

Modification of Pyrrolo[2,3-*d*]pyrimidines by C–H Borylation Followed by Cross-Coupling or Other Transformations: Synthesis of 6,8-Disubstituted 7-Deazapurine Bases

Martin Klečka,^[a,b] Lenka Poštová Slavětínská,^[b] and Michal Hocek*^[a,b]

Keywords: Synthetic methods / Cross-coupling / C-H activation / Nitrogen heterocycles / Nucleobases / Deazapurines

A general access to 4-substituted 6-arylpyrrolo[2,3-*d*]pyrimidine (6-substituted 8-aryl-7-deazapurine derivatives) was developed based on iridium-catalyzed C–H borylations of pyrrolo[2,3-*d*]pyrimidines at the 6-position followed by the Suzuki cross-coupling reactions or other functional group transformations of the boronates. Biologically relevant 6-arylpyrrolo[2,3-*d*]pyrimidin-4-amines (8-aryl-7-deazaadenines) and pyrrolo[2,3-*d*]pyrimidin-4-ones (–7-deazahypoxanthines) were synthesized starting from SEM-protected 4-methylsulfanyl- or 4-methoxypyrrolo[2,3-*d*]pyrimidine. The onepot borylation/Suzuki coupling reactions were followed either by demethylation and deprotection to yield deazahypoxanthine bases, or by oxidation of sulfide to sulfone, amination and deprotection to give deazaadenines. In addition, the boronate intermediates were converted into 6halo- or 6-(trifluoromethyl)pyrrolo[2,3-*d*]pyrimidine (8-haloor 8-trifluoromethyl-7-deazapurine) derivatives.

Introduction

Pyrrolo[2,3-d]pyrimidines (7-deazapurines)^[1] are important carba-analogues of biogenic purine bases (to refer to parent natural purines, we will also use the "purine" nomenclature and numbering for comparison). Derivatives bearing multiple substituents at the 2-, 4-, 5-, 6-, and/or 7positions of pyrrolo[2,3-d]pyrimidine (2-, 6-, 7-, 8-, and/or 9-positions of 7-deazapurine) have recently attracted significant attention as synthetic targets, and many of them display promising biological effects. 6,7-Disubstituted 7-deazapurine ribonucleosides are potent cytostatics.^[2] whereas 7.8diaryl-7-deazaadenine derivatives are potent inhibitors of ACK1 kinase^[3] and 7-alkyl-8-arylsulfanyl-7-deazapurines are inhibitors of dihydrofolate reductase.^[4] 6-Substituted 8aryl-7-deazapurine bases (Figure 1) also showed important biological activities: TWS119 was identified as directing the differentiation of neuronal cells in mice by GSK-3b inhibition.^[5] whereas PKI166 and related compounds display antitumor activity through inhibition of EGFR-tyrosine kinase^[6] or Bruton's tyrosine kinase.^[7] Known methods for the synthesis of substituted pyrrolo[2,3-d]pyrimidines mostly

 Supporting information and ORCID(s) from the author(s) for
 this article are available on the WWW under http://dx.doi.org/ 10.1002/ejoc.201501177. involve cross-coupling reactions and/or heterocyclizations. Regioselective cross-coupling reactions were used in the synthesis of 2,4-disubstituted pyrrolo[2,3-d]pyrimidines^[8] and, in combination with C-H arylation, for the synthesis of 2,4,6-triarylpyrrolo[2,3-*d*]pyrimidines.^[9] A combination of palladium- and copper-assisted heterocyclization, followed by halogenation at the 5-position and Suzuki coupling was used for 4,5,6-trisubstituted derivatives.^[10] We have recently reported^[11] a chemoselective synthesis of 4,5diarylpyrrolo[2,3-d]pyrimidines by using a combination of the Liebeskind-Srogl and Suzuki coupling reactions. For the synthesis of 4-substituted 6-arylpyrrolo[2,3-d]pyrimidines (6-substituted 8-aryl-7-deazapurines), palladium-catalyzed heterocyclizations of 5-alkynyl-6-aminopyrimidines^[12] or heterocyclizations of arylpyrroles^[13] were mostly utilized. The heterocyclization approaches^[12,13] are more laborious for the synthesis of larger series of derivatives because several steps are typically needed for the preparation of each compound. On the other hand, regio- or chemoselective cross-coupling reactions,^[7–11] either alone or in combina-

Figure 1. Examples of biologically active 4,6-disubstituted pyrrolo[2,3-*d*]pyrimidines.

[[]a] Department of Organic Chemistry, Faculty of Science, Charles University in Prague,

Hlavova 8, 12843 Prague-2, Czech Republic

[[]b] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nám. 2, 16610 Prague-6, Czech Republic E-mail: hocek@uochb.cas.cz

http://www.uochb.cas.cz/hocekgroup/

tion with C–H activations, enable late-stage diversification of the substituents in these important heterocycles and thus deserve further development.

C-H activation reactions are currently one of the hottest fields in organic synthesis and they are becoming an indispensable tool in the modification of heterocycles including nucleobases.^[14] Recently, we combined C-H arylations with cross-couplings in the synthesis of substituted^[15] or fused^[16] purines and developed C-H borylation,[17] C-H sulfenvlation,^[18] and C-H amination^[19] of 7-deazapurines. Iridiumcatalyzed C-H borylation can be combined with the Suzuki reaction for the synthesis of 4,6-disubstituted pyrrolo[2,3-d]pyrimidines (6,8-disubstituted 7-deazapurines) as demonstrated by several proof-of-principle examples in our previous preliminary communication.^[17] However, the application of the borylation-coupling approach for the synthesis of biologically relevant deazapurine derivatives, i.e., 7-deazaadenine or 7-deazahypoxanthine bases, and the possibility of applying other transformations of boronates to other functional groups (aryl, CF₃, halogen) remained to be addressed. Herein, we report on these issues in this full-paper.

Results and Discussion

Iridium-catalyzed C-H borylation of arenes is an efficient single-step method to generate aryl boronates.^[20] In our previous work,^[17] we reported that the C-H borylation of purines did not proceed, presumably because of the strong coordination of iridium-catalysts to N7 nitrogen of purine, which prevented the catalytic activity. On the other hand, the reaction was successful^[17] in some pyrrolo[2,3-d]pyrimidines (7-deazapurines, lacking this chelating nitrogen). Previously reported^[17] and new results of a systematic study of borylation of a series of model pyrrolo[2,3-d]pyrimidines 1-11 are summarized in Scheme 1 and Table 1. Previously, we found^[17] that 4-phenyl-7-benzylpyrrolo[2,3d]pyrimidine 1 undergoes the iridium-catalyzed borylation to give 6-borylated product 12 in good yield. However, now we found that neither 7-unsubstituted 4-phenylpyrrolo[2,3*d*]pyrimidine 2 nor nucleoside $3^{[21]}$ formed the desired boronates. 7-Benzylpyrrolo[2,3-d]pyrimidin-4-amine (7-deazaadenine) 4 as well as its N-(dimethylamino)methylideneprotected derivative 5 also did not give any C-H borylation

Table 1. Direct C–H borylations of pyrrolo[2,3-d]pyrimidines 1–11.

products. 7-Benzyl-4-chloropyrrolo[2,3-*d*]pyrimidine **6** gave the desired 6-borylated product **13** in moderate yield (53%), whereas the 7-unprotected 4-chloropyrrolo[2,3-*d*]pyrimidine 7 did not undergo the borylation. Apparently, the iridiumcatalyzed C–H borylation only works on 7-substituted pyrrolo[2,3-*d*]pyrimidines bearing functional groups lacking any acidic protons and/or coordinating nitrogen atoms. On the other hand, we have no plausible explanation for the lack of reactivity of nucleoside **3**.

Scheme 1. Borylation of a series of model pyrrolo[2,3-*d*]pyrimidines 1–11.

To access the biologically relevant substituted 7-deazaadenine or 7-deazahypoxanthine bases, a protecting group must be introduced at the 7-position of the pyrrolo[2,3-d]pyrimidine moiety and a suitable functional group must be placed at the 4-position. The protecting group must not interfere with the borylation but must be sufficiently stable and easily removable at the end. Based on our previous experience with the difficult removal of the N-benzyl group from pyrrolo[2,3-d]pyrimidines, we choose to use the (trimethylsilyl)ethoxymethyl (SEM) group, which is easily removed by treatment with trifluoroacetic acid (TFA) followed by ammonia. As possible transformable or leaving groups at the 4-position, we considered Cl, OCH₃, SCH₃, and SO₂CH₃, which should be prone to either nucleophilic substitutions or demethylations. The SEM-protected 4chloropyrrolo[2,3-d]pyrimidine 8 was prepared according to a reported procedure^[22] and was converted into 4-methoxyand 4-methylsulfanyl derivatives 9 and 10 by nucleophilic substitution with MeONa or MeSNa, respectively (Scheme 2). The sulfide 10 was oxidized to sulfone 11 by mCPBA. The corresponding 7-SEM-4-substituted pyrrolo-[2,3-d] pyrimidine derivatives 8–11 were then tested in the

Entry	Starting compound	Х	R	Product yield (%) 12 (85) ^[a]	
1	1	Ph	Bn		
2	2	Ph	Н	no reaction	
3	3	Me	2,3,5-tri-O-acetyl-β-D-ribofuranosyl	no reaction	
4	4	$\rm NH_2$	Bn	no reaction ^[a]	
5	5	(CH ₃) ₂ NCH=N-	Bn	no reaction ^[a]	
5	6	Cl	Bn	13 (53) ^[a]	
7	7	Cl	Н	no reaction	
3	8	Cl	SEM	14 (78)	
)	9	OMe	SEM	15 (81)	
0	10	SMe	SEM	16 (83)	
1	11	SO ₂ Me	SEM	no reaction	

[a] Results previously reported in ref.^[17]

iridium-catalyzed C–H borylation under the conditions described above (Table 1, entries 8–11). The 4-chloro-, 4methoxy-, and 4-methylsulfanyl-pyrrolo[2,3-*d*]pyrimidines reacted well to give the corresponding boronates **14–16** in good yields (78–83%), whereas sulfone **11** did not give any reaction under these conditions.

