was transformed into the corresponding acid chloride and coupled with amines **3b**–**d** to furnish the amide products **1b** and **1d**. Surprisingly, exchanging a cyclohexyl from **1a** for a cyclopentyl group (**1b**) led to loss in potency of 18-fold for the S1P₃-R but only of three-fold for the S1P₁-R. Furthermore, changing a cyclohexyl for a phenyl (**1d**) or hydrogen (**1c**) led to complete loss of potency at both receptors. These results underscore the key role played by the *N*,*N*-dicyclohexyl amide for binding to the S1P₃-R.

Next we explored region A of the HTS-hit while keeping regions B and C constant. Compounds **5a–i** (Table 1) were synthesized from a series of isoxazole carboxylic acids **4a–i** commercially available (**4a–c** and **4f–i**) or readily obtained (**4d** and **4e**) according to literature procedures (Scheme 2).²⁰

Figure 1. HTS S1P₃-R agonist hit 1a.

Scheme 1. Synthesis of 1a–d. Reagents and conditions: (i) (a) 2 (1 equiv), SOCl₂, benzene, reflux, 3 h; (b) 3a–d (1.5 equiv), DIPEA (1.5 equiv), CH₂Cl₂, 0 °C–rt, 3 h, 70–98% (over two steps).

Table 1				
S1P ₃ -R agonist	activity	of	compounds	5a-i

Compd	Carboxylic acid	R	EC_{50}^{α} (nM)	
			S1P ₃ -R	S1P ₁ -R
5a	4a	Isobutyl	1375	6420
5b	4b	Isopropyl	959	22,250
5c	4c	Methyl	6595	>50,000
5d	4d	Cyclohexyl	559	>50,000
5e	4e	Cyclopentyl	339	>50,000
5f	4f	Cyclopropyl	105	33,300
5g	4g	Phenyl	103	662
5h	4h	4-Methoxyphenyl	323	859
5i	4i	3,4-Diethoxyphenyl	8070 1104	

 $^{\alpha}$ Data are reported as mean of n = 3 determinations.

Scheme 2. Synthesis of 5a–i. Reagents and conditions: (i) (a) 4a–h (1 equiv), SOCl₂, benzene, reflux, 3 h; (b) 3a (1.5 equiv), DIPEA (1.5 equiv), CH₂Cl₂, 0 °C–rt, 3 h, 85–98% (over two steps).

Interestingly, the isobutyl **5a** was approximately three-fold less potent than the hit at the S1P₃-R and four-fold less selective against the S1P₁-R. The isopropyl derivative **5b** was approximately two-fold less active than 1a for the S1P₃-R, but the selectivity against the S1P₁-R remained similar. The methyl derivative 5c was 15-fold less potent than 1a. Remarkably, the cyclohexyl (5d) and cyclopentyl (5e) analogs were slightly less and more active at the S1P₃-R and inactive at the S1P₁-R. Of note, the cyclopropyl derivative 5f (CYM5541) was found four-fold more potent than the hit and nearly 18-fold more selective against the S1P₁-R. The phenyl derivative 5g (CYM5544) was found equipotent to 5f for the S1P₃-R but significantly less selective against the S1P₁-R. Interestingly, the 4-methoxyphenyl **5h** was slightly more potent than the hit compound at the S1P₃-R, but its selectivity against the S1P₁-R was less than three-fold. Intriguingly, 3,4-diethoxyphenyl **5i** was 18-fold less potent than the hit at the S1P₃-R but more active (\sim 7-fold) at the S1P₁-R. All this information together indicates that an aromatic ring at position five of the isoxazole hit (portion A), although favorable for the S1P₃-R activity, is also detrimental for the selectivity against the S1P₁-R.

Based on the obtained results, we focused our attention on the SAR studies of **5f**, particularly on the amide region C. The synthesis of **7a–1** is depicted in Scheme 3. The biological results are listed in Table 2.

