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Novel photo-rearrangement of
1,5-di(p-methoxyphenyl)-6,7-dioxabicyclo[3.2.2]nonane through an

O-neophyl-type 1,2-aryl shift: evidence for a 1,6-dioxyl
diradical intermediate
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Abstract—Photolysis and thermolysis of 1,5-diaryl-6,7-dioxabicyclo[3.2.2]nonane 1a–c (a: Ar=p-MeOC6H4, b: Ar=p-MeC6H4, c:
Ar=Ph) were investigated. (p-Methoxyphenyl)-substituted 1a underwent a novel photo-initiated O-neophyl-type 1,2-aryl shift to
afford 1-(p-methoxyphenyl)oxy-5-(p-methoxyphenyl)-8-oxabicyclo[3.2.1]octane 7a along with a small amount of 1-(p-
methoxyphenyl)-3-(2-(4�-methoxyphenyl)tetrahydrofuran-2-yl)propan-1-one 4a through an 1,6-dioxyl diradical intermediate, while
the thermolysis mainly afforded the 1,5-di(p-methoxyphenyl)pentan-1,5-dione 5a and 1,4-di(p-methoxyphenyl)butan-1,4-dione 8a.
© 2001 Elsevier Science Ltd. All rights reserved.

Cyclic peroxides have attracted much attention from
synthetic and mechanistic viewpoints.1–7 In particular,
the fragmentation mechanisms for 1,2-dioxolanes and
1,2-dioxanes have been intensively investigated to
explore the reactivities of oxyl radical species8–10 and to
clarify potent antimalarial intermediates.11–15 Posner
and co-workers reported that structurally simple and
easily prepared 1,5-diaryl-6,7-dioxabicyclo[3.2.2]-
nonanes 1a and 1c are potent antimalarials.16,17 They
also demonstrated that the reaction of 1,5-diphenyl
derivative 1c with FeBr2, in which the reductive O�O
bond cleavage is a key step to promote a mono-oxyl
radical rearrangement involving 1,5-hydrogen atom
transfer, afforded various rearrangement products and
fragmentation products 2c–6c (Scheme 1).16,17

On the other hand, photolysis and thermolysis are the
more common methods to induce O�O bond cleavage
of peroxy compounds.18–20 Bloodworth and co-workers
reported that structurally simple 6,7-dioxabicy-
clo[3.2.2]nonane 1d photochemically and thermally
underwent the fragmentation through an O�O bond
cleaved 1,6-dioxyl diradical (Scheme 2).21 In this
respect, we reported that photochemical and thermal
behaviors of arylated monocyclic peroxides, such as
3,3,5,5-tetraary-1,2-dioxolanes22 and 3,3,6,6-tetraary-
1,2-dioxanes23 are significantly different from that of
the related aliphatic peroxides.8–10 These contrastive
results have strongly prompted us to study the reactivi-
ties of 1,6-dioxyl diradical species generated from the
1,5-diaryl-6,7-dioxabicyclo[3.2.2]nonanes 1. Herein, we

Scheme 1.
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Scheme 2.

wish to report our preliminary but novel results that the
1,6-dioxyl diradical intermediate generated by photoly-
sis of (p-methoxyphenyl)-substituted 1a underwent
rearrangement to afford 1-(p-methoxyphenyl)oxy-5-(p-
methoxyphenyl)-8-oxabicyclo[3.2.1]octane 7a through a
novel O-neophyl type 1,2-aryl shift.24†

When a nitrogen-purged CH2Cl2 solution of 1a25‡ (0.20
mmol) was irradiated by a 400 W high-pressure Hg

lamp in a Pyrex tube for 5 h, novel cyclic acetal 7a
(80%) and 1-(p-methoxyphenyl)-3-(2-(4�-methoxy-
phenyl)tetrahydrofuran-2-yl)propan-1-one 4 (2%) were
obtained as rearrangement products along with small
amounts of expected fragmentation products, such as
1,5-di(p-methoxyphenyl)pentan-1,5-dione 5a (5%) and
1,4-di(p-methoxyphenyl)butan-1,4-dione 8a (2%,
Scheme 3; entry 1 in Table 1).§ On the other hand,
when p-methylphenyl derivative 1b was subjected

Scheme 3.