Scheme 2. Reagents and conditions: (i) 1 M MeONa in MeOH (2 equiv.), acetone, room temp., 18 h; (ii) MeSNa (1.5 equiv.), MeOH, room temp., 1 h; (iii) *m*CPBA (2 equiv.), CH₂Cl₂, room temp., 18 h.

We also explored the possible conversion of boronate **12** into either free boronic acids or trifluoroborates^[23] (Scheme 3). The reaction of **12** with KHF₂ under standard conditions^[24] gave the desired trifluoroborate **17** in acceptable yield (68%). However, the oxidation followed by hydrolysis under reported conditions,^[24] which was expected to give the boronic acid, gave only 6-unsubstituted pyrrolo[2,3-*d*]pyrimidine **1** as a product of protodeborylation. This indicates that the corresponding pyrrolo[2,3-*d*]pyrimidine-6-boronic acid deazapurine-8-boronic acid is too unstable to be isolated under these reaction conditions.

Scheme 3. Reagents and conditions: (i) KHF_2 (6 equiv.), THF/H_2O (5:3), room temp., 5 h; (ii) $NaIO_4$ (4 equiv.), THF/H_2O (4:1), 1 M HCl, room temp., 1 h.

Having confirmed the reactivity of the SEM-protected pyrrolo[2,3-d]pyrimidines **8**–**10** in C–H borylations (Table 1, entries 8–10), we tested a two-step, one-pot reac-

Scheme 4. Reagents and conditions: (i) B_2pin_2 (1.2 equiv.), $[Ir(COD)OMe]_2$ (5 mol-%), dtbpy (10 mol-%), THF, 80 °C, 20 h; (ii) Ar-I (1.1 equiv.), Pd(dppf)Cl₂ (5 mol-%; 10 mol-% in case of **20a**), K_2CO_3 (4 equiv.), DMF, 90 °C, 1 h.

Table 2. Synthesis of 6-arylpyrrolo[2,3-*d*]pyrimidin-4-ones (8-aryl-7-deazahypoxanthines).

Entry	Ar–X	Product 19 (yield)	Product 21 (yield)	Product 22 (yield)
1	I	19a (70%)	21a (90%)	22a (85%)
2		19b (50%) ^[b]	21b (85%)	22b (71%)
3		19c (65%)	21c (90%)	22c (90%)
4	Br	19d (45%) ^[b]	21d (80%)	22d (92%)
5	'Ls	19e (77%)	21e (90%)	22e (70%)
6	Br	19f (58%)	21f (65%)	22f (80%)
7		19g (66%) ^[b]	-	22i (97%) ^[a]
8		19h (74%)	21h (22%)	22h (75%)

[a] Overall yield for two steps from 19g. [b] Reaction time 18 h.

Scheme 5. Reagents and conditions: (i) B_2pin_2 (1.2 equiv.), $[Ir(COD)OMe]_2$ (5 mol-%), dtbpy (10 mol-%), THF, 80 °C, 20 h; (ii) Ar-X (1.1 equiv.), Pd(dppf)Cl₂ (5 mol-%), K₂CO₃ (4 equiv.), DMF, 90 °C, 1 h (or 18 h); (iii) TFA (2 mL), room temp., 1 h, followed by aq. ammonia (25% [w/w]), room temp., 18 h; (iv) TMSCl (5 equiv.), NaI (5 equiv.), MeCN, 80 °C, 18 h.

Encouraged by these successful reactions, we envisaged the use of the one-pot borylation/arylation of 6-methoxypyrrolo[2,3-d]pyrimidine 9 in combination with O-demethylation and SEM-deprotection for the synthesis of 6aryl-pyrrolo[2,3-d]pyrimidin-4-ones (8-aryl-7-deazahypoxanthine bases). We performed a series of one-pot borylation/Suzuki coupling reactions of methoxypyrrolo[2,3*d*|pyrimidine 9 with several aryl iodides (Scheme 5, Table 2). Generally, the reactions proceeded very well to give the desired SEM-protected 6-(het)aryl-4-methoxypyrrolo[2,3-d]pyrimidines 19a-h in high yields (Scheme 5, Table 2). In several cases, the reaction time for the Suzuki reaction was increased to 18 h to reach complete conversion. Deprotection^[25] of the SEM group treatment with TFA followed by aqueous ammonia furnished free 6-(hetero)aryl-4-methoxypyrrolo[2,3-d]pyrimidines 21a-f in good yields (65-90%) (Scheme 5, Table 2). In deprotection of aminophenylderivative **19h**, the isolated yield of pyrrolo[2,3-d]pyrimidine base 21h was low (22%) due to difficult separation of the highly polar derivative by column chromatography. In the case of compound 19g, deprotection of the SEM group was directly followed by acid hydrolysis^[26] to the free 6-(uracil-5-yl)pyrrolo[2,3-d]pyrimidin-4-one 22i. The final cleavage of methyl ethers 21a-h was performed with iodotrimethylsilane^[27] generated in situ in acetonitrile to give 6-(hetero)arylpyrrolo[2,3-d]pyrimidin-4-ones [8-(hetero)aryl-7-deazahypoxanthines] **22a–h** in high yields.

To synthesize the corresponding 6-arylpyrrolo[2,3-d]pyrimidin-4-amines (8-aryl-7-deazaadenine bases), we started by an analogous one-pot, two-step borylation/arylation of SEM-protected 4-(methylsulfanyl)pyrrolo[2,3-d]pyrimidine **10**. The presence of sulfur meant that 10 mol-% Pd catalyst was needed for the Suzuki coupling, but otherwise the reaction with B₂pin₂ followed by cross-coupling with a series of aryl halides proceeded similarly, resulting in high yields of the desired 6-(hetero)aryl products 20a-h (Scheme 6, Table 3). In several cases, the reaction time for the Suzuki reaction was again increased to 18 h to reach complete conversion. The second step was the oxidation^[28] of methylsulfanyl derivatives 20a-h to methylsulfones 23a-g (which are more reactive electrophiles for nucleophilic substitution). The reactions proceeded well with the exception of derivative 20h (entry 8), which gave an inseparable complex mixture. The original procedure (NH₃/MeOH) for amination of sulfones^[28] was modified to NH₃/dioxane (to avoid formation of methyl ethers observed in methanol), which gave the desired SEM-protected 6-arylpyrrolo[2,3-d]pyrimidin-4-amines 24a-f in good yields. Deprotection of the

Scheme 6. Reagents and conditions: (i) B_2pin_2 (1.2 equiv.), $[Ir(COD)OMe]_2$ (5 mol-%), dtbpy (10 mol-%), THF, 80 °C, 20 h; (ii) Ar-X (1.1 equiv.), Pd(dppf)Cl₂ (10 mol-%), K₂CO₃ (4 equiv.), DMF, 90 °C, 1 h (or 18 h); (iii) *m*CPBA (2 equiv.), CH₂Cl₂, room temp., 1 h; (iv) aq. ammonia (25% w/w), dioxane, 50 °C, 18 h; (v) TFA (2 mL), room temp., 1 h, followed by aq. ammonia (25% w/w), room temp., 18 h.

Table 3.	Synthesis	of 6-arvlr	vrrolo[2.3	-dlpvrimidi	in-4-amines	(8-arvl-7-	deazaadenines).
			J · · · [] ·	··· II 2		(· · · · · · ·	

Entr	y Ar–X	Product 20 (yield)	Product 23 (yield)	Product 24 (yield)	Product 25 (yield)
1	I	20a (79%)	23a (77%)	24a (83%)	25a (80%)
2		20b (64%) ^[b]	23b (65%)	24b (94%)	25b (74%)
3		20c (69%)	23c (89%)	24c (91%)	25c (74%)
4	Br	20d (62%)	23d (76%)	24d (85%)	25d (79%)
5	'LS	20e (70%) ^[b]	23e (62%)	24e (84%)	25e (72%)
6	Br	20f (50%) ^[b]	23f (62%)	24f (71%)	25f (65%)
7		20g (39%) ^[b]	23 g (86%)	24 g (93%)	25i (77%) ^[a]
8		20h (78%)	complex mixture	_	

[a] Overall yield after acidic deprotection to 25i. [b] 18 h.

SEM group using TFA followed by aqueous ammonia furnished free 6-substituted pyrrolo[2,3-*d*]pyrimidin-4-amines (8-substituted 7-deazaadenines) **21a**–**f** in 65–80% yield. In the case of compound **24g**, deprotection of the SEM group was directly followed by acid hydrolysis to give the free 6-(uracil-5-yl)-pyrrolo[2,3-*d*]pyrimidin-4-amine [8-(uracil-5yl)-7-deazaadenine] (**25i**).

Given that the above reaction sequence did not work for the preparation 6-(3-aminophenyl)pyrrolo[2,3-*d*]pyrimidin-4-amine (**25h**), we used an alternative synthetic protocol. The corresponding pyrrolo[2,3-*d*]pyrimidin-4-one derivative **22h** was first chlorinated with POCl₃ followed by amination (NH₃ in dioxane) to give the desired pyrrolo[2,3-*d*]pyrimidin-4-amine (deazaadenine) **25h** in 40% overall yield (Scheme 7).

Scheme 7. Reagents and conditions: (i) $POCl_3$ (5 equiv.), $BnEt_3N^+Cl$ (2 equiv.), $PhNMe_2$ (1.1 equiv.), MeCN, reflux, 4 h; (ii) aq. ammonia (25% w/w), dioxane, 120 °C, 18 h.