Scheme 3. Synthesis of 7a–I. Reagents and conditions: (i) (a) 4d (1 equiv), SOCl₂, benzene, reflux, 3 h; (b) 3a, 3c, 6a–j (1.5 equiv), DIPEA (1.5 equiv), CH₂Cl₂, 0 °C–rt, 3 h, 65–98% (over two steps).

As previously observed, removal of a cyclohexyl group (7a) led to complete loss of activity. Similarly, exchanging a cyclohexyl for a cyclopentyl (**7b**), 4-tetrahydropyranyl (**7c**) or cyclohexylmethyl (7d) led to 16-, 33- and 32-fold loss of potency, respectively, confirming the importance of the bicyclohexyl amide system. Interestingly, the 2-methylcyclohexyl derivative 7e (CYM5558) was three-fold less potent and selective than **5f**, probably due to conformational changes caused by the methyl group. Unexpectedly, when both cyclohexyls were substituted with a methyl group (7f, CYM5556) the potency decreased by only two-fold compared to **5f** and the selectivity remained nearly similar. The *N*-(2-methvlcvclohexvl)-N-cvcloheptvl derivative **7**g was almost two-fold less potent than **7e** while the 4-tetrahydropyranyl **7h** was slightly more potent than the cyclohexyl derivative **7c**, although the selectivity of both compounds decreased considerably. Surprisingly, the cyclopentyl 7i was nearly equipotent to 7b. Furthermore, the N-cyclopentyl-N-cycloheptyl derivative 7j was 26-fold less potent than 5f. Not surprisingly, the installation of an aromatic substituent (e.g., 7k and 7l) led to drastic loss in potency.

Next, we explored the middle region B holding constant the bicyclohexyl amide region C as well as the cyclopropyl and phenyl groups from region A. The synthesis and biological activity of representative compounds **9a–c** is depicted in Scheme 4. Interestingly the oxazole **9a** and the furan **9b** were inactive at the S1P₃-R; interestingly, **9b** showed micromolar activity for the S1P₁-R. Fusing the phenyl ring of **5g** into the isoxazole moiety led to **9c**, which was inactive at the S1P₃-R. This modification highlights the isoxazole ring as an important binding motif of this chemotype.

The functional activity of selected compounds was tested against the $S1P_{2,4}$ -Rs subtypes (Table 3).¹⁷ Remarkably, all the compounds were highly selective against the $S1P_{2,4}$ -Rs. Due to its selectivity profile, **5f** was also tested against the $S1P_5$ -R. Remarkably **5f** was found exquisitely selective against $S1P_{1,2,4,5}$ -R subtypes.

The selectivity profile of **5f** was further investigated against the Ricerca panel of off target proteins including GPCRs, enzymes and ion channels at a concentration of 30 μ M. The compound was found to be highly selective against the pool of therapeutically

Table 2				
S1P ₃ -R agonist	activity	of comp	ounds	7a-l

Scheme 4. Synthesis of 9a-c. Reagents and conditions: (i) (a) 8a-c (1 equiv), SOCl₂, benzene, reflux, 3 h; (b) 2a (1.5 equiv), DIPEA (1.5 equiv), CH₂Cl₂, 0 °C-rt, 3 h, 70–98% (over two steps).

Table 3					
S1P _{2,4,5} -Rs	selectivity	counter	screen	of selected	compounds

Compd			$EC_{50}^{\alpha}(nM)$		
	S1P ₃ -R	S1P ₁ -R	S1P ₂ -R	S1P ₄ -R	S1P ₅ -R
3a	434	7870	>50,000	>50,000	NT
5b	959	22,250	>50,000	>50,000	NT
5f	105	33,300	>50,000	>50,000	>25,000
5g	103	662	>50,000	>50,000	NT
5h	323	859	>50,000	>50,000	NT
7f	202	>50,000	>50,000	>50,000	NT
7e	337	33,100	>50,000	>50,000	NT
7g	535	4703	>50,000	>50,000	NT

NT = not tested.

