Accepted Manuscript

Enantioselective desymmetrization of *meso*-aziridines with aromatic thiols catalyzed by chiral bifunctional quaternary phosphonium salts derived from α -amino acids

Jiaxing Zhang, Dongdong Cao, Hongyu Wang, Gang Zhao, Yongjia Shang

PII: S0040-4020(15)00134-9

DOI: 10.1016/j.tet.2015.02.001

Reference: TET 26388

To appear in: *Tetrahedron*

Received Date: 23 December 2014

Revised Date: 28 January 2015

Accepted Date: 2 February 2015

Please cite this article as: Zhang J, Cao D, Wang H, Zhao G, Shang Y, Enantioselective desymmetrization of *meso*-aziridines with aromatic thiols catalyzed by chiral bifunctional quaternary phosphonium salts derived from α-amino acids, *Tetrahedron* (2015), doi: 10.1016/j.tet.2015.02.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Enantioselective desymmetrization of *meso*-aziridines with benzenethiols catalyzed by chiral bifunctional quaternary phosphonium salts derived from α -amino acids

Jiaxing Zhang,^a Dongdong Cao,^b Hongyu Wang,^b Gang Zhao,^{*b} and Yongjia Shang^{*a}

^a The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Fax: 0086-21-64166128; Tel: 0086-21-54925182

E-mail: shyj@mail.ahnu.edu.cn , zhaog@mail.sioc.ac.cn

Enantioselective desymmetrization of *meso*-aziridines with aromatic thiols catalyzed by chiral bifunctional quaternary phosphonium salts derived from α -amino acids

Jiaxing Zhang,^a Dongdong Cao,^b Hongyu Wang,^b Gang Zhao,^b* and Yongjia Shang^a*

^a The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China E-mail: shyj@mail.ahnu.edu.cn, zhaog@mail.sioc.ac.cn

Abstract: Desymmetrization of *meso*-aziridines with aromatic thiols was realized by using α -amino acids-derived chiral quaternary phosphonium salts catalysts to provide chiral β -amino sulfides with high yields (up to 99%) and in moderate enantioselectivities (up to 70%).

Keywords: Desymmetrization, *meso*-aziridine, aromatic thiols, chiral quaternary phosphonium salt, chiral β -amino sulfide.

1. Introduction

The enantioselective desymmetrization of *meso*-aziridines via ring opening with various nucleophiles is a powerful synthetic method for the preparation of a variety of substituted chiral amines.¹ In this field, different kinds of nucleophiles have been used through chiral metal catalysis² or organocatalysis.³ In particular, the catalytic asymmetric ring openings of *meso*-aziridines with sulfur-based nucleophiles provide facile access to various chiral β -aminosulfur compounds, which are both useful synthesis in stereoselective synthesis and also have great values in pharmaceutical industry.⁴ Della Sala⁵ and Antilla et al.⁶ have achieved excellent enantioselectivities in the ring-opening of *meso*-aziridines with thiols (TMS-SPh and HSPh) by using chiral phosphoric acid catalysts. Other strategies using chiral cinchona alkaloid derivatives,⁷ prolinols⁸ and guanidines⁹ as catalysts or using α -isothiocyanato imides¹⁰ as sulfur-based nucleophiles have also been reported, however these methods only obtain moderate enantioselectivities or have limitations of substrates.

ACCEPTED MANUSCRIPT

On the other hand, the asymmetric phase-transfer catalysis has been proven to be an efficient tool in synthesizing chiral compounds.¹¹ Although a few of chiral phosphonium salts catalysts have been developed and used in asymmetric reactions,¹² chiral phosphonium salts have been rarely studied compared to chiral ammonium salts. Especially, the asymmetric ring-opening reaction of aziridines under phase-transfer conditions has only been achieved by using chiral quaternary ammonium catalysts.¹³ Our group have focused on the development of amino acid-derived catalysts and their applications to various enantioselective reactions.¹⁴ Recently, we have developed chiral bifunctional phosphonium salts from amino acids as efficient asymmetric phase-transfer catalysts, with which excellent enantioselectivity could be obtained in aza-Henry reaction¹⁵ and Michael addition reaction¹⁶. Herein, we wish to describe the application of chiral phosphonium salts to catalyze the desymmetrization of *meso*-aziridines with thiols.

2. Results and discussion

Using the reaction between N-tosylaziridine 2a and 4-Cl benzenethiol 3a as the model reaction, we first investigated the catalytic efficiency of different phosphonium salt catalysts (Figure 1) bearing different chiral skeletons and differently protected amino groups (Table 1). We found that both structural elements have significant influence on the reaction, and the catalyst 1f derived from L-tert-Leucine with the amide structure gave the highest enantioselectivity (entries 1-6). Then the effect of solvent and base were examined by using **1f** as a catalyst (entries 7-14). Apparently, halohydrocarbon solvents and mild bases are favoured for the enantioselectivity, and when CCl₄ and K₂HPO₄ were used, an improved enantioselectivity of 60%ee was obtained (entry 14). To further increase the enantioselectivity, we made more efforts in modifying the structure of the catalyst **1f** by varying both the substitutions of the amide moiety and the phosphonium center (entries 15-20), but no better enantioselectivity was obtained. When we lowered the reaction temperature to -10°C, the product 4a was obtained in 64% ee with 94% yield, but lowering the temperature further to -20°C led to significantly decreased ee and yield (entries 21-22). The absolute configuration of 4a was assigned to be (1*S*, 2*S*) by comparison of the optical rotation values with the literature data.^{7b}

Fig. 1 Chiral phosphonium salts

Table 1 Screening of catalysts, solvents and bases^a

				Ţs	
\frown	[_] N ⊤a +	SH	cat. (5 mol%)	∧ NH	CI
	_N=1s Cl		Base, solvent, 0°C	······································	
2a		3a		4a	
Entry	Catalyst	Solvent	Base	Yield ^b (%)	$\text{Ee}^{c}(\%)$
1	1 a	toluene	33% aq K ₂ CO ₃	90	25
2	1b	toluene	33% aq K ₂ CO ₃	88	-5
3	1c	toluene	33% aq. K ₂ CO ₃	88	-23
4	1d	toluene	33% aq. K ₂ CO ₃	91	36
5	1e	toluene	33% aq. K ₂ CO ₃	90	17
6	lf	toluene	33% aq. K ₂ CO ₃	90	45
7	1f	CH_2Cl_2	33% aq. K ₂ CO ₃	92	16
8	lf	TBME	33% aq. K ₂ CO ₃	94	5
9	lf	CHCl ₃	33% aq. K ₂ CO ₃	90	36
10	1f	CCl_4	33% aq. K ₂ CO ₃	95	51
11	1f	CCl_4	50% aq. K ₂ HPO ₄	92	60
12	1f	CCl_4	50% aq. Cs ₂ CO ₃	97	53
13	1f	CCl_4	KHCO ₃	99	56
14	1f	CCl_4	K_2HPO_4	99	60
15	1g	CCl_4	K_2HPO_4	99	30
16	1h	CCl_4	K_2HPO_4	99	33
17	1i	CCl_4	K_2HPO_4	99	58

18	1j	CCl_4	K ₂ HPO ₄	99	50
19	1k	CCl_4	K ₂ HPO ₄	99	55
20	11	CCl_4	K ₂ HPO ₄	99	59
21 ^d	1f	CCl_4	K ₂ HPO ₄	94	64
22^{e}	1f	CCl_4	K_2HPO_4	40	53

^a Reactions were carried out using 0.1 mmol of **2a**, 0.15 mmol of **3a**, 5 mol% of catalyst **1**, 0.2 mmol or 0.16 mL of base, 12 h. ^b Isolated yields. ^c Determined by chiral stationary phase HPLC. ^d Reaction at -10 °C, 24 h. ^e Reaction at -20 °C, 48 h.

The influence of the N-protecting group of the aziridine was also investigated with catalyst **1f** or **1c** (Table 2). Under the similar reaction conditions, *N*-tosylaziridine **2a** gave the product with 60% ee (entry 1), while *N*-Boc-aziridine **2b** and 4-nitrobenzoyl aziridine **2c** gave very low enantioselectivity (entries 2-3). 3,5-Dinitrobenzoyl aziridine **2d** and 3,5-bistrifluoromethylbenzoyl aziridine **2e** gave 17% ee and 30% ee, respectively. To our surprise, the same reactions of the aziridines **2d** and **2e** with catalyst **1c** gave the desired products in 62% ee and 33% ee, respectively, with the opposite absolute configurations to those obtained with catalyst **1f** (entries 4-5).