Table 1. Photolysis of 1,5-diaryl-6,7-dioxabicyclo[3.2.2]nonanes 1a

1 Additive Time (h) Conv. (%) Yield (%)bEntry

4 5 7 8

5 100 21a 5None 80 21
52 1001a �1 �1 82 2O2

5 100 18 22Ph2C�Od (��340 nm) 323c 41a
5 67 �1 34c 511a 2None (��280 nm)

10 68 6 13None �15 51b
10 746 191c 13 0 4None

a 400 W high-pressure mercury lamp; Pyrex cut (�>280 nm); 20–24°C; 1=0.2 mmol; CH2Cl2=10 ml.
b Isolated yields by silica gel TLC.
c 2 kW Xe lamp.
d 0.2 mmol; ET=69.2 kcal mol−1.

† The first example of an O-neophyl-type 1,2-aryl shift has been reported by Workentin who conducted the electrochemical reduction of
9,10-diphenyl-9,10-epidioxyanthracene.

‡ The UV absorption maxima of 1a–c in CH3CN are 274.5 nm (� 3500), 270 nm (� 900), and 257 nm (� 510), respectively. For each compound
the absorption at wavelength greater than 300 nm is decreased significantly. Their extinction coefficients at 313 nm are 64 for 1a, 23 for 1b, and
11 M−1 cm−1 for 1c, respectively.

§ All products were isolated by silica gel TLC and characterized by their spectral data. The structures 5 and 8 were determined by their authentic
spectral data. Selected data for 7a: mp 109–110°C; IR (KBr, cm−1) 3050, 3020, 2980, 2960, 2890, 2860, 1618, 1590, 1521, 1510. 1H NMR (200
MHz, CDCl3): � 1.52–2.28 (m, 10H), 3.76 (s, 3H), 3.80 (s, 3H), 6.75–6.92 (m, 4H), 7.13–7.24 (m, 2H), 7.28–7.38 (m, 2H). 13C NMR (50 MHz,
CDCl3): � 19.60 (t, 1C), 32.44 (t, 1C), 34.07 (t, 1C), 34.90 (t, 1C), 37.53 (t, 1C), 55.22 (q, 1C), 55.46 (q, 1C), 84.19 (s, 1C), 109.51 (s, 1C), 113.40
(d, 2C), 113.92 (d, 2C), 123.31 (d, 2C), 125.37 (d, 2C), 138.96 (s, 1C), 147.95 (s, 1C), 155.64 (s, 1C), 158.21 (s, 1C). Anal. C, 74.01; H, 7.11,
requires C, 74.09; H, 7.11; MS (EI) 340 (M+, 21), 217 (100), 135 (19), 121 (15). Selected data for 4a: colorless oil; IR (CHCl3, cm−1) 3050, 3020,
2970, 2950, 2890, 2850, 1675 (C�O), 1603, 1580, 1512; 1H NMR (200 MHz, CDCl3): � 1.71–2.06 (m, 2H), 2.08–2.35 (m, 4H), 2.48–2.67 (m, 1H),
2.95–3.13 (m, 1H), 3.79 (s, 3H), 3.82 (s, 3H), 3.88–4.02 (m, 2H), 6.82–6.92 (m, 4H), 7.28–7.35 (m, 2H), 7.78–7.88 (m, 2H). 13C NMR (50 MHz,
CDCl3): � 25.53 (t, 1C), 33.59 (t, 1C), 36.38 (t, 1C), 39.32 (t, 1C), 55.14 (q, 1C), 55.32 (q, 1C), 67.57 (t, 1C), 85.81 (s, 1C), 113.42 (d, 4C), 126.26
(d, 2C), 129.97 (s, 1C), 130.17 (d, 2C), 138.04 (s, 1C), 158.07 (s, 1C), 163.12 (s, 1C), 198.99 (s, 1C). Anal. C, 73.81; H, 7.26, requires C, 74.09;
H, 7.11; MS (CI) 341 (M++1, 100).
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to the photolysis, only a trace amount of 7b (<1%) was
produced along with 4b (6%), 5b (13%), and 8b (5%) at
68% conversion (entry 5). Likewise, the photolysis of 1c
afforded 4c (19%), 5c (13%), and 8c (4%) at 74%
conversion, but 7c was not produced (entry 6). Diol 2,
hydroxyfuran 3, and furan 6 were not produced in this
study, which is significantly different from the results of
the Fe(II)-mediated fragmentation of 1c (Scheme 1).16,17