 $^{\alpha}$ Data are reported as mean of *n* = 3 determinations.

relevant targets tested (stimulation/inhibition <50% at 30 μ M). A borderline inhibition (\geq 50%) was found for CYP450 2C19, CYP450 3A4, norepinephrine transporter, cannabinoid CB₁-R, histamine H₁-R, and sodium channel site two. Moderate activation (50%) was found only for nicotinic acetylcholine receptor.

The properties of **5f** were further examined through a competitive binding experiment using [³³P]S1P as the orthosteric binding ligand and S1P as the competitive agonist in the control experiment. We found that S1P competes with [³³P]S1P for the S1P₃-R binding pocket. Remarkably, **5f** does not compete with [³³P]S1P

Compd	Amine	R ¹	R ²	$EC_{50}^{\alpha}(nM)$	
				S1P ₃ -R	S1P ₁ -R
7a	3c	Н	Cyclohexyl	>50,000	>50,000
7b	3b	Cyclopentyl	Cyclohexyl	1683	>50,000
7c	6a	4-Tetrahydropyranyl	Cyclohexyl	3536	>50,000
7d	6b	Cyclohexylmethyl	Cyclohexyl	3430	>50,000
7e	6c	2-Methylcyclohexyl	Cyclohexyl	337	33,100
7f	6d	2-Methylcyclohexyl	2-Methylcyclohexyl	202	>50,000
7g	6e	2-Methylcyclohexyl	Cycloheptyl	535	4700
7h	6f	2-Methylcyclohexyl	4-Tetrahydropyranyl	2820	3260
7i	6g	2-Methylcyclohexyl	Cyclopentyl	1740	>50,000
7j	6h	Cyclopentyl	Cycloheptyl	2753	34,150
7k	6i	Phenyl	Benzyl	7000	44,900
71	6j	2-Pyridinyl	Benzyl	6563	>50,000

 $^{\alpha}$ Data are reported as mean of *n* = 3 determinations.

for the binding pocket of the S1P₃-R and binds in a manner that does not disturb the $[^{33}P]S1P-S1P_3-R$ binding.²¹ Site-directed mutagenesis of S1P₁-R/S1P₃-R and docking studies performed on an S1P₃-homology model showed that **5f** binds in an allosteric binding pocket.

Even though **5f** is a highly selective S1P₃-R agonist with appropriate potency for further biological studies, its physicochemical properties remain suboptimal (tPSA = 41.9, ClogP = 3.9, solubility in PBS = 1.24 μ M).

Based on the characterized ligand/binding pocket interactions, our research group will embark on a medicinal chemistry program aiming to further improve the potency and physicochemical properties while maintaining selectivity of **5f**.

In summary, rational chemical modifications of the MLSMR hit **1a** led to the development of S1P₃-R agonists **5f**, **7e** and **7f** (CYM5541, CYM5558, CYM5556) exquisitely selective against the remaining S1P_{1,2,4,5}-R subtypes. Noteworthy, we have reported the discovery, design and synthesis of the first small molecule S1P₃-R allosteric agonist based on a *N*,*N*-dicyclohexyl-5-alkylisoxazole-3-carboxamide chemotype, **5f**, that is highly selective against a panel of therapeutically relevant targets. The studies herein described provide novel pharmacological tools to decipher the biological function and assess the therapeutic utility of the S1P₃-R. Further studies of our research program aiming to improve physicochemical properties and potency while maintaining selectivity will be communicated in due course.

Acknowledgments

This work was supported by the National Institute of Health Molecular Library Probe Production Center Grant U54 MH084512 (E.R., P.H. and H.R.) and Al074564 (M.O. and H.R.). We thank Mark Southern for data management with PubChem; and Pierre Baillargeon for compound management efforts of the MLSMR.