	N-R + SI CI 2a-e 3a	H 1 (5 mol CCl ₄ , 0°C K ₂ HPO ₄ (2	%) ; 2 equiv)	A R NH NH	CI
Entry	2 (R)	Catalyst	Time (h)	Yield ^b (%)	$\operatorname{Ee}^{c}(\%)$
1	2a (Ts)	1f	9	99	60
2	2b (Boc)	1f	9	99	0
3	2c (4-nitrobenzoyl)	1f	12	95	20
4	2d	1f	11	99	17
	(3,5-dinitrobenzoyl)	1c	20	98	-62
5	2e (3.5-bisCF ₃ benzovl)	1f	18	99	30
	(------------	1c	18	99	-33

Table 2 Screening of N-substituted azindines 2	Table 2 So	creening	of N-	substituted	aziridines	2^{a}
---	------------	----------	-------	-------------	------------	---------

^a Reactions were carried out using 0.1 mmol of **2**, 0.15 mmol **3a**, 5 mol% of **1**. ^b Isolated yields. ^c Determined by chiral stationary phase HPLC.

Next, a series of aromatic thiols 3 were subjected to the reaction with

ACCEPTED MANUSCRIPT

N-tosylaziridine **2a** under the optimized conditions [catalyst **1f** (5 mol%), CCl₄, K_2 HPO₄ (2 equiv), -10 °C] (Table 3). In general, excellent yields and moderate enantioselectivities were obtained. For thiols **3** bearing differently substituted benzene groups, those with electron-donating substituents provided relatively lower ee values and yields (entries 5, 6 and 12) than those with electron-withdrawing ones. Notably, a *meta* effect was observed: *m*-substituted aryl thiols gave slightly higher ee values (70%) (entries 3 and 10). Moreover, naphthyl-1-thiol **3n** and naphthyl-2-thiol **3o** gave the desired products in similarly excellent yields and moderate enantioselectivities (entries 14 and 15). However, the use of heteroaryl thiol **3m** led to significantly reduced yield and enantioselectivity, in which only 60% yield and 30% ee were obtained (entry 13). To our delight, the useful aziridine **2f** derived from cyclopentene was also worked to provide comparable results (entry 16).

In addition, the *o*-bromo-substituted product $4\mathbf{k}$ was subjected to a Pd-catalyzed cyclization to provide the phenothiazine product 5 in 70% yield without appreciable decrease in the ee (Scheme 3).

Table 3 Scope study with different thiols 3^{a}

		1f (5 mol%)	∕NHR
2a : n = 2, R = Ts 2f n = 1, R = Ts 2d : n = 2, R = 3,5-di	+ ArSH 3 nitrobenzoyl	CCl ₄ , -10°C K ₂ HPO ₄ (2 equiv)	للم ^{ارس} SAr 4

Entry	2 2	A m	4	Yield ^b	Ee ^c	
Enuy	4	3	Ar	4	(%)	(%)
1	2a	3a	$4-ClC_6H_4$	4 a	98	64
2	2a	3 b	Ph	4 b	83	59
3	2 a	3c	$2-ClC_6H_4$	4 c	97	62
4	2a	3d	$3-ClC_6H_4$	4d	98	70
5	2 a	3e	$4-CH_3C_6H_4$	4e	70	56
6	2 a	3f	$4-OCH_3C_6H_4$	4f	80	57
7	2a	3 g	$4-FC_6H_4$	4 g	96	62
8	2a	3h	$4-NO_2C_6H_4$	4h	98	60
9	2a	3i	$4-BrC_6H_4$	4i	94	67
10	2a	3j	$3-BrC_6H_4$	4 j	94	70
11	2a	3k	$2-BrC_6H_4$	4 k	90	62
12	2a	31	$2-NH_2C_6H_4$	41	93	44
13	2a	3m	4-pyridyl	4 m	60	30

ACCEPTED MANUSCRIPT

14	2a	3n	1-naphthyl	4n	90	54
15	2a	30	2-naphthyl	4o	92	57
16	2f	3b	Ph	4 p	95	51
17^{d}	2d	3 a	Ph	4 q	98	-62

^a Reactions were carried out using 0.1 mmol of **2**, 0.15 mmol of **3**, 5 mol% of **1f**, 24 h.

^b Isolated yields. ^c Determined by chiral stationary phase HPLC. ^d 5 mol% of catalyst **1c** was used.

3. Conclusion

In conclusion, we have developed a new approach for the desymmetrization of *meso*-aziridines with aromatic thiols by using chiral bifunctional quaternary phosphonium salts as catalysts. A series of β -amino sulfides were obtained in high yields and in moderate enantioselectivities. This work expands the application scope of asymmetric phase-transfer catalysis with α -amino acid-derived chiral phosphonium salts.

4. Experimental

4.1 General information

The ¹H NMR spectra were recorded on a Bruker (400 MHz) spectrometer. All chemical shifts (δ) were given in ppm. Data were reported as follows: chemical shift, integration, multiplicity (s = single, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet) and coupling constants (Hz). ¹³C NMR spectra were recorded on a DPX-400 (400 MHz). Flash column chromatography was performed using H silica gel. For thin-layer chromatography (TLC), silica gel plates (HSGF 254) were used and compounds were visualized by irradiation with UV light. Analytical high performance liquid chromatography (HPLC) was carried out on SHIMADZU equipment using chiral columns. Melting points were determined on a SGW X-4 melting point apparatus and were uncorrected. Optical rotations were measured on a JASCO P-1010 Polarimeter at λ = 589 nm. IR spectra were recorded on a Perkin-Elmer 983G instrument. Mass spectra analysis was performed on API 200 LC/MS system (Applied Biosystems Co. Ltd.).

All reagents purchased from commercial sources were purified by standard techniques prior to use. Aziridines were prepared according to literature procedures.^{2b,} ³ Preparation and characterization of the catalysts **1a-1e** were reported in the published literatures.¹⁵

4.2 Preparation of catalysts 1f to 11

To a solution of the corresponding α -amino acid-derived bifunctional phosphine (1.0 equiv) in anhydrous toluene was added the corresponding benzylic halide (1.2 equiv), and the resulting mixture was stirred at 110 °C for 8 h. Then the mixture was allowed to cool to ambient temperature and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography to afford the desired phase transfer catalyst (CH₂Cl₂/MeOH = 20 : 1).

4.2.1. (*S*)-Benzyl(2-(3,5-bis(trifluoromethyl)benzamido)-3,3-dimethylbutyl)diphenyl phosphonium bromide(**1f**).

Yield: 90%; White solid. m.p. = $137-138^{\circ}$ C; $[\alpha]_{D}^{24} = 48.6$ (c = 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.22 (bs, 1H), 8.53 (s, 2H), 7.90-7.93 (m, 3H), 7.65-7.69 (m, 3H), 7.46-7.54 (m, 5H), 7.11-7.21 (m, 4H), 6.91-6.93 (m, 2H), 5.32-5.34 (m, 1H), 4.89 (d, J = 14.4 Hz, 1H), 4.44-4.53 (m, 1H), 4.10-4.11 (m, 1H), 2.57-2.64 (m, 1H), 1.00 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.2, 134.7, 134.3 (d, $J_{C-P} = 3.1$ Hz), 134.0 (d, $J_{C-P} = 9.5$ Hz), 133.8 (d, $J_{C-P} = 5.0$ Hz), 131.2 (q, $J_{C-F} = 36$ Hz), 130.3 (d, $J_{C-P} = 5.5$ Hz), 129.8 (d, $J_{C-P} = 12.3$ Hz), 129.6 (d, $J_{C-P} = 12.3$ Hz), 128.8 (d, $J_{C-P} = 2.9$ Hz), 128.6 (d, $J_{C-P} = 2.5$ Hz), 128.4 (d, $J_{C-P} = 3.5$ Hz), 127.1, 127.0, 124.7, 123.0 (q, $J_{C-F} = 271.7$ Hz), 117.6, 117.0, 116.7, 116.1, 52.3 (d, $J_{C-P} = 5.6$ Hz), 37.3 (d, $J_{C-P} = 11.7$ Hz), 30.5, 30.1, 26.4, 22.5, 22.0; ³¹P-NMR (163 MHz, CDCl₃): δ 25.2; ¹⁹F-NMR (282 MHz, CDCl₃): δ -62.5; IR (Neat) 3227, 2963, 1662, 1539, 1438, 1337, 1279, 1181, 1136, 1134, 803, 743, 700; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₄H₃₃NOF₆P) requires 616.2204, found 616.2197.