In order to determine the multiplicity of the responsible
excited states, a quenching experiment was carried out
by using oxygen as a triplet quencher. The yields of 4a
and 5a were decreased by the addition of oxygen while
those of 7a and 8a were not significantly affected (entry
2). A triplet sensitization experiment of 1a was also
carried out by using benzophenone (�>340 nm). While
the yields of 4a and 5a were increased, those of 7a and
8a were not increased (entry 3, 4). In contrast to the
photoreactions, 5a (58%) and 8a (13%) were obtained
as major products along with small amounts of 4a (4%)
and 7a (3%) when 1a was heated at 200°C for 1 h under
nitrogen atmosphere (entry 1 in Table 2). Likewise, the
thermolysis of 1b and 1c afforded similar product dis-
tributions (entry 2, 3 in Table 2). No acetals 7b–c were
obtained in either case.

On the basis of the above results, we propose a plausi-
ble mechanism as shown in Scheme 4. From the results
of the triplet quenching and the triplet sensitization
experiments, acetal 7 and 1,4-diketone 8 are considered
to be generated from the singlet 1,6-dioxyl diradical
S-1. Ketofuran 4 and 1,5-diketone 5 are considered to
be generated from the triplet 1,6-dioxyl diradical T-1.
Two different pathways are plausible for the product
formation from S-1. One is the formation of the inter-
mediate 9 through an O-neophyl type 1,2-aryl shift in
S-1 followed by cyclization to afford actal 7 (path a).
The 1,2-aryl shift would be promoted by electron-
donating aromatic substituents (p-An>p-Tol>Ph). The
other is the formation of 1,4-diketone 8 through simul-
taneous C1�C2 and C4�C5 bond cleavages in S-1 fol-
lowed by elimination of propene or cyclopropane (path
b). On the other hand, two different pathways are also
plausible for the product formation from T-1. One is
the formation of the intermediate 10 through the C1�C2

bond cleavage in T-1 followed by cyclization to afford
ketofuran 4 (path c). The other is the formation of
1,5-diketone 5 through stepwise C1�C9 and C5�C8 bond
cleavages in T-1 followed by elimination of ethylene
(path d).

On the contrary, thermolysis of 1 mainly generates the
activated complex 11 (partly including an 1,6-dioxyl
diradical intermediate).9,10 The complex 11 affords 1,5-
diketone 5 and ethylene (not isolated) through simulta-
neous O�O, C1�C9, and C5�C8 bond cleavages, and
affords 1,4-diketone 8 and propene (or cyclopropane)
via simultaneous O�O, C1�C2, and C4�C5 bond cleav-
ages. The isolation of acetal 7a and ketofuran 4 would
indicate the intervention of a 1,6-dioxyl diradical
species.

In summary, we have found that the photolysis of the
p-methoxyphenyl substituted [3.2.2]cyclic peroxide 1a

Table 2. Thermolysis of 1,5-diaryl-6,7-dioxabicyclo-
[3.2.2]nonanes 1a

1 Yield (%)bTemp. (°C) Conv. (%)Entry

4 5 7 8

1a 200 1001 4 1358 3
6872001b2 12057

1c 200 93 53 53 0 10

a Heated under nitrogen atmosphere; 1=0.2 mmol.
b Isolated yields by silica gel TLC.

Scheme 4.
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undergoes a novel O-neophyl-type 1,2-aryl shift
through the O�O bond cleaved 1,6-dioxyl diradical
intermediate. We are conducting further studies on the
fragmentation of other cyclic peroxides to elucidate the
generality of this novel reaction.
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