Having developed easy access to 6-borylated pyrrolo[2,3*d*]pyrimidines, we also explored the possibility of their conversion into other functional groups. We tested the reactions of the 6-borylated 7-benzyl-pyrrolo[2,3-*d*]pyrimidine **12** generated in situ from **1** and directly functionalized by copper-catalyzed substitutions (Scheme 8). Halogenation^[29] of boronate **12** with cupric chloride formed 6-chloropyrrolo[2,3-*d*]pyrimidine **26j** (46%), whereas analogous bromination with cupric bromide gave 6-bromo-derivative **26k** (63%). This two-step halogenation at the 6-position is complementary to electrophilic halogenation, which proceeds at the 5-position.^[30] Boronate **12** was also converted into 6-

Scheme 8. Reagents and conditions: (A) CuCl₂ (3 equiv.), acetone/ H₂O (1:1), 80 °C, 3 h; (B) CuBr₂ (3 equiv.), acetone/H₂O (1:1), 80 °C, 3 h; (C) Togni reagent (1.1 equiv.), CuTC (10 mol-%), 1,10phenanthroline (20 mol-%), LiOH·H₂O (2 equiv.), CH₂Cl₂, 45 °C, 18 h; (D) Cu(NO₃)₂ (2 equiv.), Zn(CN)₂ (3 equiv.), CsF (1 equiv.), acetone/H₂O (2.5:1), 100 °C, 2.5 h.

trifluoromethyl derivative **26I** by treatment with the Togni reagent [(3,3-dimethyl-1-trifluoromethyl)-1,2-benziodoxole], CuTC [copper(I)-thiophene-2-carboxylate], and 1,10-phenanthroline,^[31] but the yield was only 34% because of competitive protodeborylation. Treatment of **12** with Zn-(CN)₂ in the presence of Cu(NO₃)₂ and CsF^[32] gave 6-cyano derivative **26m** in 58% yield.

This one-pot, two-step reaction sequence of C–H borylation/Cu-catalyzed substitution was then applied on SEM-protected 4-chloro- and 4-methoxypyrrolo[2,3-*d*]pyrimidine **8** and **9**. The halogenations and trifluoromethyl-

Scheme 9. Reagents and conditions: (i) B_2pin_2 (1.2 equiv.), [Ir(COD)OMe]₂ (5 mol-%), dtbpy (10 mol-%), THF, 80 °C, 20 h; (ii) A. CuCl₂ (3 equiv.), acetone/H₂O (1:1), 80 °C, 3 h; B. CuBr₂ (3 equiv.), acetone/H₂O (1:1), 80 °C, 3 h; C. Togni reagent (1.1 equiv.), CuTC (10 mol-%), 1,10-phenanthroline (20 mol-%), LiOH·H₂O (2 equiv.), CH₂Cl₂, 45 °C, 18 h; D. Cu(NO₃)₂ (2 equiv.), Zn(CN)₂ (3 equiv.), CsF (1 equiv.), acetone/H₂O (2,5:1), 100 °C, 2 h; (iii) TFA (2 mL), room temp., 1 h, followed by aq. ammonia (25% w/w, room temp., 18 h).

Table 4. One-pot C-H borylation/Cu-catalyzed substitution of SEM-protected pyrrolo[2,3-d]pyrimidines followed by deprotection.

Entry	Starting compd.	Procedure	X	Y	Product yield (%)	Product yield (%)
1	8	А	Cl	Cl	27i (55)	28j (66)
2	8	В	Cl	Br	27 k (56)	28 k (75)
3	8	С	C1	CF_3	271 (38)	281 (73)
4	8	D	C1	CN	no reaction	_
5	9	А	OMe	Cl	19j (47)	21j (55)
6	9	В	OMe	Br	19k (34)	21k (50)
7	9	С	OMe	CF_3	191 (32)	211 (75)
8	9	D	OMe	CN	no reaction	_

ations proceeded with modest conversions (probably due to partial protodeborylation) to give the desired 6-substituted products **19j–1** and **27j–1** in 32–56% yield (Scheme 9, Table 4). On the other hand, the cyanation did not proceed at all, and only the recovered starting material was observed. Cleavage of SEM groups using TFA followed by aqueous ammonia furnished the corresponding free 6-substituted pyrrolo[2,3-*d*]pyrimidines (8-substituted 7-deazapurine bases) **21j–1** and **28j–1** (Scheme 9, Table 4).

The last goal was the preparation of 6-trifluoromethylpyrrolo[2,3-*d*]pyrimidin-4-one (8-trifluoromethyl-7-deazahypoxanthine) (**22**I) and 6-trifluoromethyl-pyrrolo[2,3-*d*]pyrimidin-4-amine (8-trifluoromethyl-7-deazaadenine) (**25**I). The former was easily prepared by cleavage of methyl ether **21**I with iodotrimethylsilane generated in situ (from TMSCl and NaI) in acetonitrile. The desired compound **22**I was isolated in low yield (30%; Scheme 10).

Scheme 10. Reagents and conditions: (i) TMSCl (5 equiv.), NaI (5 equiv.), MeCN, 80 °C, 18 h.

More difficult was the preparation of the corresponding 6-trifluoromethyl-pyrrolo[2,3-d]pyrimidin-4-amine 251 (Scheme 11). An obvious way was through amination of 4-chloro derivative 281. However, the reaction did not proceed under mild conditions, whereas at 120 °C the formation of unexpected amide 25m was observed due to hydrolysis/ammonolysis of the CF₃ group. Therefore, we used a longer sequence starting by borylation/trifluoromethylation of 10,

Scheme 11. Reagents and conditions: (i) aq. ammonia (25% w/w), dioxane, 120 °C, 18 h; (ii) B₂pin₂ (1.2 equiv.), [Ir(COD)OMe]₂ (5 mol-%), dtbpy (10 mol-%), THF, 80 °C, 20 h; (iii) Togni reagent (1.1 equiv.), CuTc (10 mol-%), 1,10-phenanthroline (20 mol-%), LiOH·H₂O (2 equiv.), CH₂Cl₂, 45 °C, 18 h; (iv) *m*CPBA (2 equiv.), CH₂Cl₂, room temp., 1 h; (v) aq. ammonia (25% w/w), dioxane, 50 °C, 18 h; (vi) TFA (2 mL), room temp., 1 h, followed by aq. ammonia (25% w/w), room temp., 18 h.

followed by oxidation and amination of sulfone **231** under mild conditions to give SEM-protected pyrrolo[2,3-*d*]pyr-imidin-4-amine **241** in good yield. Final standard deprotection gave the desired compound **251** in 90% yield.

Conclusions

We have developed a general approach for the synthesis of biologically relevant 4,6-disubstituted pyrrolo[2,3-d]pyrimidines (6,8-disubstituted 7-deazapurines). The approach was based on one-pot, two-step iridium-catalyzed C-H borylation of 7-substituted or SEM-protected 4-chloro-, 4methoxy-, or 4-methylsulfanylpyrrolo[2,3-d]pyrimidines followed by palladium-catalyzed Suzuki coupling with aryl halides. Manipulation of substituents at the 4-position, i.e., demethylation of 4-methoxypyrrolo[2,3-d]pyrimidine or oxidation of 4-(methylsulfanyl)pyrrolo[2,3-d]pyrimidine derivatives to sulfones followed by amination, gave the desired 6-arylpyrrolo[2,3-d]pyrimidin-4-ones (8-aryl-7-deazahypoxanthines) or pyrrolo[2,3-d]pyrimidin-4-amines (8-aryl-7-deazaadenines), respectively, after cleavage of the SEM protection group. The 6-pinacolboronate intermediates were also converted into 6-chloro-, 6-bromo, and 6-trifluoromethylpyrrolo[2,3-d]pyrimidines (8-chloro-, 8-bromo, and 8-trifluoromethyl-7-deazapurines) by copper-catalyzed displacements. The approach gives easy access to an underexplored group of biologically relevant modified pyrrolo[2,3d]pyrimidine (7-deazapurine) bases, which could be further N-alkylated or glycosylated to give a variety of nucleoside and nucleotide analogues. Application of this methodology to the synthesis of these derivatives and nucleosides and biological profiling of the products is underway.

Experimental Section

General: 4-Chloro-7H-pyrrolo[2,3-d]pyrimidine (7) was purchased from a commercial supplier and used without any further purifica-4-Chloro-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3tion. d]pyrimidine^[22] (8) and 4-methyl-7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine^[21] (3) were prepared according to reported procedures. Anhydrous DMF and THF were used as received. All compounds were fully characterized by NMR and spectra were recorded with a 600 MHz (¹H at 600.1 MHz, ¹³C at 150.9 MHz), a 500 MHz (499.8 or 500.0 MHz for ¹H and 125.7 MHz for ¹³C), or a 400 MHz (¹H at 400 MHz, ¹³C at 100.6 MHz) spectrometer. ¹H and ¹³C resonances were assigned based on H,C-HSQC and H,C-HMBC spectra. The samples were measured in CDCl₃ or $[D_6]$ DMSO and chemical shifts (in ppm, δ scale) are referenced to solvent signal [δ (¹H) = 7.26 ppm, δ (¹H) = 77.0 ppm] or in DMSO [δ (¹H) = 2.50 ppm, δ (¹H) = 39.43 ppm] Coupling constants (J) are given in Hz. High-performance flash chromatography (HPFC) was performed on KP-Sil columns. IR spectra (wavenumbers in cm⁻¹) were recorded by using the ATR technique. High-resolution mass spectra were measured by using the EI ionization technique.

