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Abstract: The alkynylation of activated aziridines in the presence
of a catalytic amount of CuOTf provided the corresponding ring-
opened products in high yields.
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Aziridines are widely used as intermediates in organic
synthesis.1 Their synthetic utilities are mainly owing to
their ability to undergo regioselective ring-opening reac-
tions with various nucleophiles. However, the most often
used reagents are those O-,2 S-3 and N-4 nucleophiles and
a few examples were reported using carbon nucleophiles,
such as Grignard reagents, organolithiums, Wittig re-
agents, cuprates and malonates, in the ring-opening reac-
tion of aziridines.5 In addition, there was structural
limitation when alkynyllithiums were the reagents, only
aziridines derived from acyclic alkenes gave good re-
sults.6 As a program aimed at the applications of aziri-
dines in organic synthesis,7 we explored the use of alkynes
as nucleophile in the ring-opening reaction of aziridines
and found that CuOTf is an effective catalyst in the alky-
nylation of aziridines. Herein, we would like to report our
preliminary results of Cu-catalyzed alkynylation of aziri-
dines.

Initially, phenylacetylene was added to a solution of n-
BuLi in n-hexane at –78 °C and the mixture was stirred for
30 minutes at the same temperature. Then aziridine 1a, 10
mol% of Lewis acid in solvent were added (Equation 1).
As shown in Table 1, Et2O was a better solvent than THF
(entries 1 and 2). CuOTf was the best catalyst among the
tested Lewis acids such as Sc(OTf)3, BF3·OEt2, In(OTf)3,

Cu(OTf)2, AgOAc or CuClO4 (entry 2–8) and correspond-
ing homopropargyl amine was obtained in 96% yield (en-
try 2). Control experiment showed that the yield of the
product decreased to 20% in the absence of Lewis acid
(entry 10). The amount of n-BuLi was important for the
reaction and two equivalents of BuLi were necessary.
When the amount of n-BuLi was reduced to 1.0 equiva-
lent, the yield dropped sharply (entry 7 vs. 9). If more than
two equivalents of BuLi was used, the result was same as
that using two equivalents of BuLi. However, the reason
is unknown at the moment.

To show the usefulness of this CuOTf-catalyzed ring-
opening reaction of aziridines, a variety of alkynes and
various aziridines were tested (Equation 2) and the results
are shown in Table 2.8

It can be seen from Table 2 that various aziridines with an
electro-withdrawing group at nitrogen atom and several
alkynes are suitable for this CuOTf-catalyzed reaction to
afford the corresponding ring-opening products in good to
excellent yields. The reactivity of aziridines derived from

Table 1 Ring-Opening Reaction of Aziridine 1a with Phenylacety-
lene under Various Reaction Conditionsa

Entry Solvent Lewis acid Time (h) Yield (%)b

1 THF CuOTf c 46 26

2 Et2O CuOTf 45 96

3d Et2O BF3·OEt2 72 20

4 Et2O In(OTf)3 72 25

5 Et2O Cu(OTf)2 46 58

6 Et2O AgOAc 46 64

7 Et2O CuClO4 45 64

8 Et2O Sc(OTf)3 24 18

9e Et2O CuClO4 43 25

10 Et2O – 45 20

a Phenylacetylene:n-BuLi:aziridine:Lewis acid = 2:2:1:0.1.
b Isolated yield based on aziridine.
c CuOTf was used as (CuOTf)2·C6H6, as purchased.
d 1.0 Equivalent of BF3·OEt2 was used.
e Phenylacetylene:n-BuLi:aziridine:Lewis acid = 1.1:1.1:1:0.1.
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cycloalkenes was lower than that from acyclic alkenes but
good to excellent yields could be obtained with longer
reaction time (entry 1 vs. 5). Aromatic alkyne had higher
reactivity than aliphatic alkyne (entry 8 vs. 10). All of the
reactions with bicyclic aziridines gave products with anti-
stereochemistry, which were confirmed by the coupling

constant of 2a (J = 9.9 Hz for two cyclic methine hydro-
gens at the trans-positions, entries 1–4). For aziridines de-
rived from terminal alkenes only terminal-attacked
products were obtained because of steric hindrance of the
alkyl substituent (entries 5–10) and for phenyl substituted
aziridine 1h, the reaction gave two products resulting
from internal as well as terminal attack of the nucleophile
(entry 11).