4.2.2. (*S*)-Benzyl(3,3-dimethyl-2-(4-nitrobenzamido)butyl)diphenylphosphonium bromide(**1g**)

Yield: 90%; yellow solid. m.p. = $153-154^{\circ}$ C; $[\alpha]_{D}^{24} = 222.6$ (c = 0.5, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 8.96 (d, J = 9.2 Hz, 1H), 8.29 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 7.89-7.94 (m, 2H), 7.62-7.69 (m, 3H), 7.53-7.55 (m, 8H), 7.16-7.20 (m, 1H), 7.09 (t, J = 7.6 Hz, 2H), 6.88-6.90 (m, 2H), 5.26-5.33 (m, 1H), 4.98 (t, J = 14.2 Hz, 1H), 4.37-4.46 (m, 1H), 4.03-4.10 (m, 1H), 2.55-2.62 (m, 1H), 0.96 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.9, 149.3, 137.9, 134.7 (d, $J_{C-P} = 2.6$ Hz), 134.5 (d, $J_{C-P} = 2.9$ Hz), 133.9 (d, $J_{C-P} = 8.5$ Hz), 133.7 (q, $J_{C-P} = 11.1$ Hz), 130.3 (d, $J_{C-P} = 3.0$ Hz), 128.3 (d, $J_{C-P} = 2.4$ Hz), 129.7 (d, $J_{C-P} = 2.6$ Hz), 129.4, 128.8 (d, $J_{C-P} = 3.0$ Hz), 128.3 (d, $J_{C-P} = 3.6$ Hz), 127.1, 127.0, 123.0, 117.2, 117.0, 116.4, 116.2, 52.1 (d, $J_{C-P} = 5.5$ Hz), 37.2 (d, $J_{C-P} = 11.8$ Hz), 29.9, 29.5, 26.3, 22.9, 22.4; ³¹P-NMR (163 MHz, CDCl₃): δ 26.1; IR (Neat) 3240, 3057, 2964, 1659, 1601, 1524, 1489, 1341, 1110, 1015, 841, 744; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₂H₃₄N₂O₃P) requires 525.2307, found 525.2286.

4.2.3 .(*S*)-Benzyl(2-(3,5-dinitrobenzamido)-3,3-dimethylbutyl)diphenylphosphonium bromide(**1h**)

Yield: 88%; yellow solid. m.p. = 166-167°C; $[\alpha]_D^{24} = 99.5$ (c = 0.5, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.48 (d, J = 8.8 Hz, 1H), 9.08 (s, 2H), 9.03 (s, 1H),

7.92-7.97 (m, 2H), 7.51-7.79 (m, 8H), 7.07-7.18 (m, 3H), 6.89-6.90 (m, 2H), 4.85-5.01 (m, 2H), 4.23-4.49 (m, 2H), 3.00 (t, J = 14.4 Hz, 1H), 2.51 (s, 1H), 1.02 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 163.2, 148.0, 136.5, 134.8 (d, $J_{C-P} = 3.1$ Hz), 134.5 (d, $J_{C-P} = 2.7$ Hz), 134.1 (d, $J_{C-P} = 9.5$ Hz), 133.8 (q, $J_{C-P} = 9.0$ Hz), 130.4 (d, $J_{C-P} = 5.6$ Hz), 130.0, 129.9 (d, $J_{C-P} = 0.8$ Hz), 129.8, 128.9 (d, $J_{C-P} = 3.1$ Hz), 128.5, 128.4, 127.0, 126.9, 120.9, 117.4, 117.0, 116.6, 116.1, 110.0, 52.6 (d, $J_{C-P} = 5.5$ Hz), 37.5 (d, $J_{C-P} = 11.5$ Hz), 30.4, 30.0, 26.4, 22.6, 22.1; ³¹P-NMR (163 MHz, CDCl₃): δ 25.9; IR (Neat) 3220, 2962, 1664, 1541, 1343, 1110, 1076, 803, 729, 689; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₂H₃₃N₃O₅P) requires 570.2154, found 570.2167.

4.2.4.(*S*)-(2-(3,5-Bis(trifluoromethyl)benzamido)-3,3-dimethylbutyl)(4-methoxybenzy l)diphenylphosphonium bromide(**1i**)

Yield: 94%; White solid. m.p. = $131-133^{\circ}$ C; $[\alpha]_D^{24} = 38.7$ (c = 0.5, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.16 (d, J = 4.4 Hz, 1H), 8.51 (s, 2H), 7.88-7.92 (m, 3H), 7.64-7.69 (m, 3H), 7.54-7.55 (m, 2H), 7.42-7.43 (m, 3H), 6.82-6.85 (m, 2H), 6.65 (d, J = 8.4 Hz, 2H), 5.25-5.32 (m, 1H), 4.78-4.86 (m, 1H), 4.43-4.52 (m, 1H), 4.00-4.05 (m, 1H), 3.72 (s, 3H), 2.59 (t, J = 14.2 Hz, 1H), 1.01 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.2, 159.5 (d, $J_{C-P} = 3.6$ Hz), 134.6, 134.2 (d, $J_{C-P} = 2.9$ Hz), 134.1, 134.0, 133.8, 133.7, 131.5 (d, $J_{C-P} = 5.4$ Hz), 131.2 (q, $J_{C-F} = 33.5$ Hz), 129.9, 129.8, 129.7, 129.5, 128.6 (d, $J_{C-P} = 2.2$ Hz), 124.7, 123.0 (q, $J_{C-F} = 271.8$ Hz), 118.4, 118.3, 117.7, 117.2, 116.9, 116.3, 114.3 (d, $J_{C-P} = 2.9$ Hz), 55.1, 52.3 (d, $J_{C-P} = 5.6$ Hz), 37.4 (d, $J_{C-P} = 11.6$ Hz), 29.9, 29.4, 26.4, 22.2, 21.7; ³¹P-NMR (163 MHz, CDCl₃): δ 24.4; ¹⁹F-NMR (282 MHz, CDCl₃): δ -62.5; IR (Neat) 3225, 3050, 2963, 1662, 1539, 1514, 1439, 1280, 1181, 1136, 1019, 801, 743, 681; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₅H₃₅NO₂F₆P) requires 646.2310, found 646.2288.

4.2.5.(*S*)-(2-(3,5-Bis(trifluoromethyl)benzamido)-3,3-dimethylbutyl)(3,5-bis(trifluoro methyl)benzyl)diphenylphosphonium bromide(**1j**)

Yield: 94%; White solid. m.p. = 147-149°C; $[\alpha]_D^{24} = 47.7$ (c = 0.3, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.09-9.12 (m, 1H), 8.53 (s, 2H), 7.95-8.01 (m, 3H), 7.54-7.76 (m, 9H), 7.29 (s, 2H), 5.43-5.50 (m, 2H), 4.39-4.48 (m, 2H), 2.78-2.88 (m, 1H), 0.99 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.3, 135.4 (d, $J_{C-P} = 2.6$ Hz), 134.8 (d, $J_{C-P} = 3.0$ Hz), 134.7, 134.2, 134.1, 134.0, 133.9, 132.1 (d, $J_{C-P} = 3.2$ Hz), 131.8 (d, $J_{C-P} = 3.3$ Hz), 131.4 (q, $J_{C-F} = 33.6$ Hz), 130.9, 130.8, 130.6, 130.5 (d, $J_{C-P} = 4.8$ Hz), 130.3, 130.2, 130.0, 129.8, 128.5 (d, $J_{C-P} = 2.3$ Hz), 124.9 (d, $J_{C-P} = 3.3$ Hz), 123.0 (q, $J_{C-F} = 271.6$ Hz), 122.4 (q, $J_{C-F} = 271.5$ Hz), 121.9 (d, $J_{C-P} = 3.6$ Hz), 115.7, 115.5, 114.9, 114.6, 52.4 (d, $J_{C-P} = 5.8$ Hz), 37.4 (d, $J_{C-P} = 11.9$ Hz), 30.8, 30.3, 23.5, 23.0; ³¹P-NMR (163 MHz, CDCl₃): δ 27.7; ¹⁹F-NMR (282 MHz, CDCl₃): δ -62.6, -63.2; IR (Neat) 3237, 2969, 2925, 1666, 1374, 1279, 1179, 1135, 903, 801, 682; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₆H₃₁NOF₁₂P) requires 752.1952, found 752.1939.