4-Methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (9): Protected pyrrolo[2,3-d]pyrimidine **8** (25.54 g, 90 mmol, 1 equiv.) was dissolved in acetone (50 mL), and 1 M solution of MeONa in MeOH (180 mL, 180 mmol, 2 equiv.) was added

and the reaction mixture was stirred at room temp. overnight. Solvents were evaporated under reduced pressure and the mixture was then diluted with water (150 mL) and EtOAc (150 mL). The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 150 \text{ mL})$. The combined organic layers were dried with sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure to give 9 (24.94 g, 99%) as a yellow oil. ¹H NMR (499.8 MHz, [D₆]-DMSO): $\delta = -0.11$ (s, 9 H, CH₃Si), 0.79–0.83 (m, 2 H, SiCH₂CH₂O), 3.48–3.51 (m, 2 H, OCH₂CH₂Si), 4.05 (s, 3 H, CH₃O), 5.58 (s, 2 H, NCH₂O), 6.57 (d, $J_{5.6}$ = 3.6 Hz, 1 H, H-5), 7.54 (dd, $J_{6,5}$ = 3.6, $J_{6,2}$ = 0.2 Hz, 1 H, H-6), 8.45 (d, $J_{2,6}$ = 0.2 Hz, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, $[D_6]DMSO$): $\delta = -1.2$ (CH₃Si), 17.3 (SiCH₂CH₂O), 53.7 (CH₃O), 65.7 (OCH₂CH₂Si), 72.8 (NCH₂O), 98.6 (CH-5), 104.8 (C-4a), 127.7 (CH-6), 151.0 (CH-2), 152.2 (C-7a), 162.5 (C-4) ppm. IR (KBr): $\tilde{v} = 2950, 2923,$ 2896, 1592, 1559, 1512, 1476, 1416, 1314, 1236, 1096, 1078, 1060, 863, 842, 764, 731, 647 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₃H₂₁O₂N₃NaSi 302.1295; found 302.1295.

4-(Methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine (10): Protected pyrrolo[2,3-d]pyrimidine 8 (27 g, 95 mmol, 1 equiv.) was dissolved in methanol (150 mL) and MeSNa (10 g, 142.5 mmol, 1.5 equiv.) was added. The reaction mixture was stirred at room temp. for 1 h, then the solvents were evaporated under reduced pressure and the mixture was diluted with water (150 mL) and EtOAc (150 mL). The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 150 \text{ mL})$. The combined organic layers were dried with sodium sulfate (Na_2SO_4) , solvents were evaporated, and the residue was purified by flash chromatography (CH₂Cl₂/EtOAc, 20:1) to give 10 (25 g, 89%) as a yellowish solid, m.p. 55 °C. ¹H NMR (500 MHz, $CDCl_3$): $\delta = -0.07$ (s, 9 H, CH_3Si), 0.88–0.91 (m, 2 H, OCH₂CH₂Si), 2.71 (s, 3 H, CH₃S), 3.49–3.52 (m, 2 H, OCH_2CH_2Si), 5.61 (s, 2 H, NCH₂O), 6.56 (d, $J_{5,6}$ = 3.7 Hz, 1 H, H-5), 7.23 (d, $J_{6,5}$ = 3.7 Hz, 1 H, H-6), 8.69 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 11.8 (CH₃S), 17.7 (OCH₂CH₂Si), 66.4 (OCH₂CH₂Si), 72.8 (NCH₂O), 100.0 (CH-5), 116.1 (C-4a), 129.7 (CH-6), 148.8 (C-7a), 151.2 (CH-2), 161.7 (C-4) ppm. IR (KBr): $\tilde{v} = 3105, 3087, 3052, 2956, 2935, 2899, 2875,$ 1550, 1506, 1464, 1446, 1413, 1344, 1251, 1213, 1162, 1096, 1084, 394, 922, 860, 842, 758, 743 cm⁻¹. HRMS (ESI): m/z calcd. for C13H22ON3SSi 296.1247; found 296.1248.

4-(Methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine (11): 4-Methylsulfanyl-7*H*-pyrrolo[2,3-d]pyrimidine 10 (1.48 g, 5 mmol, 1 equiv.) was dissolved in CH₂Cl₂ (20 mL), and m-CPBA (1.72 g, 10 mmol, 2 equiv.) was slowly added (cooling by water/ice during addition) and the reaction mixture was stirred at room temp. overnight. Then, 1M NaOH (10 mL) was added to the mixture to remove residual m-CPBA. The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2×15 mL). The combined organic layers were dried with sodium sulfate, solvents were evaporated, and the residue was purified by flash chromatography (HPFC; CHCl₃/MeOH, 20:1) to give 11 (1.28 g, 78%) as a white solid, m.p. 91 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.05$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 3.36 (s, 3 H, CH₃SO₂), 3.51–3.54 (m, 2 H, OCH₂CH₂Si), 5.71 (s, 2 H, NCH₂O), 7.16 (d, $J_{5,6}$ = 3.7 Hz, 1 H, H-5), 7.59 (d, $J_{6,5}$ = 3.7 Hz, 1 H, H-6), 8.98 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.7 (OCH₂CH₂Si), 39.9 (CH₃SO₂), 67.0 (OCH₂CH₂Si), 73.2 (NCH₂O), 101.3 (CH-5), 114.2 (C-4a), 132.1 (CH-6), 150.6 (CH-2), 154.0 (C-7a), 155.7 (C-4) ppm. IR (KBr): $\tilde{v} = 3111, 3078,$ 3010, 2953, 2917, 1577, 1550, 1518, 1455, 1443, 1425, 1341, 1323, 1308, 1266, 1248, 1236, 1213, 1123, 1096, 1081, 976, 970, 911, 863,

851, 842, 755, 656, 525 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₃H₂₂O₃N₃SSi 328.1146; found 328.1147.

Borylation of Deazapurines; General Procedure: A pyrrolo[2,3-*d*]pyrimidine **8–11** (1 mmol, 1 equiv.), bispinacolatodiboron (0.305 g, 1.2 mmol, 1.2 equiv.), [Ir(COD)OMe]₂ (33 mg, 0.05 mmol, 5 mol-%), and 4,4'-di-*tert*-butyl-2,2'-bipyridine (27 mg, 0.1 mmol, 10 mol-%) were dissolved in anhydrous THF (5 mL) under Ar. The solution was heated at 80 °C in a septum-sealed flask for 20 h. The solvent was evaporated and the residue was purified by flash chromatography in pure dichloromethane. Finally, the crude product was rinsed with hexanes and heated at 60 °C under vacuum (6 mTorr) to remove residual pinacol.

4-Chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-*TH***-pyrrolo**[**2,3-***d***]pyrimidine (14):** Starting from **8** (284 mg, 1 mmol), product **14** (322 mg, 78%) was obtained as brownish solid, m.p. 99 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.08$ (s, 9 H, CH₃Si), 0.85–0.89 (m, 2 H, OCH₂CH₂Si), 1.38 [s, 12 H, (CH₃)₂C], 3.50–3.53 (m, 2 H, OCH₂CH₂Si), 5.89 (s, 2 H, NCH₂O), 7.23 (s, 1 H, H-5), 8.68 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.8 (OCH₂CH₂Si), 24.8 [(CH₃)₂C], 66.3 (OCH₂CH₂Si), 72.6 (NCH₂O), 84.7 [(CH₃)₂C], 112.6 (CH-5), 117.5 (C-4a), 133.0 (C-6), 152.2 (CH-2), 153.3 (C-4), 153.4 (2-7a) ppm. IR (KBr): $\tilde{v} = 2989$, 2956, 2914, 2893, 1580, 1538, 1428, 1365, 1326, 1254, 1180, 1141, 1087, 866, 827, 746 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₈H₃₀O₃N₃BClSi 410.1833; found 410.1831.

4-Methoxy-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo[2,3-***d***]pyrimidine (15): Starting from 9** (279 mg, 1 mmol), product **15** (328 mg, 81%) was obtained as a brownish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.09$ (s, 9 H, CH₃Si), 0.85–0.88 (m, 2 H, OCH₂C*H*₂Si), 1.36 [s, 12 H, (CH₃)₂C], 3.50–3.54 (m, 2 H, OCH₂C*H*₂Si), 4.11 (s, 3 H, CH₃O), 5.86 (s, 2 H, NCH₂O), 7.17 (s, 1 H, H-5), 8.52 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 17.8 (OCH₂CH₂Si), 24.8 [(CH₃)₂C], 53.7 (CH₃O), 65.9 (OCH₂CH₂Si), 72.4 (NCH₂O), 84.1 [(CH₃)₂C], 105.7 (C-4a), 112.3 (CH-5), 129.3 (C-6), 152.6 (CH-2), 155.1 (C-7a), 163.7 (C-7a) ppm. IR (KBr): $\tilde{v} = 2977$, 2950, 2893, 1682, 1595, 1553, 1524, 1479, 1425, 1374, 1331, 1320, 1260, 1222, 1147, 1090, 970, 860, 836, 797, 761 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₉H₃₃O₄N₃BSi 406.2328; found 406.2331.

4-(Methylsulfanyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (16): Starting from **10** (295 mg, 1 mmol), product **16** (350 mg, 83%) was obtained as a brownish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.08$ (s, 9 H, CH₃Si), 0.85–0.88 (m, 2 H, OCH₂CH₂Si), 1.37 [s, 12 H, (CH₃)₂C], 2.69 (s, 3 H, CH₃S), 3.50–3.53 (m, 2 H, OCH₂CH₂Si), 5.86 (s, 2 H, NCH₂O), 7.17 (s, 1 H, H-5), 8.70 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 11.8 (CH₃S), 17.8 (OCH₂CH₂Si), 24.8 [(CH₃)₂C], 66.0 (OCH₂CH₂Si), 72.3 (NCH₂O), 84.3 [(CH₃)₂C], 112.4 (CH-5), 116.0 (C-4a), 130.1 (C-6), 151.4 (C-7a), 152.2 (CH-2), 163.2 (C-4) ppm. IR (KBr): $\tilde{v} = 2974$, 2950, 2929, 2893, 1553, 1527, 1458, 1425, 1371, 1314, 1263, 1222, 1180, 1141, 1084, 857, 839 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁9H₃₃O₃N₃BSSi 422.2099; found 422.2099.