References and notes

- (a) Baumruker, T.; Prieschl, E. E. Semin. Immunol. 2002, 14, 57; (b) Spiegel, S. J. Leukocyte Biol. 1999, 65, 341; (c) Wang, F.; Van Brocklyn, J. R.; Hobson, J. R.; Movafagh, S.; Zukowska-Grojec, Z.; Milstien, S.; Spiegel, S. J. Biol. Chem. 1999, 274, 35343; (d) Lee, M. J.; Thangada, S.; Paik, J. H.; Sapkota, G. P.; Ancellin, N.; Chae, S. S.; Wu, M.; Morales-Ruiz, M.; Sessa, W. C.; Alessi, D. R.; Hla, T. Mol. Cell. 2001, 8, 693; (e) Lee, M. J.; Thangada, S.; Claffey, K. P.; Ancellin, N.; Liu, C. H.; Kluk, M.; Volpi, M.; Sha'afi, R. I.; Hla, T. Cell 1999, 99, 301; (f) Sugimoto, N.; Takuwa, N.; Okamoto, H.; Sakurada, S.; Takuwa, Y. Mol. Cell. Biol. 2003, 23, 1534; (g) Garcia, J. G.; Liu, F.; Verin, A. D.; Birukova, A.; Dechert, M. A.; Gerthoffer, W. T.; Bamberg, J. R.; English, D. J. Clin. Invest. 2001, 108, 689; (h) Schwab, S. R.; Cyster, J. G. Nat. Immunol. 2007, 8, 1295.
 (a) Spiegel, S.; Milstien, S. Nat. Rev. Mol. Cell. Biol. 2003, 4, 397; (b) Rivera, J.;
- (a) Spiegel, S.; Milstien, S. Nat. Rev. Mol. Cell. Biol. 2003, 4, 397; (b) Rivera, J.; Proia, R. L.; Olivera, A. Nat. Rev. Immunol. 2008, 8, 753.
- (a) Van Brocklyn, J. R.; Lee, M. J.; Menzeleev, R.; Olivera, A.; Edsall, L.; Cuvillier, O.; Thomas, D. M.; Coopman, P. J.; Thangada, S.; Liu, C. H.; Hla, T.; Spiegel, S. J. *Cell. Biol.* **1998**, *142*, 229; (b) Goetzl, E. J.; An, S. *FASEB J.* **1998**, *12*, 1589; (c) Hla, T.; Lee, M. J.; Ancellin, N.; Paik, J. H.; Kluk, M. J. *Science* **2001**, *249*, 1875; (d) Hla, T. *Pharmacol. Res.* **2003**, *47*, 401; (e) Hla, T. *Semin. Cell Dev. Biol.* **2004**, *15*, 513.
 Hannun, Y. A.; Obeid, L. M. *Nat. Rev. Mol. Cell Biol.* **2008**, *9*, 139.
- (a) Mitra, P.; Oskeritzian, C. A.; Payne, S. G.; Beaven, M. A.; Milstien, S.; Spiegel, S. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16394; (b) Kobayashi, N.; Nishi, T.; Hirata, T.; Kihara, A.; Sano, T.; Igarashi, Y.; Yamaguchi, A. J. Lipid Res. 2006, 47, 614; (c) Lee, Y.; Venkataraman, K.; Hwang, S.; Han, D. K.; Hla, T. Prostaglandins Other Lipid Mediat. 2007, 84, 154.
- (a) Gräler, M. H.; Bernhardt, G.; Lipp, M. *Genomics* **1998**, *53*, 164; (b) Im, D. S.; Heise, C. E.; Ancellin, N.; O'Dowd, B. F.; Shei, G. J.; Heavens, R. P.; Rigby, M. R.; HIa, T.; Mandala, S.; McAllister, G.; George, S. R.; Lynch, K. R. *J. Biol. Chem.* **2000**, *275*, 14281; (c) Van Brocklyn, J. R.; Gräler, M. H.; Bernhardt, G.; Hobson, J. P.; Lipp, M.; Spiegel, S. *Blood* **2000**, *95*, 2624.
- Ishii, I.; Friedman, B.; Ye, X.; Kawamura, S.; McGiffert, C.; Contos, J. J.; Kingsbury, M. A.; Zhang, G.; Brown, J. H.; Chun, J. *J. Biol. Chem.* **2001**, *276*, 33697.
- (a) Sanna, M. G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.; Peterson, M. S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. *J. Biol. Chem.* **2004**, *279*, 13839; (b) Forrest, M.; Sun, S.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.;

Rosenbach, M.; Shei, G.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.; Mandala, S. J. Pharmacol. Exp. Ther. **2004**, 309, 758.