4.2.6.(*S*)-(2-(3,5-Bis(trifluoromethyl)benzamido)-3,3-dimethylbutyl)(4-nitrobenzyl)di phenylphosphonium bromide(**1k**)

Yield: 92%; White solid. m.p. = 145-146°C; $[\alpha]_D^{24} = 51.9$ (c = 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.09 (d, J = 8.4 Hz, 1H), 8.50 (s, 2H), 7.93-8.02 (m, 4H), 7.61-7.79 (m, 5H), 7.48-7.49 (m, 3H), 7.18 (d, J = 2.0 Hz, 1H), 7.16 (d, J = 2.0 Hz, 1H), 5.37-5.53 (m, 2H), 4.22-4.47 (m, 2H), 2.75 (t, J = 14.4 Hz, 1H), 0.99 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.1, 147.4 (d, $J_{C-P} = 4.2$ Hz), 135.7, 135.6, 135.2 (d,

 $J_{\text{C-P}} = 2.8 \text{ Hz}$), 134.8, 134.5 (d, $J_{\text{C-P}} = 2.7 \text{ Hz}$), 134.2, 134.1, 134.0, 133.99, 131.7, 131.5, 131.42, 131.40, 131.1, 130.7, 130.1 (d, $J_{\text{C-P}} = 12.2 \text{ Hz}$), 129.7 (d, $J_{\text{C-P}} = 12.5 \text{ Hz}$), 128.8, 128.7, 128.4 (d, $J_{\text{C-P}} = 2.9 \text{ Hz}$), 124.8, 123.6 (d, $J_{\text{C-P}} = 3.0 \text{ Hz}$), 123.0 (q, $J_{\text{C-F}} = 271.7 \text{ Hz}$), 116.2, 115.7, 115.4, 114.9, 52.4 (d, $J_{\text{C-P}} = 5.7 \text{ Hz}$), 37.3 (d, $J_{\text{C-P}} = 11.8 \text{ Hz}$), 31.0, 30.5, 26.3, 26.1, 23.5, 23.1; ³¹P-NMR (163 MHz, CDCl₃): δ 26.6; ¹⁹F-NMR (282 MHz, CDCl₃): δ -62.5; IR (Neat) 3232, 3056, 2963, 1666, 1526, 1439, 1347, 1280, 1182, 1136, 1017, 859, 801, 743, 698; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₄H₃₂N₂F₆O₃P) requires 661.2055, found 661.2045.

4.2.7.(*S*)-(2-(3,5-Bis(trifluoromethyl)benzamido)-3,3-dimethylbutyl)(naphthalen-1-yl methyl)diphenylphosphonium bromide(**1**)

Yield: 90%; White solid. m.p. = 133-134°C; $[\alpha]_D^{24} = 41.9$ (c = 0.5, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): δ 9.36 (br, 1H), 8.55 (s, 2H), 7.91-7.95 (m, 3H), 7.36-7.66 (m, 14H), 6.97 (d, J = 8.8 Hz, 1H), 5.40-5.43 (m, 1H), 4.98-5.06 (m, 1H), 4.26-4.27 (m, 1H), 2.62 (t, J = 14.0 Hz, 1H), 0.99 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 164.3, 134.7, 134.3 (d, $J_{C-P} = 3.0$ Hz), 134.1 (d, $J_{C-P} = 9.6$ Hz), 133.8 (d, $J_{C-P} = 8.9$ Hz), 132.8 (d, $J_{C-P} = 3.3$ Hz), 132.5 (d, $J_{C-P} = 2.7$ Hz), 131.3 (q, $J_{C-F} = 33.6$ Hz), 130.0 (d, $J_{C-P} = 7.2$ Hz), 129.9, 129.7 (d, $J_{C-P} = 1.4$ Hz), 128.7, 128.6 (d, $J_{C-P} = 2.5$ Hz), 127.5 (d, $J_{C-P} = 1.6$ Hz), 127.4 (d, $J_{C-P} = 1.4$ Hz), 127.35, 127.31, 126.69, 126.67, 124.8, 124.3, 124.2, 123.2 (q, $J_{C-F} = 271.8$ Hz), 117.6, 117.1, 116.8, 116.3, 52.4 (d, $J_{C-P} = 5.7$ Hz), 37.4 (d, $J_{C-P} = 11.7$ Hz), 30.8, 30.4, 26.4, 26.2, 22.5, 22.0; ³¹P-NMR (163 MHz, CDCl₃): δ 25.2; ¹⁹F-NMR (282 MHz, CDCl₃): δ -62.5; IR (Neat) 3229, 2963, 2926, 2907, 1663, 1541, 14383, 1363, 1279, 1181, 1136, 821, 742, 681; HRMS(MALDI): calcd. for [M-Br]⁺ (C₃₈H₃₅NOF₆P) requires 666.2360, found 666.2347.

4.3 General procedure for the enantioselective desymmetrization of *meso*-aziridines with benzenethiols

To a suspension of the corresponding benzenethiol **3** (0.15 mmol) in CCl₄ (1.0 ml) was added catalyst **1f** (5 mol%) and K₂HPO₄ (0.2 mmol) sequentially, and the resulting mixture was stirred at -10 °C for 5 min. Then aziridine **2** (0.1 mmol) was added. The resulting suspension was vigorously stirred at -10 °C for 24 h, and then directly purified by column chromatography (silica gel: petroleum ether/AcOEt = 10:1 - 5:1) on silica gel to afford the product **4**.

4.3.1. *N*-((1*R*,2*R*)-2-((4-Chlorophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide $(4a)^{17}$

Yield: 94%; white solid. Enantiomeric excess: 64%, $[\alpha]_D^{25} = -20.2$ (c = 2.7, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 9:1, flow rate 0.7 ml/min, t_{minor} = 23.1 min, t_{major} = 21.1 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.20-7.26 (m, 4H), 5.32-5.37 (m, 1H), 2.92-3.01 (m, 2H), 2.43 (s, 3H), 2.17-2.20 (m, 1H), 1.98-2.01 (m, 1H), 1.26-1.69 (m, 6H).

4.3.2. N-((1R,2R)-2-(Phenylthio)cyclohexyl)-3,5-bis(trifluoromethyl)benzamide (4b)

Yield: 85%; white solid. Enantiomeric excess: 59%, $[\alpha]_D^{28} = -11.3$ (c = 1.4, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 85:15, flow rate 1.0 ml/min, t_{minor} = 12.2 min, t_{major} = 11.1 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.22-7.26 (m, 5H), 5.25 (d, J =

3.6 Hz, 1H), 2.88-3.00 (m, 2H), 2.43 (s, 3H), 2.25-2.27 (m, 1H), 2.00-2.03 (m, 1H), 1.57-1.62 (m, 3H), 1.25-1.42 (m, 3H); MS (ESI): m/z 384.1 (M⁺+Na).

4.3.3. *N*-((1*R*,2*R*)-2-((2-Chlorophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (**4c**)¹⁷

Yield: 95%; white solid. Enantiomeric excess: 62%, $[\alpha]_D^{26} = -4.1$ (c = 1.85, CHCl₃), determined by HPLC (Phenomenex Cellulose-2 column, hexane/*i*-PrOH 9:1, flow rate 1.0 ml/min, t_{minor} = 28.8 min, t_{major} = 23.0 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.0 Hz, 2H), 7.28-7.33 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.10-7.12 (m, 2H), 5.08-5.10 (m, 1H), 3.01-3.02 (m, 2H), 2.35 (s, 3H), 2.19-2.21 (m, 1H), 1.95-1.98 (m, 1H), 1.41-1.57 (m, 3H), 1.19-1.29 (m, 3H); MS (ESI): m/z 418.0 (M⁺+Na).

4.3.4. N-((1R,2R)-2-((3-Chlorophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (4d)

Yield: 95%; white solid. m.p. = 71-73°C. Enantiomeric excess: 70%, $[\alpha]_D^{27} = 1.99$ (*c* = 1.85, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 85:15, flow rate 1.0 ml/min, t_{minor} = 11.1 min, t_{major} = 9.9 min, λ = 254 nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08-7.12 (m, 4H), 4.98-5.01 (m, 1H), 2.91-2.98 (m, 2H), 2.36 (s, 3H), 2.15-2.17 (m, 1H), 1.96-1.98 (m, 1H), 1.53-1.55 (m, 1H), 1.19-1.37 (m, 5H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.4, 137.5, 135.7, 134.6, 131.8, 130.2, 130.0, 129.7, 127.4, 127.2, 55.1, 51.0, 32.0, 31.2, 24.2, 23.1, 21.6; IR (Neat) 3278, 2932, 2870, 1580, 1543, 1459, 1330, 1158, 1093, 820, 778, 670, 569, 551; HRMS(MALDI): calcd. for [M+Na]⁺ (C₁₉H₂₂NClS₂O₂) requires 418.0678, found 418.0682.