7-Benzyl-4-phenyl-7*H*-pyrrolo[2,3-*d*]pyrimidin-6-yltrifluoroborate (Potassium Salt) (17): To a flask containing 12 (412 mg, 1 mmol, 1 equiv.) and KHF₂ (469 mg, 6 mmol), THF (5 mL) and H₂O (3 mL) were added. The reaction mixture was stirred for 5 h at room temperature. The solvents were evaporated and the residue was purified by flash chromatography (HPFC; EtOAc/MeOH, 9:1) to give product 17 (266 mg, 68%) as a white solid, m.p. > 300 °C. ¹H NMR (500 MHz, CD₃OD): δ = 5.67 (s, 2 H, CH₂), 6.86 (H-5),

7.14–7.15 (m, 1 H, H-*p*-Bn), 7.18–7.25 (m, 4 H, H-*o*,*m*-Bn), 7.52–7.53 (m, 1 H, H-*p*-Ph), 7.56–7.58 (m, 2 H, H-*m*-Ph), 8.06–8.07 (m, 2 H, H-*o*-Ph), 8.63 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CD₃OD): δ = 48.7 (CH₂Ph), 104.2 (CH-5), 118.1 (C-4a), 127.7 (CH-*p*-Bn), 128.2 (CH-*o*-Bn), 129.0 (CH-*m*-Bn), 129.8 (CH-*m*-Ph), 130.0 (CH-*o*-Ph), 131.0 (CH-*p*-Ph), 138.9 (C-*i*-Ph), 140.3 (C-*i*-Bn), 149.5 (CH-2), 154.3 (C-7a), 155.8 (C-4) ppm, C-6 was not detected. ¹⁹F NMR (470.3 MHz, CD₃OD): δ = –137.91 ppm. ¹¹B NMR (160.4 MHz, CD₃OD): δ = 1.96 ppm. IR (KBr): \tilde{v} = 3428, 3254, 3062, 3031, 2949, 1617, 1584, 1562, 1550, 1497, 1474, 1455, 1432, 1148, 1028, 1007, 937, 761, 697 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₉H₁₅N₃BF₃Na 376.1203; found 376.1205.

One-Pot C-H Borylation/Suzuki Coupling Sequence; General Procedure: Pyrrolo[2,3-d]pyrimidine 8-10 (4 mmol, 1 equiv.), bispinacolatodiboron (1.22 g, 4.8 mmol, 1.2 equiv.), [Ir(COD)OMe]₂ (132 mg, 0.2 mmol, 5 mol-%) and 4,4'-di-tert-butyl-2,2'-bipyridine (108 mg, 0.4 mmol, 10 mol-%) were dissolved in anhydrous THF (30 mL) under Ar. The solution was heated at 80 °C in a septumsealed vial and stirred under argon for 20 h. The solvent was removed under reduced pressure. The residue was then combined with aryl halide (4.4 mmol, 1.1 equiv.), Pd(dppf)Cl₂ (146 mg, 0.2 mmol, 5 mol-%) and K₂CO₃ (2.2 g, 16 mmol, 4 equiv.) in DMF (30 mL) and stirred under Ar at 90 °C until complete consumption of staring material (1-18 h) was observed, as monitored by NMR spectroscopy. The solution was then cooled to room temperature, and EtOAc (50 mL) and water (50 mL) were added. The aqueous solution was then extracted with EtOAc (\times 3) and the combined organic layers were dried with Na₂SO₄, filtered, and the solvents were evaporated under vacuum. The crude product was purified by flash chromatography (hexane/EtOAc).

4-Chloro-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (18a): Starting from 8 (1.14 g, 4 mmol) and 4-iodoanisole (1.03 g, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 18a (312 mg, 20%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.03$ (s, 9 H, CH₃Si), 0.96–0.99 (m, 2 H, OCH₂CH₂Si), 3.72–3.76 (m, 2 H, OCH₂CH₂Si), 3.88 (s, 3 H, CH₃O), 5.61 (s, 2 H, NCH₂O), 6.63 (s, 1 H, H-5), 7.02-7.04 (m, 2 H, H-m-Ph), 7.71-7.73 (m, 2 H, Ho-Ph), 8.65 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.4 (CH₃Si), 18.0 (OCH₂CH₂Si), 55.4 (CH₃O), 67.0 (OCH₂CH₂Si), 71.0 (NCH₂O), 98.6 (CH-5), 114.3 (CH-*m*-Ph), 117.7 (C-4a), 122.8 (C-i-Ph), 130.9 (CH-o-Ph), 143.7 (C-6), 150.5 (CH-2), 151.0 (C-4), 153.4 (C-7a), 160.5 (C-*p*-Ph) ppm. IR (KBr): $\tilde{v} = 2956, 2899, 2833, 1607, 1538, 1500, 1347, 1248, 1180, 1165,$ 1084, 857, 842 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₉H₂₅O₂N₃ClSi 390.1399; found 390.1404.

4-Methoxy-6-(4-methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo**[**2,3-***d*]**pyrimidine (19a):** Starting from **9** (1.12 g, 4 mmol) and 4-iodoanisole (1.03 g, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0–20%) to give **19a** (1.08 g, 70%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = -0.03 (s, 9 H, CH₃Si), 0.94–0.98 (m, 2 H, OCH₂CH₂Si), 3.70–3.74 (m, 2 H, OCH₂CH₂Si), 3.87 (s, 3 H, CH₃O-*p*), 4.14 (s, 3 H, CH₃O-4), 5.58 (s, 2 H, NCH₂O), 6.56 (s, 1 H, H-5), 6.99–7.01 (m, 2 H, H-*m*-C₆H₄OMe), 7.67–7.68 (m, 2 H, H-*o*-C₆H₄OMe), 8.49 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.4 (CH₃Si), 18.0 (OCH₂CH₂Si), 53.7 (CH₃O-4), 55.3 (CH₃O-*p*), 66.6 (OCH₂CH₂Si), 70.8 (NCH₂O), 97.8 (CH-5), 105.5 (C-4a), 114.2 (CH-*m*-C₆H₄OMe), 123.9 (C-*i*-C₆H₄OMe), 130.7 (CH-*o*-C₆H₄OMe), 140.2 (C-6), 150.7 (CH-2), 153.95 (C-7a), 160.0 (C-*p*-C₆H₄OMe), 162.5 (C-4) ppm. IR (KBr): $\tilde{v} = 2995$, 2950, 2893, 2833, 1613, 1595, 1565, 1500, 1476, 1419, 1353, 1320, 1284, 1251, 1213, 1183, 1072, 857, 839, 785, 764 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₀H₂₇O₃N₃NaSi 408.1714; found 408.1714.

4-Methoxy-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (19b): Starting from 9 (1.12 g, 4 mmol) and 2-iodopyridine (0.47 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 19b (713 g, 50%) as a yellowish oil. ¹H NMR (600.1 MHz, CDCl₃): δ = -0.17 (s, 9 H, CH₃Si), 0.79–0.82 (m, 2 H, SiCH₂CH₂O), 3.47– 3.50 (m, 2 H, OCH₂CH₂Si), 4.15 (s, 3 H, CH₃O), 6.20 (s, 2 H, NCH₂O), 6.95 (s, 1 H, H-5), 7.27 (ddd, $J_{5,4} = 7.2$, $J_{5,6} = 4.8$, $J_{5,3}$ = 1.4 Hz, 1 H, H-5-py), 7.77 (ddd, $J_{4,3}$ = 8.0, $J_{4,5}$ = 7.2, $J_{4,6}$ = 1.8 Hz, 1 H, H-4-py), 7.80 (ddd, $J_{3,4} = 8.0$, $J_{3,5} = 1.4$, $J_{3,6} = 1.0$ Hz, 1 H, H-3-py), 8.45 (d, $J_{2,6}$ = 0.2 Hz, 1 H, H-2), 8.69 (ddd, $J_{6,5}$ = 4.8, $J_{6,4} = 1.8, J_{6,3} = 1.0$ Hz, 1 H, H-6-py) ppm. ¹³C NMR (150.9 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (SiCH₂CH₂O), 53.8 (CH₃O), 66.1 (OCH₂CH₂Si), 71.4 (NCH₂O), 101.1 (CH-5), 105.4 (C-4a), 122.5 (CH-5-py), 123.0 (CH-3-py), 136.8 (CH-4-py), 147.8 (C-6), 149.4 (CH-6-py), 151.3 (C-2-py), 151.8 (CH-2), 154.7 (C-7a), 163.2 (C-4) ppm. HRMS (ESI): *m/z* calcd. for C₁₈H₂₄O₂N₄NaSi 379.1560; found 379.1561.

4-Methoxy-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (19c): Starting from 9 (1.12 g, 4 mmol) and 2-iodothiophene (0.49 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 19c (939 mg, 65%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): δ = -0.05 (s, 9 H, CH₃Si), 0.95-0.98 (m, 2 H, OCH₂CH₂Si), 3.67-3.70 (m, 2 H, OCH₂CH₂Si), 4.14 (s, 3 H, CH₃O), 5.71 (s, 2 H, NCH₂O), 6.72 (s, 1 H, H-5), 7.13 (dd, $J_{4,5} = 5.1$, $J_{4,3} = 3.6$ Hz, 1 H, H-4-thienyl), 7.39 (dd, J_{5,4} = 5.1, J_{5,3} = 1.2 Hz, 1 H, H-5-thienyl), 7.59 (dd, J_{3,4} = 3.6, J_{3,5} = 1.2 Hz, 1 H, H-3-thienyl), 8.49 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.9 (OCH₂CH₂Si), 53.7 (CH₃O), 66.4 (OCH₂CH₂Si), 70.7 (NCH₂O), 99.1 (CH-5), 105.4 (C-4a), 126.6 (CH-5-thienyl), 127.6 (CH-3-thienyl), 128.1 (CH-4-thienyl), 132.8 and 132.9 (C-6,C-2-thienyl), 151.2 (CH-2), 154.0 (C-7a), 162.7 (C-4) ppm. IR (KBr): v = 2956, 2896, 2866, 1595, 1553, 1473, 1458, 1413, 1356, 1344, 1320, 1248, 1207, 1081, 857, 833, 782, 764, 698 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₇H₂₄N₃O₂SiS 362.1359; found 362.1370.

