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ABSTRACT: Cyclopropanation of 1,3-dienes with ethyl 2-formyldiazoacetate under rhodium catalysis results in either a
tandem cyclopropanation/Cloke—Wilson rearrangement or a vinylogous variant, depending on the diene used. These adducts
may be subjected to an oxygen to nitrogen substitution with various amines under palladium catalysis. The substrate scope and

mechanistic reasoning is presented.

he ring strain inherent in cyclopropanes has been

exploited for decades to prepare compounds of a value-
added nature. Simple ring opening of a donor—acceptor
cyclopropane (a homo-Michael addition) results in linear
compounds, while reaction with dipolar species can result in
hetero- or carbocylic products.” Perhaps one of the most well
established processes is the vinylcyclopropane rearrangement,
which results in five-membered-ring products.” A much less
studied variant of this (a hetero-vinylcyclopropane rearrange-
ment) is the so-called Cloke—Wilson rearrangement (Scheme
1). In 1929, Cloke reported that treatment of cyclopropyl
phenyl ketone with ammonium chloride resulted in the
formation of a dihydropyrrole.3 In 1947, Wilson was able to
rearrange cyclopropane carboxaldehyde to dihydrofuran.”
Since these initial discoveries, there have been notable
advancements, including organocatalysis,5 DYKAT,® silicon
promotion,” and transition metal catalysis.” Herein we report a
tandem cyclopropanation/Cloke—Wilson rearrangement as
well as a rarer but not unprecedented’ vinylogous variant (a
retro-Claisen rearrangement) to form seven-membered oxa-
cycles.

The discovery of the title reactions came about during
exploration of a route to the kainoids (such as kainic acid).
The original plan was to cyclopropanate cyclopentadiene 1
with ethyl 2-formyldiazoacetate (2) to produce 3, which would
be subjected to an aza-Cloke—Wilson rearrangement to
produce 6 (if cyclopentadiene itself were used), which we
deemed a possible synthetic precursor to the target kainoids.
We were surprised to observe that the cyclopropane was not
isolable but formed a new product in situ, which we first
assigned to a Cloke—Wilson product such as 8a. However,
extensive NMR analysis showed that the product was in fact
2,5-dihydrohydrooxepine S, the product of a vinylogous
Cloke—Wilson reaction. With this interesting lead result in
hand, we sought to explore this rich new chemistry in terms of
substrate scope and mechanistic hypothesis.
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Our study commenced with the treatment of a variety of
readily available butadienes with 2. As noted in the initial
discovery, the products were 2,5-dihydrooxepines S. Figure 1
shows the results. The catalyst of choice for this transformation
rapidly emerged as Rh,(esp),.'’ While other catalysts did
promote this reaction, the yields were much poorer (see the
Supporting Information for a table of catalyst screening
results). The yields are modest but acceptable given the
rapid formation of molecular complexity.

The less than optimal yields may be due to the formation of
diastereomers during the cyclopropanation stage (Scheme 2).
While one diastereomer (7b) would be well-positioned to
undergo rearrangement, the other (7a) would not. At this stage
this is merely a hypothesis, as we have never been able to
isolate products derived from 7a. In addition, the diazo species
has been reported to be prone to facile dimerization."'

We were surprised to see a different reactivity pattern
emerge when aryl-substituted butadienes were employed.
Rather than the vinylogous manifold of reactivity, a tandem
cyclopropanation/Cloke—Wilson process occurred. Figure 2
shows the results. The most electron-rich butadienes (yielding
4b and 4d) underwent spontaneous rearrangement to the
dihydrofurans, while the others required treatment with a
Lewis acid such as Sc(OTf),.

Interestingly, the dihydrooxepines from Figure 1 were
rearranged to their dihydrofuran counterparts upon treatment
with a Lewis acid (Figure 3), likely via a 1,3-oxygen migration
involving an allyl cation. Several things are worthy of note. The
bicyclic dihydrooxepines underwent this process in exceedingly
high yields, likely because of the favorable strain relief in going
from a seven-membered ring to a five-membered ring. When a
mixture of regioisomers Sd and Se was subjected to the
reaction conditions, only 5d underwent rearrangement. This is
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Scheme 1. Tandem Cyclopropanation/Cloke—Wilson and
Vinylogous Cloke—Wilson Rearrangements
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Figure 1. Tandem cyclopropanation/vinylogous Cloke—Wilson
rearrangement with simple 1,3-butadienes.

likely due to the fact that Sd may form a 3° carbocation while
Se would require a higher-energy 2° cation.

Inspired by a report by the Ma group,'> we sought to
perform an oxygen to nitrogen transposition to access aza-
heterocycles. The Ma communication reported only a single
example as a mechanistic study, so this is (to the best of our
knowledge) an unexplored reaction. We subjected the
dihydrofurans from Figures 2 and 3 to the conditions detailed

Scheme 2. Mechanistic Hypothesis
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Figure 2. Tandem cyclopropanation/Cloke—Wilson rearrangement
with 1-aryl-1,3-butadienes. Notes: “Isolated with unrearranged
cyclopropane; rearrangement was effected by treatment with 5 mol
% Sc(OTY), at 40 °C in CH,Cl,. “Isolated with a small amount of an
unknown byproduct.
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Figure 3. Rearrangement of dihydrooxepines to dihydrofurans.

by Ma and were delighted with the results, which are shown in
Figure 4. We limited this study to the use of benzylamine
except for a single case where p-anisidine was employed
successfully. Ma’s paper provides a reasonable mechanism that
involves a s-allyl intermediate.

In order to improve the efficiency of the processes described
above, we sought ways to shorten the number of steps involved
(Figure S). To this end, Sc(OTf); was added directly to the
cyclopropanation reaction mixture. Indeed, the 1,3-rearrange-
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Figure 5. (a) “One-pot” cyclopropanation/vinylogous Cloke—Wilson
rearrangement/1,3-allylic migration. (b) Direct conversion of
dihydrooxepine to dihydropyrrole.

ment was effected, but the overall yield was inferior. Also,
when the oxygen to nitrogen transposition was attempted on
oxepine Sa, rearrangement was concurrent with nitrogen
insertion. The yield for the one-step process was similar to that

for the sequential reactions.
In summary, we have described a tandem cyclopropanation/

Cloke—Wilson rearrangement as well as the associated
vinylogous Cloke—Wilson rearrangement to provide access
to dihydrooxepine and dihydrofuran scaffolds. Moreover, the
dihydrofurans were converted to dihydropyrroles via a
relatively unknown palladium-catalyzed oxygen to nitrogen
transposition. Further development of these reactions as well

as their application to target-oriented synthesis is in progress.
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