4.3.5. 4-Methyl-N-((1R,2R)-2-(p-tolylthio)cyclohexyl)benzenesulfonamide (4e)¹⁷

Yield: 80%; white solid. Enantiomeric excess: 57%, $[\alpha]_D^{28} = -14.6$ (c = 1.3, CHCl₃), determined by HPLC (Chiralpak AS-H column, hexane/*i*-PrOH 1:4, flow rate 0.3 ml/min, t_{minor} = 86.5 min, t_{major} = 41.7 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 5.16-5.17 (m, 1H), 2.83-2.85 (m, 1H), 2.68-2.71 (m, 1H), 2.37 (s, 3H), 2.26 (s, 3H), 1.50-1.54 (m, 1H), 1.15-1.28 (m, 6H); MS (ESI): m/z 398.2 (M⁺+Na).

4.3.6.

N-((1R,2R)-2-((4-Methoxyphenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (4f)¹⁷

Yield: 70%; white solid. Enantiomeric excess: 56%, $[\alpha]_D^{28} = -21.3$ (c = 1.05, CHCl₃), determined by HPLC (Chiralpak AS-H column, hexane/*i*-PrOH 1:4, flow rate 0.3 ml/min, t_{minor} = 80.1 min, t_{major} = 61.7 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 5.21-5.24 (m, 1H), 3.73 (s, 3H), 2.79-2.84 (m, 1H), 2.56-2.60 (m, 1H), 2.37 (s, 3H), 2.23-2.26 (m, 1H), 1.88-1.93 (m, 1H), 1.50-1.54 (m, 1H), 1.14-1.24(m, 5H); ¹³C-NMR (100 MHz, CDCl₃): δ 159.9, 143.3, 137.6, 136.4, 129.7, 127.3, 122.3, 114.5, 55.3, 52.3, 32.5, 31.8, 24.9, 23.5, 21.6; HRMS(MALDI): calcd. for [M+Na]⁺ (C₂₀H₂₅NS₂O₃) requires 414.1174, found 414.1173.

4.3.7. *N*-((1*R*,2*R*)-2-((4-Fluorophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide $(4g)^{17}$

Yield: 99%; white solid. Enantiomeric excess: 61%, $[\alpha]_D^{27} = -17.6$ (c = 2.1, CHCl₃), determined by HPLC (Phenomenex Cellulose-2 column, hexane/*i*-PrOH 95:5, flow rate 0.7 ml/min, t_{minor} = 74.6 min, t_{major} = 61.7 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 6.97 (t, J = 8.8 Hz, 2H), 5.29-5.31 (m, 1H), 2.98-3.00 (m, 1H), 2.81-2.86 (m, 1H), 2.47 (s, 3H), 2.26-2.27 (m, 1H), 1.98-2.00 (m, 1H), 1.60-1.64 (m, 2H), 1.26-1.40(m, 4H); MS (ESI): m/z 402.0 (M⁺+Na).

4.3.8. 4-Methyl-N-((1R,2R)-2-((4-nitrophenyl)thio)cyclohexyl)benzenesulfonamide (4h)

Yield: 99%; yellow solid. m.p. = 64-65°C. Enantiomeric excess: 60%, $[\alpha]_D^{26} = 58.2$ (*c* = 2.35, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 4:1, flow rate 1.0 ml/min, t_{minor} = 20.4 min, t_{major} = 16.6 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.8 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.03 (d, *J* = 6.4 Hz, 1H), 3.24-3.38 (m, 2H), 2.47 (s, 3H), 2.16-2.17 (m, 2H), 1.60-1.65 (m, 4H), 1.29-1.45(m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 145.5, 143.7, 137.5, 129.7, 128.4, 127.1, 123.9, 54.7, 49.1, 31.3, 30.4, 23.6, 22.7, 21.5; IR (Neat) 3276, 2932, 1577, 1510, 1337, 1157, 1093, 853, 814, 742, 666, 572; HRMS(MALDI): calcd. for [M+Na]⁺ (C₁₉H₂₂N₂S₂O₄) requires 429.0919, found 429.0900.

4.3.9. N-((1R,2R)-2-((4-Bromophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (**4i**)¹⁷

Yield: 93%; white solid. Enantiomeric excess: 67%, $[\alpha]_D^{28} = 4.28$ (c = 2.0, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 85:15, flow rate 1.0 ml/min, t_{minor} = 14.1 min, t_{major} = 12.0 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 5.29 (d, J = 4.8 Hz, 1H), 2.87-2.94 (m, 2H), 2.36 (s, 3H), 2.10-2.12 (m, 1H), 1.91-1.97 (m, 1H), 1.49-1.51 (m, 2H), 1.29-1.35(m, 1H), 1.18-2.00 (m, 3H); MS (ESI): m/z 462.0 (M⁺+Na).

4.3.10.

N-((1R,2R)-2-((3-Bromophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (4j)

Yield: 94%; white solid. m.p. = 80-82°C. Enantiomeric excess: 71%, $[\alpha]_D^{26} = 3.5$ (c = 2.0, CHCl₃), determined by HPLC (Phenomenex Cellulose-2 column, hexane/*i*-PrOH 9:1, flow rate 1.0 ml/min, t_{minor} = 26.7 min, t_{major} = 20.9 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.0 Hz, 2H), 7.39 (s, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.13-7.19 (m, 1H), 7.05 (t, J = 8.0 Hz, 1H), 4.94 (d, J = 4.4 Hz, 1H), 2.91-2.99 (m, 2H), 2.36 (s, 3H), 2.15-2.17 (m, 1H), 1.93-1.97 (m, 1H), 1.53-1.55 (m, 1H), 1.33-1.35 (m, 1H), 1.19-1.23 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.4, 137.4, 136.1, 134.6, 130.7, 130.3, 129.7, 127.2, 122.7, 55.1, 51.1, 32.0, 31.2, 24.2, 23.1, 21.6; IR (Neat) 3276, 2934, 2857, 1574, 1556, 1459, 1327, 1156, 1093, 813, 778, 754, 666, 572, 551; HRMS(MALDI): calcd. for [M+Na]⁺ (C₁₉H₂₂NBrS₂O₂) requires 462.0173, found 462.0170.

4.3.11.

N-((1R,2R)-2-((2-Bromophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (4k)

Yield: 90%; white solid. m.p. = 93-95°C. Enantiomeric excess: 63%, $[\alpha]_D^{22} = -6.48$ (*c* = 1.13, CH₂Cl₂), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 9:1,

flow rate 1.0 ml/min, $t_{minor} = 20.6$ min, $t_{major} = 15.3$ min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.28-7.30 (m, 1H), 7.14-7.22 (m, 3H), 7.02 (t, J = 8.0 Hz, 1H), 5.12-5.19 (m, 1H), 3.00-3.03 (m, 2H), 2.35 (s, 3H), 2.20-2.22 (m, 1H), 1.95-1.98 (m, 1H), 1.43-1.55 (m, 3H), 1.18-1.31 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.4, 137.1, 135.3, 133.4, 132.8, 129.7, 128.4, 127.9, 127.3, 127.0, 55.1, 50.4, 32.3, 31.1, 24.2, 23.1, 21.6; IR (Neat) 3277, 2934, 2857, 1448, 1327, 1157, 1093, 1019, 895, 814, 749, 667, 571, 551; HRMS(MALDI): calcd. for [M+H]⁺ (C₁₉H₂₃NBrS₂O₂) requires 440.0343, found 440.0348.

4.3.12.

N-((1R,2R)-2-((2-Aminophenyl)thio)cyclohexyl)-4-methylbenzenesulfonamide (4l)¹⁷

Yield: 93%; white solid. Enantiomeric excess: 44%, $[\alpha]_D^{26} = -26.5$ (c = 1.7, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 4:1, flow rate 1.0 ml/min, t_{minor} = 27.4 min, t_{major} = 19.1 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.03-7.10 (m, 2H), 7.63 (d, J = 8.0 Hz, 2H), 6.55 (t, J = 7.6 Hz, 1H), 5.12-5.16 (m, 1H), 4.26 (s, 2H), 2.97-3.00 (m, 1H), 2.63-2.69 (m, 1H), 2.35 (s, 3H), 2.10-2.11 (m, 1H), 1.88-1.89 (m, 1H), 1.48-1.54 (m, 2H), 1.28-1.37 (m, 1H), 1.08-1.18 (m, 3H); MS (ESI): m/z 377.0 (M⁺+H).