6-(Furan-2-yl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7Hpyrrolo[2,3-d]pyrimidine (19d): Starting from 9 (1.12 g, 4 mmol) and 2-bromofuran (0.39 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give product 19d (621 mg, 45%) as a brown oil. ¹H NMR (500 MHz, CDCl₃): δ = -0.08 (s, 9 H, CH₃Si), 0.89-0.94 (m, 2 H, OCH₂CH₂Si), 3.60-3.64 (m, 2 H, OCH₂CH₂Si), 4.14 (s, 3 H, CH₃O), 5.79 (s, 2 H, NCH₂O), 6.53 (dd, J_{4,3} = 3.5, J_{4,5} = 1.8 Hz, 1 H, H-4-furyl), 6.84 (s, 1 H, H-5), 6.93 (dd, $J_{3,4}$ = 3.5, $J_{3,5}$ = 0.8 Hz, 1 H, H-3-furyl), 7.54 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-5-furyl), 8.48 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 18.0 (OCH₂CH₂Si), 53.7 (CH₃O), 66.4 (OCH₂CH₂Si), 70.7 (NCH₂O), 99.1 (CH-5), 105.4 (C-4a), 126.6 (CH-5-thienyl), 127.6 (CH-3-thienyl), 128.1 (CH-4-thienyl), 132.8 and 132.9 (C-6,C-2-thienyl), 151.2 (CH-2), 154.0 (C-7a), 162.7 (C-4) ppm. IR (KBr): v = 2956, 2929, 2866, 2848, 1595, 1589, 1565, 1476, 1461, 1419, 1353, 1329, 1248, 1216, 1090, 866, 839, 776 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₇H₂₃O₃N₃NaSi 368.1401; found 368.1401.

4-Methoxy-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-**7H-pyrrolo[2,3-d]pyrimidine (19e):** Starting from **9** (1.12 g, 4 mmol)

and 3-iodothiophene (0.45 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 19e (1.11 g, 77%) as a yellowish solid, m.p. 55 °C. ¹H NMR (500 MHz, $CDCl_3$): $\delta = -0.04$ (s, 9 H, CH_3Si), 0.96–0.99 (m, 2 H, OCH₂CH₂Si), 3.72–3.76 (m, 2 H, OCH₂CH₂Si), 4.18 (s, 3 H, CH₃O), 5.70 (s, 2 H, NCH₂O), 6.69 (s, 1 H, H-5), 7.43 (dd, $J_{5,4}$ = 5.0, $J_{5,2} = 2.9$ Hz, 1 H, H-5-thienyl), 7.46 (dd, $J_{4,5} = 5.0$, $J_{4,2} =$ 1.3 Hz, 1 H, H-4-thienyl), 7.88 (dd, $J_{2,5} = 2.9$, $J_{2,4} = 1.3$ Hz, 1 H, H-2-thienyl), 8.51 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 18.0 (OCH₂CH₂Si), 54.3 (CH₃O), 66.5 (OCH2CH2Si), 70.9 (NCH2O), 98.1 (CH-5), 105.3 (C-4a), 124.4 (CH-2-thienyl), 126.3 (CH-5-thienyl), 128.2 (CH-4-thienyl), 131.6 (C-3-thienyl), 135.6 (C-6), 150.2 (CH-2), 153.4 (C-7a), 162.4 (C-4) ppm. IR (KBr): $\tilde{v} = 3102, 2953, 2902, 2857, 1601, 1571, 1562,$ 1470, 1413, 1392, 1347, 1317, 1299, 1257, 1230, 1204, 1078, 1054, 946, 925, 863, 836, 812, 779, 764 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₇H₂₄N₃O₂SiS 362.1359; found 362.1346.

6-(Furan-3-yl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (19f): Starting from 9 (1.12 g, 4 mmol) and 3bromofuran (0.4 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0–20%) to give 19f (802 mg, 58%) as a brown oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.05$ (s, 9 H, CH₃Si), 0.93–0.96 (m, 2 H, OCH₂CH₂Si), 3.65–3.68 (m, 2 H, OCH₂CH₂Si), 4.13 (s, 3 H, CH₃O), 5.67 (s, 2 H, NCH₂O), 6.62 (s, 1 H, H-5), 6.77 (dd, $J_{4,5} = 1.9$, $J_{4,2} = 0.9$ Hz, 1 H, H-4-furyl), 7.51 (t, $J_{5,4} = J_{5,2} = 1.7$ Hz, 1 H, H-5-furyl), 7.99 (dd, $J_{2,5} = 1.5$, $J_{2,4} =$ 0.9 Hz, 1 H, H-2-furyl), 8.47 (s, 1 H, H-2) ppm. ¹³C NMR $(125.7 \text{ MHz}, \text{ CDCl}_3): \delta = -1.5 \text{ (CH}_3\text{Si}), 18.0 \text{ (OCH}_2\text{CH}_2\text{Si}), 53.7$ (CH₃O), 66.3 (OCH₂CH₂Si), 70.6 (NCH₂O), 97.5 (CH-5), 105.4 (C-4a), 110.5 (CH-4-furyl), 116.8 (C-3-furyl), 131.7 (C-6), 141.0 (CH-2-furyl), 143.5 (CH-5-furyl), 150.8 (CH-2), 153.9 (C-7a), 162.5 (C-4) ppm. IR (KBr): $\tilde{v} = 2947, 2893, 1769, 1598, 1559, 1476, 1419,$ 1329, 1251, 1213, 1081, 875, 857, 836, 779, 761 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₇H₂₄N₃O₃Si 346.1587; found 346.1589.

4-Methoxy-6-(2,4-dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (19g): Starting from 9 (1.12 g, 4 mmol) and 5-iodo-2,4-dimethoxypyrimidine (1.17 g, 4.4 mmol), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/ hexane, 0-20%) to give **19g** (1.1 g, 66%) as a yellowish solid, m.p. 79 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.11$ (s, 9 H, CH₃Si), 0.79–0.83 (m, 2 H, OCH₂CH₂Si), 3.45–3.48 (m, 2 H, OCH₂CH₂Si), 4.00 (s, 3 H, CH₃O-4'), 4.06 (s, 3 H, CH₃O-2'), 4.13 (s, 3 H, CH₃O-4), 5.53 (s, 2 H, NCH₂O), 6.61 (s, 1 H, H-5), 8.44 (s, 1 H, H-6'), 8.50 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.8 (OCH₂CH₂Si), 53.7 (CH₃O-4), 54.3 (CH₃O-2'), 55.1 (CH₃O-4'), 66.3 (OCH₂CH₂Si), 71.2 (NCH₂O), 101.4 (CH-5), 105.4 (C-4a), 107.1 (C-5'), 130.8 (C-6), 151.4 (CH-2), 153.8 (C-7a), 159.8 (CH-6'), 162.8 (C-4), 165.5 (C-2'), 168.8 (C-4') ppm. IR (KBr): $\tilde{v} = 2986, 2956, 2896, 2866, 1610, 1598, 1473, 1380, 1356,$ 1320, 1290, 1251, 1213, 1078, 1018, 866, 833 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₉H₂₈N₅O₄Si 418.1911; found 418.1898.

6-(3-Aminophenyl)-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-*7H*-**pyrrolo[2,3-***d***]pyrimidine (19h):** Starting from **9** (1.12 g, 4 mmol) and 3-iodoaniline (0.53 mL, 4.4 mmol), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0–20%) to give **19h** (1.1 g, 74%) as a yellowish solid, m.p. 113 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.04 (s, 9 H, CH₃Si), 0.93–0.96 (m, 2 H, OCH₂CH₂Si), 3.69–3.73 (m, 2 H, OCH₂CH₂Si), 4.14 (s, 3 H, CH₃O), 5.61 (s, 2 H, NCH₂O), 6.61 (s, 1 H, H-5), 6.83 (ddd, $J_{6',5'} = 8.0$, $J_{6',2'} = 2.4$ Hz, $J_{6',4'} = 1.0$ Hz, 1 H, H-6'), 7.14 (m, 1 H, H-2'), 7.19 (ddd, $J_{4',5'} = 7.6$, $J_{4',2'} = 1.6$ Hz, $J_{4',6'} = 1.0$ Hz, 1 H, H-4'), 7.27 (t, $J_{5',4'} = J_{5',6'} = 7.8$ Hz, 1 H, H-5'), 8.50 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 18.0 (OCH₂CH₂Si), 53.8 (CH₃O), 66.6 (OCH₂CH₂Si), 70.9 (NCH₂O), 98.5 (CH-5), 105.5 (C-4a), 116.0 (CH-6'), 116.4 (CH-2'), 120.6 (CH-4'), 129.7 (CH-5'), 132.5 (C-3'), 140.3 (C-6), 145.2 (C-1'), 150.9 (CH-2), 154.0 (C-7a), 162.7 (C-4) ppm. IR (KBr): $\tilde{v} = 3434$, 3318, 3207, 2956, 1592, 1556, 1476, 1329, 1207, 1072, 1057, 866, 842, 797 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₉H₂₇O₂N₄Si 371.1899; found 371.1898.