- Nofer, J.; van der Giet, M.; Tölle, M.; Wolinska, I.; von Wnuck Lipinski, K.; Baba, H. A.; Tietge, U. J.; Gödecke, A.; Ishii, I.; Kleuser, B.; Schäfers, M.; Fobker, M.; Zidek, W.; Assmann, G.; Chun, J.; Levkau, B. J. Clin. Invest. 2004, 113, 569.
- Takuwa, N.; Ohkura, S.; Takashima, S.; Ohtani, K.; Okamoto, Y.; Tanaka, T.; Hirano, K.; Usui, S.; Wang, F.; Du, W.; Yoshioka, K.; Banno, Y.; Sasaki, M.; Ichi, I.; Okamura, M.; Sugimoto, N.; Mizugishi, K.; Nakanuma, Y.; Ishii, I.; Takamura, M.; Kaneko, S.; Kojo, S.; Satouchi, K.; Mitumori, K.; Chun, J.; Takuwa, Y. *Cardiovasc. Res.* **2010**, *85*, 484.
- (a) Theilmeier, G.; Schmidt, C.; Herrmann, J.; Keul, P.; Schäfers, M.; Herrgott, I.; Mersmann, J.; Larmann, J.; Hermann, S.; Stypmann, J.; Schober, O.; Hildebrand, R.; Schulz, R.; Heusch, G.; Haude, M.; von Wnuck Lipinski, K.; Herzog, C.; Schmitz, M.; Erbel, R.; Chun, J.; Levkau, B. *Circulation* **2006**, *114*, 1403; (b) Means, C. K.; Xiao, C.; Li, Z.; Zhang, T.; Omens, J. H.; Ishii, I.; Chun, J.; Brown, J. H. *Am. J. Physiol. Heart Circ. Physiol.* **2007**, *292*, H2944.
- Niessen, F.; Schaffner, F.; Furlan-Freguia, C.; Pawlinski, R.; Bhattacharjee, G.; Chun, J.; Derian, C. K.; Andrade-Gordon, P.; Rosen, H.; Ruf, W. Nature 2008, 452, 654.
- Girkontaite, I.; Sakk, V.; Wagner, M.; Borggrefe, T.; Tedford, K.; Chun, J.; Fischer, K. J. Exp. Med. 2004, 200, 1491.
- Walter, D. H.; Rochwalsky, U.; Reinhold, J.; Seeger, F.; Aicher, A.; Urbich, C.; Spyridopoulos, I.; Chun, J.; Brinkmann, V.; Keul, P.; Levkau, B.; Zeiher, A. M.; Dimmeler, S.; Haendeler, J. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 275.
- Fischer, I.; Alliod, C.; Martinier, N.; Newcombe, J.; Brana, C.; Pouly, S. PLoS ONE 2011, 6, e23905.
- Hsu, A.; Zhang, W.; Lee, J.; An, J.; Ekambaram, P.; Liu, J.; Honn, K. V.; Klinge, C. M.; Lee, M. Int. J. Oncol. 2012, 40, 1619.
- Schürer, S. C.; Brown, S. J.; Gonzales-Cabrera, P. J.; Schaeffer, M.; Chapman, J.; Jo, E.; Chase, P.; Spicer, T.; Hodder, P.; Rosen, H. ACS Chem. Biol. 2008, 3, 486.
- De Amici, M.; Dallanoce, C.; Holzgrabe, U.; Tränkle, C.; Mohr, K. Med. Res. Rev. 2010. 30. 463.
- 19. Chinese Hamster Ovary (CHO) cell line stably transfected with human S1P3-R, nuclear factor of activated T-cell-beta lactamase (NFAT-BLA) reporter construct and the Ga16 pathway coupling protein was used. Cells were cultured in T-175 sq cm flasks at 37 °C and 95% relative humidity (RH). The growth medium consisted of Dulbecco's Modified Eagle's Media containing 10% v/v heat inactivated bovine growth serum, 0.1 mM NEAA, 1 mM sodium pyruvate, 25 mM HEPES, 2 mg/mL 5 mM L-glutamine, 0.2 mg/mL hygromycin B and 1× penicillin-streptomycin. Prior to the start of the assay, cells were suspended to a concentration of 1.25×10^6 /mL in phenol red free Dulbecco's Modified Eagle's Media containing 0.5% charcoal/dextran treated fetal bovine serum, 0.1 mM NEAA, 1 mM sodium pyruvate, 25 mM HEPES, and 