In conclusion, a simple and convenient procedure using a
variety of alkynes as nucleophile in the ring-opening reac-
tion of aziridines was developed. Homopropargyl amines
were provided in high yields. The investigations on the
extension of the reaction to other substrates and on the
asymmetric version of the reaction are under progress in
our laboratory.

Equation 2
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Table 2 Ring-Opening Reaction of Aziridines 1 with Alkynes Catalyzed by CuOTfa

Entry Substrate Alkyne Product Time (h) Yield (%)b
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2h/3h = 3/1

36 69

a Alkyne:n-BuLi:aziridine:CuOTf = 2:2:1:0.1.
b Isolated yield based on aziridine.
c The ratio of 2h/3h was determined by 1H NMR.
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(8) General Experimental Procedure: Alkyne (0.5 mmol) was 
added to a mixture of n-BuLi in n-hexane (0.5 mmol) and 
Et2O (4.0 mL), which was precooled to –78 °C and the 
mixture was stirred for 30 min at the same temperature. Then 
CuOTf (10 mol%) and aziridine (0.25 mmol) were added. 
The resulting mixture was stirred at r.t. until complete 
consumption of substrate (monitored by TLC). The reaction 
mixture was quenched with 5 mL of sat. NH4Cl aq solution. 
The aqueous layer was separated and extracted with CH2Cl2 
(3 × 10 mL). The combined organic layer was dried over 
anhyd Na2SO4. The solvent was removed in vacuum and the 
crude product was purified by flash column chromatography 
on silica gel to provide corresponding homopropargyl 
amine. All products were fully characterized by 1H NMR, 
mass spectrometry, infrared spectrometry and elemental 
analysis. The 1H NMR spectra of the products are as follows 
(300 MHz, CDCl3, 25 °C, TMS):
N-(2-Phenyl-1-ynyl-cyclohexyl)-4-methyl-benzene-
sulfonamide (2a): 1H NMR: d = 1.24–1.27 (m, 4 H), 1.46–
1.69 (m, 2 H), 1.99–2.05 (m, 1 H), 2.24–2.28 (m, 1 H), 2.31 