6-(4-Methoxyphenyl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20a): Starting from 10 (1.18 g, 4 mmol), 4-iodoanisole (1.03 g, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20a (1.27 g, 79%) as a yellowish solid, m.p. 144 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.03 (s, 9 H, CH₃Si), 0.95-0.98 (m, 2 H, OCH₂CH₂Si), 2.72 (s, 3 H, CH₃S), 3.71–3.74 (m, 2 H, OCH₂CH₂Si), 3.87 (s, 3 H, CH₃O), 5.58 (s, 2 H, NCH₂O), 6.54 (s, 1 H, H-5), 7.00–7.01 (m, 2 H, H-m-Ph), 7.69–7.71 (m, 2 H, H-o-Ph), 8.69 (s, 1 H, H-2) ppm. ¹³C NMR $(125.7 \text{ MHz}, \text{CDCl}_3): \delta = -1.4 (\text{CH}_3\text{Si}), 11.9 (\text{CH}_3\text{S}), 18.0$ (OCH₂CH₂Si), 55.4 (CH₃O), 66.7 (OCH₂CH₂Si), 70.6 (NCH₂O), 98.3 (CH-5), 114.2 (CH-m-Ph), 116.1 (C-4a), 123.5 (C-i-Ph), 130.7 (CH-o-Ph), 141.3 (C-6), 150.4 (C-7a), 150.8 (CH-2), 160.1 (C-p-Ph), 160.4 (C-4) ppm. IR (KBr): \tilde{v} = 3066, 2953, 2902, 2842, 1616, 1503, 1422, 1344, 1317, 1263, 1248, 1192, 1141, 1126, 1078, 1057, 863, 851, 836, 755, 534 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₀H₂₇O₂N₃NaSSi 424.1486; found 424.1486.

4-(Methylsulfanyl)-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20b): Starting from 10 (1.18 g, 4 mmol), 2-iodopyridine (0.47 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20b (954 mg, 64%) as a yellowish oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.16$ (s, 9 H, CH₃Si), 0.80–0.83 (m, 2 H, OCH₂CH₂Si), 2.73 (s, 3 H, CH₃S), 3.48-3.51 (m, 2 H, OCH2CH2Si), 6.17 (s, 2 H, NCH2O), 6.94 (s, 1 H, H-5), 7.28 (ddd, $J_{5,4}$ = 7.5, $J_{5,6}$ = 4.8, $J_{5,3}$ = 1.2 Hz, 1 H, H-5py), 7.79 (btd, $J_{4,5} = J_{4,3} = 7.7$, $J_{4,6} = 1.8$ Hz, 1 H, H-4-py), 7.85 (dt, $J_{3,4} = 8.0$, $J_{3,5} = J_{3,6} = 1.1$ Hz, 1 H, H-3-py), 8.70 (ddd, $J_{6,5} =$ 4.8, $J_{6,4} = 1.8$ Hz, $J_{6,3} = 1.0$ Hz, 1 H, H-6-py), 8.72 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 11.9 (CH₃S), 17.7 (OCH₂CH₂Si), 66.3 (OCH₂CH₂Si), 71.2 (NCH₂O), 101.4 (CH-5), 115.8 (C-4a), 122.8 (CH-5-py), 123.3 (CH-3-py), 136.8 (CH-4-py), 138.2 (C-6), 149.5 (CH-6-py), 150.9 and 151.1 (C-7a, C-2-py), 151.7 (CH-2), 161.9 (C-4) ppm. IR (KBr): v = 3052, 2953, 2932, 2893, 1589, 1556, 1455, 1443, 1416, 1350, 1269, 1251, 1177, 1075, 937, 917, 860, 836, 770 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₈H₂₄N₄OSSi 372.1440; found 372.1442.

4-(Methylsulfanyl)-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo[2,3-***d***]pyrimidine (20c): Starting from 10 (1.18 g, 4 mmol), 2-iodothiophene (0.49 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0–20%) to give 20c** (1.05 g, 69%) as a yellowish solid, m.p. 92 °C. ¹H NMR (500 MHz, CDCl₃): δ = –0.04 (s, 9 H, CH₃Si), 0.95–0.98 (m, 2 H, OCH₂CH₂Si), 2.72 (s, 3 H, CH₃S), 3.67–3.71 (m, 2 H, OCH₂CH₂Si), 5.72 (s, 2 H, NCH₂O), 6.69 (s, 1 H, H-5), 7.15 (dd, J_{4,5} = 5.1, J_{4,3} = 3.7 Hz, 1 H, H-4thienyl), 7.42 (dd, J_{5,4} = 5.1, J_{5,3} = 1.2 Hz, 1 H, H-5-thienyl), 7.63 (dd, $J_{3,4} = 3.7$, $J_{3,5} = 1.2$ Hz, 1 H, H-3-thienyl), 8.68 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 11.9 (CH₃S), 17.9 (OCH₂CH₂Si), 66.5 (OCH₂CH₂Si), 70.5 (NCH₂O), 99.4 (CH-5), 115.9 (C-4a), 127.1 (CH-5-thienyl), 128.0 (CH-3-thienyl), 128.2 (CH-4-thienyl), 132.5 (C-2-thienyl), 134.0 (C-6), 150.5 (C-7a), 151.2 (CH-2), 160.9 (C-4) ppm. IR (KBr): $\tilde{\nu} = 3081$, 3066, 2953, 2926, 2893, 1559, 1485, 1458, 1440, 1407, 1356, 1260, 1248, 1174, 1057, 928, 854, 839, 785, 755, 728 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₄ON₃S₂Si 378.1125; found 378.1126.

6-(Furan-2-yl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20d): Starting from 10 (1.18 g, 4 mmol), 2-bromofuran (0.39 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20d (897 mg, 62%) as a yellowish solid, m.p. 100 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.07 (s, 9 H, CH₃Si), 0.91-0.94 (m, 2 H, OCH₂CH₂Si), 2.73 (s, 3 H, CH₃S), 3.60–3.64 (m, 2 H, OCH₂CH₂Si), 5.80 (s, 2 H, NCH₂O), 6.55 (dd, J_{4,3} = 3.5, J_{4,5} = 1.8 Hz, 1 H, H-4-furyl), 6.83 (s, 1 H, H-5), 6.98 (dd, $J_{3,4}$ = 3.5, $J_{3,5}$ = 0.8 Hz, 1 H, H-3-furyl), 7.56 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-5-furyl), 8.67 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 11.9 (CH₃S), 17.8 (OCH₂CH₂Si), 66.3 (OCH₂CH₂Si), 70.9 (NCH₂O), 97.7 (CH-5), 110.1 (CH-3-furyl), 111.9 (CH-4-furyl), 115.9 (C-4a), 130.8 (C-6), 143.3 (CH-5-furyl), 145.6 (C-2-furyl), 150.4 (C-7a), 151.1 (CH-2), 161.2 (C-4) ppm. IR (KBr): \tilde{v} = 2944, 2923, 2893, 2872, 1562, 1524, 1464, 1443, 1425, 1407, 1344, 1269, 1248, 1213, 1186, 1162, 1075, 1015, 946, 928, 866, 833, 770, 761, 734 cm⁻¹. HRMS (ESI): *m/z* calcd. for C17H24O2N3SSi 362.1353; found 362.1354.

4-(Methylsulfanyl)-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20e): Starting from 10 (1.18 g, 4 mmol), 3-iodothiophene (0.45 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20e (1.06 g, 70%) as a yellowish solid, m.p. 99 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.03$ (s, 9 H, CH₃Si), 0.96–1.00 (m, 2 H, OCH₂CH₂Si), 2.73 (s, 3 H, CH₃S), 3.72-3.75 (m, 2 H, OCH₂CH₂Si), 5.68 (s, 2 H, NCH₂O), 6.64 (s, 1 H, H-5), 7.44 (dd, $J_{5,4} = 5.0$, $J_{5,2} = 2.9$ Hz, 1 H, H-5thienyl), 7.49 (dd, J_{4,5} = 5.0, J_{4,2} = 1.3 Hz, 1 H, H-4-thienyl), 7.91 (dd, $J_{2,5} = 2.9$, $J_{2,4} = 1.3$ Hz, 1 H, H-2-thienyl), 8.68 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 11.9 (CH₃S), 18.0 (OCH₂CH₂Si), 66.6 (OCH₂CH₂Si), 70.5 (NCH₂O), 98.4 (CH-5), 115.9 (C-4a), 124.7 (CH-2-thienyl), 126.3 (CH-5-thienyl), 128.2 (CH-4-thienyl), 131.5 (C-3-thienyl), 136.2 (C-6), 150.3 (C-7a), 150.9 (CH-2), 160.7 (C-4) ppm. IR (KBr): $\tilde{v} = 3102, 3043,$ 2953, 2920, 2896, 2863, 1550, 1461, 1347, 1269, 1242, 1177, 1081, 917, 860, 836, 776 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₃N₃OSiS₂ 377.1052; found 377.1053.

6-(Furan-3-yl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-*TH*-**pyrrolo**[**2,3-***d*]**pyrimidine (20f):** Starting from **10** (1.18 g, 4 mmol), 3-bromofuran (0.4 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0–20%) to give **20f** (721 mg, 50%) as a yellowish solid. ¹H NMR (500 MHz, CDCl₃): δ = -0.05 (s, 9 H, CH₃Si), 0.94–0.97 (m, 2 H, OCH₂CH₂Si), 2.73 (s, 3 H, CH₃S), 3.65–3.68 (m, 2 H, OCH₂CH₂Si), 5.67 (s, 2 H, NCH₂O), 6.60 (s, 1 H, H-5), 6.80 (dd, *J*_{4,5} = 1.9, *J*_{4,2} = 0.9 Hz, 1 H, H-4-furyl), 7.53 (bt, *J*_{5,2} = *J*_{5,4} = 1.7 Hz, 1 H, H-5-furyl), 8.02 (dd, *J*_{2,5} = 1.6, *J*_{2,4} = 0.9 Hz, 1 H, H-2-thienyl), 8.67 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.5 (CH₃Si), 12.0 (CH₃S), 17.9 (OCH₂CH₂Si), 66.4 (OCH₂CH₂Si), 70.4 (NCH₂O), 97.9 (CH-5), 110.5 (CH-4-furyl), 116.0 (C-4a), 116.6 (C-3-furyl), 132.9 (C-6), 141.4 (CH-2-furyl), 143.6 (CH-5-furyl), 150.4 (C-7a), 150.9 (CH-2), 160.5 (C-4) ppm. HRMS (ESI): m/z calcd. for C₁₇H₂₃N₃O₂SSi 361.1280; found 361.1278.