4.3.13. 4-Methyl-*N*-((1*R*,2*R*)-2-(pyridin-4-ylthio)cyclohexyl)benzenesulfonamide(4m)

Yield: 60%; yellow solid. m.p. = 116-118°C. Enantiomeric excess: 30%, $[\alpha]_D^{26} = 58.2$ (*c* = 2.35, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 4:1, flow rate 1.0 ml/min, t_{minor} = 15.5 min, t_{major} = 11.6 min, λ = 254 nm); ¹H-NMR (400 MHz, CDCl₃): δ 8.41 (d, *J* = 6.0 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 2H), 4.98 (d, *J* = 6.0 Hz, 1H), 3.39-3.40 (m, 1H), 3.23-3.26 (m, 1H), 2.46 (s, 3H), 2.18-2.20 (m, 2H), 1.29-1.44 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 149.2, 147.8, 143.5, 137.6, 129.7, 127.1, 122.1, 54.5, 47.6, 31.3, 30.4, 23.6, 22.7, 21.5; IR (Neat) 3058, 2934, 2858, 1580, 1449, 1326, 1157, 1093, 813, 571, 594; HRMS(MALDI): calcd. for [M+Na]⁺ (C₁₈H₂₂N₂S₂O₂) requires 385.1020, found 385.1020.

4.3.14. 4-Methyl-N-((1R,2R)-2-(naphthalen-1-ylthio)cyclohexyl)benzenesulfonamide (4n)

Yield: 90%; white solid. m.p. = 88-91°C. Enantiomeric excess: 54%, $[\alpha]_D^{27}$ = -23.0 (*c* = 1.8, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 85:15, flow rate 1.0 ml/min, t_{minor} = 14.1 min, t_{major} = 10.8 min, λ = 254 nm); ¹H-NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 8.0 Hz, 1H), 7.88-7.90 (m, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.53-7.60 (m, 3H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.29 (d, *J* = 4.4 Hz, 1H), 3.04-3.21 (m, 2H), 2.43 (s, 3H), 2.30-2.32 (m, 1H), 1.95-1.98 (m, 1H), 1.29-1.44 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 143.3, 137.4, 134.4, 134.1, 132.4, 130.8, 129.6, 128.8, 128.6, 127.3, 126.7, 126.3, 125.6, 125.5, 55.5, 51.5, 32.2, 31.4, 24.2, 23.2, 21.6; IR (Neat) 3276, 2934, 2857, 1628, 1254, 1157; HRMS(MALDI): calcd. for [M+H]⁺ (C₂₃H₂₆NS₂O₂) requires 412.1394, found 412.1399.

4.3.15. 4-Methyl-N-((1R,2R)-2-(naphthalen-2-ylthio)cyclohexyl)benzenesulfonamide (40)¹⁷

Yield: 91%; white solid. Enantiomeric excess: 57%, $[\alpha]_D^{28} = 19.4$ (c = 1.85, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 4:1, flow rate 1.0

ml/min, $t_{minor} = 13.1$ min, $t_{major} = 10.1$ min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.74-7.86 (m, 6H), 7.51-7.53 (m, 2H), 7.37-7.39 (m, 1H), 7.22 (d, J = 7.8 Hz, 2H), 5.42-5.43 (m, 1H), 3.10-3.14 (m, 2H), 2.41 (s, 3H), 2.29-2.31 (m, 1H), 2.09-2.12 (m, 1H), 1.60-1.62 (m, 2H), 1.31-1.33 (m, 4H); MS (ESI): m/z 434.1 (M⁺+Na).

4.3.16. 4-Methyl-N-((1R,2R)-2-(phenylthio)cyclopentyl)benzenesulfonamide (**4p**)¹⁷

Yield: 95%; white solid. Enantiomeric excess: 51%, $[\alpha]_D^{26} = 11.2$ (c = 1.6, CHCl₃), determined by HPLC (Chiralpak AD-H column, hexane/*i*-PrOH 95:5, flow rate 1.0 ml/min, t_{minor} = 29.7 min, t_{major} = 32.5 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.17-7.20 (m, 7H), 4.71 (d, J = 4.0 Hz, 1H), 3.21-3.27 (m, 2H), 2.36 (s, 3H), 2.00-2.01 (m, 2H), 1.58-1.65 (m, 2H), 1.39-1.54 (m, 2H); MS (ESI): m/z 370.1 (M⁺+Na).

4.3.17. *N*-((1*S*,2*S*)-2-((4-Chlorophenyl)thio)cyclohexyl)-3,5-dinitrobenzamide (**4q**)

Yield: 99%; yellow solid. m.p. = 191-192°C. Enantiomeric excess: 62%, $[\alpha]_D^{22} = 33.2$ (*c* = 0.83, CHCl₃), determined by HPLC (Chiralpak AD-H column hexane/*i*-PrOH 9:1, flow rate 1.0 ml/min, t_{minor} = 18.2 min, t_{major} = 14.2 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 9.05-9.07 (m, 1H), 8.68 (d, *J* = 1.6 Hz, 2H), 7.33-7.35 (m, 2H), 7.07-7.18 (m, 3H), 6.19 (d, *J* = 6.8 Hz, 1H), 3.94-3.96 (m, 1H), 3.07 (td, *J* = 3.6 Hz, *J* = 7.6 Hz, 1H), 2.14-2.24 (m, 2H), 1.72-1.75 (m, 2H), 1.28-1.46 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ 162.0, 148.5, 137.9, 134.2, 132.1, 129.2, 127.1, 121.0, 68.0, 54.8, 53.5, 51.7, 33.6, 32.9, 29.7, 25.9, 25.6, 24.6; IR (Neat) 3306, 3096, 2937, 1644, 1541, 1476, 1343, 1095, 1013, 918, 821, 730; HRMS(MALDI): calcd. for [M+H]⁺ (C₂₃H₂₆NS₂O₂) requires 412.1394, found 412.1399; HRMS(MALDI): calcd. for [M+H]⁺ (C₁₉H₁₉N₃ClSO₅) requires 436.0722, found 436.0728.

4.3.18. (4a*R*,10a*R*)-10-Tosyl-2,3,4,4a,10,10a-hexahydro-1*H*-phenothiazine(**5**)¹⁸

Yield: 70%; yellow oil. Enantiomeric excess: 61%, $[\alpha]_D^{25} = -22.8$ (c = 1.7, CH₂Cl₂), determined by HPLC (Phenomenex Cellulose-2 column, hexane/*i*-PrOH 85:15, flow rate 1.0 ml/min, t_{minor} = 6.98 min, t_{major} = 6.22 min, $\lambda = 254$ nm); ¹H-NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.17-7.20 (m, 7H), 4.71 (d, J = 4.0 Hz, 1H), 3.21-3.27 (m, 2H), 2.36 (s, 3H), 2.00-2.01 (m, 2H), 1.58-1.65 (m, 2H), 1.39-1.54 (m, 2H); MS (ESI): m/z 382.2 (M⁺+Na).

Acknowledgements

This project is financially supported by National Basic Research Program of China (973 Program, 2010CB833204), National Natural Science Foundation of China for financial support (No. 21290184, 21272247, 21172001, 21372008).

Supplementary data

Supplementary data associated with this article can be found in the online version at doi:

References and notes

1. For recent reviews on the ring-opening of aziridines, see: (a) Yudin, A. K.

Aziridines and Epoxides in Organic Synthesis Wiley-VCH, Weinheim, **2006**; (b) Lu, P. F. Tetrahedron **2010**, 66, 2549; (c) Schneider, C. Angew. Chem. Int. Ed. **2009**, 48, 2082; (d) Pineschi, M. Eur. J. Org. Chem. **2006**, 4979; (e) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. **2006**, 39, 194; (f) Hu, X. E. Tetrahedron **2004**, 60, 2701; (g) Tanner, D. Angew. Chem. Int. Ed. Engl. **1994**, 33, 599.