5 mM L-glutamine. The assay began by dispensing 10 mL of cell suspension to each test well of a 384 well plate. The cells were then allowed to incubate in the plates overnight at 37 °C in 5% CO2 and 95% RH. The next day, 50 nL of test compound (50 µM final concentration) in DMSO was added to sample wells, and DMSO alone (0.5 final concentration) was added to high control wells. Next, S1P prepared in 2% BSA (0.7 micromolar final nominal concentration, corresponding to the EC_{80} of S1P) was added to the appropriate wells. After 4 h of incubation, 2.2 µL/well of the GeneBLAzer fluorescent substrate mixture, prepared according to the manufacturer's protocol and containing 10 mM probenicid, was added to all wells. The plates were then incubated for 2 h at room temperature. Plates were read on the EnVision plate reader (PerkinElmer Lifesciences, Turku, Finland) at an excitation wavelength of 405 nm and emission wavelengths of 535 and 460 nm.
- 20. Griffioen, G. WO2010/142801, 2010.
- S1P₃ jump-in CHO cells were cultured in T-175 sq cm flasks at 37 °C and 95% 21. RH The growth media consisted of Dulbecco's Modified Eagle's Media (DMEM) (with GlutaMAX) containing 10% v/v heat inactivated fetal bovine serum (dialyzed), 0.1 mM NEAA, 1 mM sodium pyruvate, 25 mM HEPES, and $1\times$ penicillin-streptomycin-neomycin. On the day before the assay, cells were suspended at a concentration of 0.2×10^6 /mL in the growth media and plated at 0.1×10^6 /well in a 24-well plate. On the day of the assay, the growth medium was replaced with serum-starvation medium consisted of DMEM (with GlutaMAX) containing 0.1 mM NEAA, 1 mM sodium pyruvate, and no antibiotics. The cells were incubated at 37 °C for 4 h. After 4 h of serum starvation, the medium was removed and the cells were rinsed with 200 uL of ice-cold binding buffer. The binding buffer consisted of 20 mM Tris-HCl (pH 7.5), 100 mM NaCl, 15 mM NaF, 0.5 mM EDTA, 1 mM Na₃VO₄, 0.5% fatty acidfree BSA, and $1 \times$ protease inhibitor cocktail. Experiment 1: for the S1P₃ agonist competition assay, 30 μL of increasing concentrations of 5f (final 5f concentrations of 0.001 nM to 10 μM) and 270 μL ice-cold binding buffer containing [33P]S1P (final concentration of 0.1 nM) were added to the cells in each well. Experiment 2: for the control assay, 30 µL of increasing concentrations of cold S1P (final S1P concentrations of 0.001 nM to 10 µM) and 270 μ L ice-cold binding buffer containing [³³P]S1P (final concentration of 0.1 nM) were added to the cells in each well. For both experiments, the cells were incubated at 4 °C for 30 min. The cells were then washed three times with 500 μL ice-cold binding buffer. The cells were lysed with 300 μL 0.5% SDS and transferred to scintillation vials. 5 mL of scintillation cocktail was dispensed into each vial and the vial vortexed. The ³³P radioactivity (cpm) was counted for 5 min/vial in a Beckman LS 6000SC counter.