(s, 3 H), 2.41–2.49 (m, 1 H), 3.02–3.12 (m, 1 H), 4.81 (d, 
J = 5.4 Hz, 1 H), 7.11 (d, J = 8.1 Hz, 2 H), 7.12–7.29 (m, 5 
H), 7.75 (d, J = 8.4 Hz, 2 H).
N-(2-phenyl-1-ynyl-cyclopentyl)-4-methyl-benzene-
sulfonamide (2b): 1H NMR: d = 1.45–1.53 (m, 1 H), 1.68–
1.75 (m, 3 H), 2.04–2.15 (m, 2 H), 2.32 (s, 3 H), 2.69–2.74 
(m, 1 H), 3.52–3.56 (m, 1 H), 4.80 (d, J = 6.0 Hz, 1 H), 7.20 
(d, J = 8.1 Hz, 2 H), 7.23–7.29 (m, 5 H), 7.78–7.82 (m, 2 H).
N-(2-phenyl-1-ynyl-cyclohexyl)-benzenesulfonamide 
(2c): 1H NMR: d = 1.21–1.69 (m, 6 H), 1.99–2.05 (m, 1 H), 
2.23–2.27 (m, 1 H), 2.42–2.50 (m, 1 H), 3.07–3.13 (m, 1 H), 
4.88 (d, J = 5.4 Hz, 1 H), 7.24–7.47 (m, 8 H), 7.87–7.89 (m, 
2 H).
N-(2-trimethylsilanyl-1-ynyl-cyclohexyl)-4-methyl-
benzenesulfonamide (2aa): 1H NMR: d = 0.13 (s, 9 H), 
1.48–1.64 (m, 6 H), 1.89–1.94 (m, 1 H), 2.21–2.33 (m, 2 H), 
2.43 (s, 3 H), 2.89–2.94 (m, 1 H), 4.80 (d, J = 3.6 Hz, 1 H), 
7.31 (d, J = 8.4 Hz, 2 H), 7.78 (d, J = 8.4 Hz, 2 H).
1-Phenyl-4-N-(p-toluenesulfonyl)aminooctyne-1 (2d): 
1H NMR: d = 0.82 (t, J = 6.6 Hz, 3 H), 1.19–1.25 (m, 4 H), 
1.56–1.62 (m, 2 H), 2.41 (s, 3 H), 2.48 (d, J = 5.1 Hz, 2 H), 
3.36–3.46 (m, 1 H), 4.71 (d, J = 9.3 Hz, 1 H), 7.26–7.37 (m, 
7 H), 7.78 (d, J = 8.1 Hz, 2 H).
1-Phenyl-5,5-dimethyl-4-N-(p-toluenesulfonyl)amino-
hexyne-1 (2e): 1H NMR: d = 0.98 (s, 9H), 2.28–2.36 (m, 
1H), 2.39 (s, 3H), 2.49-2.56 (m, 1H), 3.16-3.23 (m, 1H), 4.89 
(d, J = 10.5 Hz, 1H), 7.24-7.35 (m, 7H), 7.79 (d, J = 8.1 Hz, 
2H).
1-Phenyl-4-N-(p-toluenesulfonyl)aminodecyne-1 (2f):
1H NMR: d = 0.85 (t, J = 6.9 Hz, 3 H), 1.17–1.29 (m, 8 H), 
1.52–1.62 (m, 2 H), 2.41 (s, 3 H), 2.50 (d, J = 4.8 Hz, 2 H), 
3.37–3.45 (m, 1 H), 4.67 (d, J = 9.0 Hz, 1 H), 7.26–7.38 (m, 
7 H), 7.78 (d, J = 8.1 Hz, 2 H).
1-Phenyl-4-N-(p-toluenesulfonyl)aminoicosyne-1 (2g): 
1H NMR: d = 0.88 (t, J = 6.6 Hz, 3 H), 1.17–1.30 (m, 28 H), 
1.57–1.64 (m, 2 H), 2.41 (s, 3 H), 2.49 (d, J = 4.8 Hz, 2 H), 
3.36–3.44 (m, 1 H), 4.65 (d, J = 9.3 Hz, 1 H), 7.26–7.38 (m, 
7 H), 7.77–7.79 (m, 2 H).
1-Trimethylsilanyl-4-N-(p-toluenesulfonyl)amino-
decyne-1 (2fa): 1H NMR: d = 0.15 (s, 9 H), 0.85 (t, J = 6.9 
Hz, 3 H), 1.15–1.26 (m, 8 H), 1.88–2.04 (m, 2 H), 2.27–2.31 
(m, 2 H), 2.43 (s, 3 H), 3.28–3.33 (m, 1 H), 4.61 (d, J = 9.0 
Hz, 1 H), 7.30 (d, J = 7.5 Hz, 2 H), 7.76 (d, J = 8.4 Hz, 2 H).
8-N-(p-toluenesulfonyl)aminotetradecyne-5 (2fb): 1H 
NMR: d = 0.85 (t, J = 6.6 Hz, 3 H), 0.91 (t, J = 7.2 Hz, 3 H), 
1.16–1.25 (m, 8 H), 1.38–1.47 (m, 6 H), 2.12–2.16 (m, 2 H), 
2.17–2.21 (m, 2 H), 2.43 (s, 3 H), 3.24–3.31 (m, 1 H), 4.63 
(d, J = 9.6 Hz, 1 H), 7.29 (d, J = 7.5 Hz, 2 H), 7.75–7.78 (m, 
2 H).
1,4-Diphenyl-4-N-(p-toluenesulfonyl)aminobutyne-1 
(2h) and 1,3-Diphenyl-4-N-(p-toluenesulfonyl)amino-
butyne-1 (3h): (2h/3h = 3:1) 1H NMR: 2h: d = 2.35 (s, 3 H), 
2.85 (m, 2 H), 4.56 (dd, J = 6.3, 12.8 Hz, 1 H), 5.20 (d, 
J = 6.6 Hz, 1 H), 7.12–7.41 (m, 12 H), 7.63 (d, J = 8.4 Hz, 2 
H); 3h: d = 2.41 (s, 3 H), 3.21–3.41 (m, 2 H), 3.99 (dd, 
J = 6.3, 8.1 Hz, 1 H), 4.72–4.76 (m, 1 H), 7.12–7.41 (m, 12 
H), 7.73 (d, J = 8.4 Hz, 2 H).
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