- (a) Li, Z.; Fernández, M.; Jacobsen, E. N. Org. Lett. 1999, 1, 1611; (b) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312; (c) Mita, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 11252; (d) Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Saro, A.; Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63, 5820; (e) Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu, T. V. Angew. Chem., Int. Ed. 2009, 48, 1126; (f) Arai, K.; Lucarini, S.; Salter, M. M.; Ohta, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 8103; (g) Müller, P.; Nury, P. Org. Lett. 1999, 1, 439; (h) Schneider, C. Angew. Chem., Int. Ed. 2009, 48, 2082.
- 3. Rowland, E. B.; Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 12084.
- (a) Bruncko, M.; Hong, D.; Elmore, S.; Kunzer, A. R.; Lynch, C. L.; McClellan, W.; Park, C. M.; Petros, A. M.; Song, X.; Wang, X.; Tu, N.; Wendt, M. D.; Shoemaker, A.; Mitten, M. U.S. Patent 2007072860, 2007; (b) Augeri, D. J.; Baumeister, S. A.; Bruncko, M.; Dickman, D. A.; Ding, H.; Dinges, J.; Fesik, S. W.; Hajduk, P. J.; Kunzer, A. R.; McClellan, W.; Nettesheim, D. G.; Oost, T.; Petros, A. M.; Rosenberg, S. H.; Shen, W.; Thomas, S. A.; Wang, X.; Wendt, M. D. U.S. Patent 2002086887, 2002; (c) Mellah, M.; Voituriez, A.; Schulz, E. *Chem. Rev.* 2007, 107, 5133; (d) Pellissier, H. *Tetrahedron* 2007, 63, 1297.
- (a) Sala, G. D. *Tetrahedron* 2013, 69, 50; (b) Sala, G. D.; Lattanzi, A. Org. Lett. 2009, 11, 3330.
- (a) Larson, S. E.; Baso, J. C.; Li, G. L.; Antilla, J. C. Org. Lett. 2009, 11, 5186; (b) Ingle, G.; Mormino, M.G.; Antilla, J. C. Org. Lett. 2014, 16, 5548.
- (a) Luo, Z. B.; Hou, X. L.; Dai, L. X. *Tetrahedron: Asymmetry* 2007, 18, 443; (b) Wang, Z.; Sun, X.; Ye, S.; Wang, W.; Wang, B.; Wu, J. *Tetrahedron: Asymmetry* 2008, 19, 964.
- 8. Lattanzi, A.; Sala, G. D. Eur. J. Org. Chem. 2009, 1845.
- Zhang, Y.; Kee, C. W.; Lee, R.; Fu, X.; Soh, J. Y. T.; Loh, E. M. F.; Huang, K. W.; Tan, C. H. *Chem. Commun.* 2011, 47, 3897.
- 10. Cao, Y. M.; Zhang, F. T.; Shen, F. F.; Wang, R. Chem. Eur. J. 2013, 19, 9476.
- For selected reviews: (a) O'Donnell, M. J. Acc. Chem. Res. 2004, 37, 506; (b) Lygo, B.; Andrews, B. I. Acc. Chem. Res., 2004, 37, 518; (c) Ooi, T.; Maruoka, K. Acc. Chem. Res. 2004, 37, 526; (d) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222; (e) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.
- 12. (a) Manabe, K. Tetrahedron Lett. 1998, 39, 5807; (b) Manabe, K. Tetrahedron 1998, 54, 14465; (c) Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088; (d) Uraguchi, D.; Ueki, Y.; Ooi, T. Science 2009, 326, 120; (e) Uraguchi, D.; Ueki, Y.; Ooi, T. Angew. Chem. Int. Ed. 2011, 50, 3681; (f) Uraguchi, D.; Ueki, Y.; Ooi, T. Chem. Sci. 2012, 3, 842; (g) Uraguchi, D.; Nakashima, D.; Ooi, T. J. Am. Chem. Soc. 2009, 131, 7242; (h) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. Synlett, 2011, 1265; (i) Uraguchi, D.; Kinoshita, N.; Nakashima, D.; Ooi, T. Chem. Sci. 2012, 3, 3161; (j) Uraguchi, D.; Kinoshita, N.; Ooi, T. J. Am. Chem. Soc. 2010, 132, 12240; (k) Uraguchi, D.; Asai, Y.; Seto, Y. Synlett, 2009, 658; (l)

Uraguchi, D.; Asai, Y.; Ooi, T. Angew. Chem. Int. Ed. 2009, 48, 733; (m) He, R.;
Wang, X.; Hashimoto, T.; Maruoka K. Angew. Chem. Int. Ed. 2008, 47, 9466; (n)
He, R.; Ding, C. Maruoka Angew. Chem. Int. Ed. 2009, 48, 4559; (o) Zhu, C. L.;
Zhang F. G.; Meng, W.; Nie, J.; Cahard, D.; Ma, J. A. Angew. Chem. Int. Ed.
2011, 50, 5869; (p) Shirakawa, S.; Kasai, A.; Tokuda, K.; Maruoka K. Chem. Sci.
2013, 4, 2248; (q) Shirakawa, S.; Tokuda, K.; Kasai, A.; Maruoka K. Org. Lett.,
2013, 15, 3350; (r) Shirakawa, S.; Koga, K.; Tokuda, K.; Yamamoto, K.;
Maruoka, K. Angew. Chem. Int. Ed. 2014, 53, 6220.

- 13. (a) Moss, T. A.; Fenwick, D. R.; Dixon, D. J. J. Am. Chem. Soc. 2008, 130, 10076; (b) Paixão, M. W.; Nielsen, M.; Jacobsen, C. B.; Jørgensen, K. A. Org. Biomol. Chem. 2008, 6, 3467; (c) Luo, Z.-B.; Hou, X. L.; Dai, L. X. Tetrahedron: Asymmetry 2007, 18, 443; (d) Moss, T. A.; Alonso, B.; Fenwick, D. R.; Dixon, D. J. Angew. Chem. Int. Ed. 2010, 49, 568.
- 14. (a) Chai, Z.; Zhao, G. *Catal. Sci. Technol.* 2012, 2, 29; (b) Xiao, H.; Chai, Z.; Cao, D. D.; Wang, H. Y.; Chen, J. H.; Zhao, G. *Org. Biomol. Chem.* 2012, 10, 3195; (c) Lu, Y.; Zou, G.; Zhao, G. *ACS Catal.* 2013, 3, 1356; (d) Chen, J. H.; Cai, Y.; Zhao, G. *Adv. Synth. Catal.* 2014, 356, 359; (e) Wang, H. Y.; Chai, Z.; Zhao, G. *Tetrahedron* 2013, 69, 5104; (f) Wang, H. Y.; Zhang, J. X.; Cao, D. D.; Zhao, G. *ACS Catal.* 2013, 3, 2218; (g) Huang, Y. M.; Zheng, C. W.; Chai, Z.; Zhao, G. *Adv. Synth. Catal.* 2014, 356, 579; (h) Huang, Y. M.; Zheng, C. W.; Zhao, G. *RSC Adv.* 2013, 3, 16999.
- 15. Cao, D. D.; Chai, Z.; Zhang, J. X.; Ye, Z. Q.; Xiao, H.; Wang, H. Y.; Chen, J. H.; Wu, X. Y.; Zhao, G. *Chem. Commun.* **2013**, *49*, 5972.
- 16. Wu, X. Y.; Liu, Q.; Liu, Y.; Wang, Q.; Zhang, Y.; Chen, J.; Cao, W.; Zhao, G. *Adv. Synth. Catal.* **2013**, *355*, 2701.
- 17. (a) Wang, Z.; Sun, X.; Ye, S.; Wang, W.; Wang, B.; Wu, J. Tetrahedron: Asymmetry 2008, 19, 964; (b) Luo, Z. B.; Hou, X. L.; Dai, L. X. Tetrahedron: Asymmetry 2007, 18, 443; (c) Yadav, J. S.; Reddy, B.V.S.; Baishya, G.; Ram Reddy, P.V.; Harshavardhan, S. J. Synthesis 2004, 11, 1854; (d) Qin, Y.; Yin, Z.; Yang, M.; Peng, Y. Chin. J. Chem. 2011, 29, 79; (d) Movassagh, B.; Morovat, E. S. Journal of Sulfur Chemistry 2011, 32, 117.
- 18. Prasad, D. J. C.; Sekar, G. Org. Biomol. Chem. 2009, 7, 5091.

Electronic Supplementary Information

Enantioselective desymmetrization of *meso*-aziridines with benzenethiols catalyzed by chiral bifunctional quaternary phosphonium salts

Jiaxing Zhang,^a Dongdong Cao,^b Hongyu Wang,^b Gang Zhao,^b* and Yongjia Shang^a*

Contents

Electronic Supplementary Information	1
1. Optimization of reaction conditions with catalyst 1f (TableS1, Table S2)	2
2. NMR spectra copies for catalysts (1f-1l) and some products	3
3. HPLC spectra for compounds	15

1. Optimization of reaction conditions with catalyst 1f (TableS1, Table S2)

-

Table S1 Screening of solvents^a

N-Ts 2a	+ Cl 3a Solvent, rt K ₂ HPO ₄ (2	equiv)	CI
Entry	Solvent	Time (h)	$Ee^{b}(\%)$
1	CCl_4	4	41
2	CHCl ₂ CH ₂ Cl	4	3
3	1,2-dichlorobenzene	4	16
4	<i>p</i> -xylene	4	25
5	PhCF ₃	4	21
6	mesitylene	4	11
7	CH ₃ CN	12	4
8	MTBE	12	14
9	THF	12	-10
10	EtOH	12	-

^a Reactions were carried out using (0.1 mmol) of **2a**, (0.15 mmol) **3a**, 5 mol% of **1f**, 0.2 mmol of K_2 HPO₄. ^b Determined by chiral stationary phase HPLC.

Table S2 Screening of bases^a

N-Ts	+ SH 1f (S CC bas	5 mol%)		
2a	3a		4a	
Entry	Base	Time (h)	Yield ^b (%)	$\text{Ee}^{c}(\%)$
1	PhCOONa	4	99	47
2	DABCO	4	99	37
3	DBU	4	99	0
4	DIPEA	4	99	19
5	DMAP	4	99	27
6	KF	4	99	43(59 ^d)
7	CsF	4	99	27
8	CH ₃ COOK	4	99	34
9	PhCOOK	4	90	$48(57^{d})$
10	Et ₃ N	4	99	$48(32^{d})$
11	KHCO ₃	12	99	56 ^d

^a Reactions were carried out using (0.1 mmol) of **2a**, (0.15 mmol) **3a**, 5 mol% of **1f**. ^b Isolated yields. ^c Determined by chiral stationary phase HPLC. ^d Reaction at 0°C.

2. NMR spectra copies for catalysts (1f-1l) and some products

3. HPLC spectra for compounds

1	Det.A	Ch1/254nm

1 cult fuble							
Detector A	Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.850	19847654	969797	49.861	52.146		
2	11.776	19958323	889977	50.139	47.854		
Total		39805977	1859774	100.000	100.000		

			Pe	akiable		
]	Detector A	Ch1 254nm				
Ĵ	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	11.127	22672175	856942	79.339	80.614
	2	12.163	5904178	206083	20.661	19.386
	Total		28576353	1063025	100.000	100.000
	Peak# 1 2 Total	Ret. Time 11.127 12.163	Area 22672175 5904178 28576353	Height 856942 206083 1063025	Area % 79.339 20.661 100.000	Height % 80.0 19.3 100.0

1 Det.A Ch1/254nm

PeakTable

		1	curratione		
etector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.159	10786913	144007	50.182	57.587
2	28.598	10708468	106064	49.818	42.413
Total		21495381	250071	100.000	100.000
	Detector A Peak# 1 2 Total	Peak# Ret. Time 1 23.159 2 28.598 Total	Peak# Ret. Time Area 1 23.159 10786913 2 28.598 10708468 Total 21495381	Peak# Ref. Time Area Height 1 23.159 10786913 144007 2 28.598 10708468 106064 Total 21495381 250071	Peak# Ret. Time Area Height Area % 1 23.159 10786913 144007 50.182 2 28.598 10708468 106064 49.818 Total 21495381 250071 100.000

		1,	carraote		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.037	28041665	367969	80.973	85.157
2	28.768	6589084	64139	19.027	14.843
Total		34630748	432108	100.000	100.000

Detector A	Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	9.910	3770128	162869	49.809	53.178			
2	11.165	3799074	143401	50.191	46.822			
Total		7569202	306270	100.000	100.000			

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.896	16133894	658866	85.156	87.065
2	11.145	2812354	97882	14.844	12.935
Total		18946248	756748	100.000	100.000

PeakTable

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.924	7407908	206541	50.022	51.880
2	24.063	7401278	191569	49.978	48.120
Total		14809186	398110	100.000	100.000

		1	cultituoie		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.048	56284240	1605221	81.803	82.079
2	23.073	12520398	350485	18.197	17.921
Total		68804638	1955706	100.000	100.000

1 Det.A Ch1/254nm

PeakTable

1 Det.A Ch1/254nm

		1.	Current		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	41.747	157723190	931885	78.388	88.509
2	86.503	43486070	120987	21.612	11.491
Total		201209260	1052872	100.000	100.000

PeakTable

		-	cultituole		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	61.691	70914584	343878	77.982	81.832
2	80.061	20022714	76348	22.018	18.168
Total		90937298	420226	100.000	100.000

1 Det.A Ch1/254nm

Detector A	Ch1	254nm
r	-	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.813	25352265	870097	49.923	52.928
2	13.888	25430760	773839	50.077	47.072
Total		50783026	1643937	100.000	100.000

PeakTable

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	12.033	15126532	502549	83.205	84.986		
2	14.116	3053351	88779	16.795	15.014		
Total		18179883	591328	100.000	100.000		

1 Det.A Ch1/254nm

	PeakTable									
Detector A	Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	64.365	11528682	68982	49.373	63.740					
2	77.369	11821496	39242	50.627	36.260					
Total		23350178	108225	100.000	100.000					

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	61.684	40018097	197841	80.648	85.797
2	74.643	9602902	32750	19.352	14.203
Total		49620999	230590	100.000	100.000

PeakTable

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	16.607	13119878	334757	50.296	53.926				
2	20.523	12965270	286017	49.704	46.074				
Total		26085148	620774	100.000	100.000				

1 Det.A Ch1/254nm

PeakTable

1	Detector A	Ch1 254nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	16.584	25625309	681299	79.993	82.012
	2	20.360	6409161	149433	20.007	17.988
	Total		32034470	830732	100.000	100.000

1 Det.A Ch1/254nm

-			
Pea	kΤ	ab	le

		1.	cultituoie		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.868	8843332	113201	49.969	64.879
2	26.296	8854249	61280	50.031	35.121
Total		17697581	174481	100.000	100.000

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	15.323	30325295	903634	81.354	85.920			
2	20.560	6950411	148084	18.646	14.080			
Total		37275706	1051718	100.000	100.000			

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	18.904	11637367	277044	49.793	58.266			
2	27.135	11734151	198436	50.207	41.734			
Total		23371518	475480	100.000	100.000			

1 Det.A Ch1/254nm

PeakTable

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	19.063	22205831	516060	71.811	78.687				
2	27.357	8716921	139778	28.189	21.313				
Total		30922752	655838	100.000	100.000				

1 Det.A Ch1/254nm

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	11.589	9501245	364398	49.151	57.189			
2	15.477	9829469	272783	50.849	42.811			
Tota	l	19330714	637181	100.000	100.000			

	I Cak I able								
Detector A	Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	11.552	9702577	364545	65.035	74.433				
2	15.467	5216444	125217	34.965	25.567				
Total		14919021	489762	100.000	100.000				

1 Det.A Ch1/254nm

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.860	8399800	283927	49.953	54.264
2	14.189	8415500	239302	50.047	45.736
Total		16815299	523228	100.000	100.000

PeakTable

1 Det.A Ch1/254nm

		-				
Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	10.814	22981273	799609	76.966	80.078	
2	14.119	6877773	198930	23.034	19.922	
Total		29859045	998539	100.000	100.000	

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.104	42627782	1830857	50.063	56.047		
2	13.145	42520837	1435781	49.937	43.953		
Total		85148619	3266639	100.000	100.000		
10181		63146019	5200059	100.000	100.00		

1 Det.A Ch1/254nm

PeakTable

Detector A	Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	10.079	84114649	3347770	78.313	82.238	
2	13.100	23293140	723081	21.687	17.762	
Total		107407789	4070851	100.000	100.000	
	Detector A Peak# 1 2 Total	Detector A Ch1 254nm Peak# Ret. Time 1 10.079 2 13.100 Total	Peak# Ret. Time Area 1 10.079 84114649 2 13.100 23293140 Total 107407789	Peak# Ret. Time Area Height 1 10.079 84114649 3347770 2 13.100 23293140 723081 Total 107407789 4070851	Peak# Ret. Time Area Height Area % 1 10.079 84114649 3347770 78.313 2 13.100 23293140 723081 21.687 Total 107407789 4070851 100.000	

1 Det.A Ch1/254nm

Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.584	11778506	190123	49.838	48.163
2	32.339	11855189	204623	50.162	51.837
Total		23633695	394745	100.000	100.000

PeakTable

		-					
etector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	29.675	6526084	102751	24.407	23.567		
2	32.510	20211985	333249	75.593	76.433		
Total		26738070	435999	100.000	100.000		

et.A Ch1/254nm

PeakTable

		10	akiaon		
Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.475	8515079	813087	49.874	53.802
2	7.145	8558096	698175	50.126	46.198
Total		17073175	1511262	100.000	100.000

Det.A Ch1/254nm

	PEak I able							
Detector A	Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.219	20073517	969510	80.693	74.554			
2	6.978	4802909	330901	19.307	25.446			
Total		24876427	1300411	100.000	100.000			