6-(2,4-Dimethoxypyrimidin-5-yl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20g): Starting from 10 (1.18 g, 4 mmol), 5-iodo-2,4-dimethoxypyrimidine (1.17 g, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 18 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20g (676 mg, 39%) as a white solid, m.p. 134 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.10 (s, 9 H, CH₃Si), 0.80–0.83 (m, 2 H, OCH₂CH₂Si), 2.72 (s, 3 H, CH₃S), 3.45–3.48 (m, 2 H, OCH2CH2Si), 4.01 (s, 3 H, CH3O-4'), 4.07 (s, 3 H, CH3O-2'), 5.53 (s, 2 H, NCH₂O), 6.59 (s, 1 H, H-5), 8.45 (s, 1 H, H-6'), 8.70 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 11.9 (CH₃S), 17.7 (OCH₂CH₂Si), 54.4 (CH₃O-4'), 55.2 (CH₃O-2'), 66.4 (OCH₂CH₂Si), 71.0 (NCH₂O), 101.8 (CH-5), 106.8 (C-5'), 115.9 (C-4a), 132.0 (C-6), 150.1 (C-7a), 151.3 (CH-2), 159.8 (CH-6'), 161.3 (C-4), 165.6 (C-2'), 168.7 (C-4') ppm. IR (KBr): v = 2953, 2932, 1613, 1568, 1553, 1476, 1407, 1377, 1302, 1248, 1189, 1078, 1066, 863, 842 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₉H₂₇N₅O₃SSi 433.1604; found 433.1602.

6-(3-Aminophenyl)-4-(methylsulfanyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (20h): Starting from 10 (1.18 g, 4 mmol), 3-iodoaniline (0.53 mL, 4.4 mmol) and Pd(dppf)Cl₂ (292 mg, 0.4 mmol, 10 mol-%), the reaction was performed according to the General Procedure for 1 h. Purification was performed by HPFC (EtOAc/hexane, 0-20%) to give 20h (1.21 g, 78%) as a yellowish solid, m.p. 109 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.03 (s, 9 H, CH₃Si), 0.93-0.97 (m, 2 H, OCH₂CH₂Si), 2.73 (s, 3 H, CH₃S), 3.70-3.73 (m, 2 H, OCH₂CH₂Si), 5.61 (s, 2 H, NCH₂O), 6.58 (s, 1 H, H-5), 6.75 (ddd, $J_{6',5'} = 8.0$, $J_{6',2'} = 2.4$ Hz, $J_{6',4'} =$ 1.0 Hz, 1 H, H-6'), 7.07–7.08 (m, 1 H, H-2'), 7.13 (ddd, $J_{4',5'}$ = 7.6, $J_{4',2'} = 1.7$ Hz, $J_{4',6'} = 0.9$ Hz, 1 H, H-4'), 7.25 (t, $J_{5',4'} = J_{5',6'} =$ 7.8 Hz, 1 H, H-5'), 8.70 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, $CDCl_3$): $\delta = -1.4$ (CH₃Si), 11.9 (CH₃S), 18.0 (OCH₂CH₂Si), 66.7 (OCH₂CH₂Si), 70.7 (NCH₂O), 98.9 (CH-5), 115.6 and 115.7 (CH-2',6'), 116.0 (C-4a), 119.7 (CH-4'), 129.7 (CH-5'), 132.1 (C-3), 141.6 (C-6), 146.6 (C-1'), 150.4 (C-7a), 150.8 (CH-2), 160.7 (C-4) ppm. IR (KBr): v = 3324, 2950, 1610, 1553, 1538, 1479, 1464, 1437, 1353, 1251, 1171, 1060, 851, 833, 785 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₉H₂₇ON₄SSi 387.1669; found 387.1670.

Oxidation to Sulfones; General Procedure: A 4-MeS-pyrrolo[2,3-*d*]pyrimidine **20a**–**h** and **23I** (2 mmol, 1 equiv.) was dissolved in CH₂Cl₂ (10 mL) and *m*-CPBA (900 mg, 4 mmol, 2 equiv.) was slowly added (water/ice bath during addition) and the reaction mixture was stirred at room temp. overnight. Then 1M NaOH (10 mL) was added to the mixture to remove residual *m*-CPBA. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were dried with sodium sulfate, solvents were evaporated, and the residue was purified by flash chromatography (HPFC; CHCl₃/MeOH, 20:1).

6-(4-Methoxyphenyl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (23a): Starting from pyrrolo[2,3-*d*]pyrimidine 20a (803 mg, 2 mmol) and *m*-CPBA (900 mg, 4 mmol), the reaction was performed according to the General Procedure to give 23a (668 mg, 77%) as a white solid, m.p. 147 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.01$ (s, 9 H, CH₃Si), 0.98–1.01 (m, 2 H, OCH₂CH₂Si), 3.36 (s, 3 H, CH₃SO₂), 3.74–3.78 (m, 2 H, OCH₂CH₂Si), 3.89 (s, 3 H, CH₃O), 5.67 (s, 2 H, NCH₂O), 7.03–

7.05 (m, 2 H, H-*m*-Ph), 7.14 (s, 1 H, H-5), 7.77–7.78 (m, 2 H, H *o*-Ph), 8.95 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.4 (CH₃Si), 18.0 (OCH₂CH₂Si), 40.1 (CH₃SO₂), 55.4 (CH₃O), 67.2 (OCH₂CH₂Si), 70.9 (NCH₂O), 99.0 (CH-5), 114.4 (CH-*m*-Ph), 114.5 (C-4a), 122.3 (C-*i*-Ph), 131.0 (CH-*o*-Ph), 147.1 (C-6), 149.9 (CH-2), 153.8 (C-4), 156.0 (C-7a), 160.9 (C-*p*-Ph) ppm. IR (KBr): \tilde{v} = 3132, 3010, 2953, 2929, 2899, 1473, 1413, 1344, 1302, 1245, 1174, 1138, 1123, 1066, 1015, 869, 845, 782, 755, 761, 537 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₂₀H₂₇O₄N₃NaSSi 456.1384; found 456.1384.

4-(Methylsulfonyl)-6-(pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (23b): Starting from pyrrolo[2,3-d]pyrimidine 20b (745 mg, 2 mmol) and m-CPBA (900 mg, 4 mmol), the reaction was performed according to the General Procedure to give 23b (528 mg, 65%) as a white solid, m.p. 109 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.17$ (s, 9 H, CH₃Si), 0.78–0.80 (m, 2 H, OCH₂CH₂Si), 3.37 (s, 3 H, CH₃SO₂), 3.44–3.47 (m, 2 H, OCH_2CH_2Si), 6.34 (s, 2 H, NCH₂O), 7.37 (ddd, $J_{5,4} = 7.5$, $J_{5,6} =$ 4.8 Hz, J_{5,3} = 1.2 Hz, 1 H, H-5-py), 7.48 (s, 1 H, H-5), 7.85 (btd, $J_{4,5} = J_{4,3} = 7.7, J_{4,6} = 1.8$ Hz, 1 H, H-4-py), 7.91 (dt, $J_{3,4} = 7.9$, $J_{3,5} = J_{3,6} = 1.1$ Hz, 1 H, H-3-py), 8.75 (ddd, $J_{6,5} = 4.8$ Hz, $J_{6,4} =$ 1.8 Hz, $J_{6,3} = 0.9$ Hz, 1 H, H-6-py), 9.01 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (OCH₂CH₂Si), 40.0 (CH₃SO₂), 66.7 (OCH₂CH₂Si), 71.7 (NCH₂O), 101.9 (CH-5), 113.8 (C-4a), 123.8 (CH-5-py), 124.0 (CH-3-py), 137.1 (CH-4-py), 143.2 (C-6), 149.6 (CH-6-py), 150.1 (C-2-py), 151.0 (CH-2), 155.5 (C-4), 156.2 (C-7a) ppm. IR (KBr): $\tilde{v} = 2950, 2899, 1476, 1347,$ 1323, 1302, 1248, 1135, 1063, 1051, 863, 791, 767, 528 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₈H₂₄N₄O₃SiS 404.1338; found 404.1335.

4-(Methylsulfonyl)-6-(thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (23c): Starting from pyrrolo[2,3-d]pyrimidine 20c (755 mg, 2 mmol) and m-CPBA (900 mg, 4 mmol), the reaction was performed according to the General Procedure to give 23c (717 mg, 89%) as a yellow solid, m.p. 107 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.03$ (s, 9 H, CH₃Si), 0.98–1.01 (m, 2 H, OCH₂CH₂Si), 3.37 (s, 3 H, CH₃SO₂), 3.70-3.73 (m, 2 H, OCH_2CH_2Si), 5.82 (s, 2 H, NCH₂O), 7.20 (dd, $J_{4,5} = 5.1$, $J_{4,3} = 5.1$ 3.7 Hz, 1 H, H-4-thienyl), 7.27 (s, 1 H, H-5), 7.53 (dd, $J_{5,4} = 5.1$, $J_{5,3} = 1.2$ Hz, 1 H, H-5-thienyl), 7.77 (dd, $J_{3,4} = 3.7$, $J_{3,5} = 1.2$ Hz, 1 H, H-3-thienyl), 8.95 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, $CDCl_3$): $\delta = -1.4$ (CH₃Si), 17.9 (OCH₂CH₂Si), 40.1 (CH₃SO₂), 67.0 (OCH₂CH₂Si), 70.8 (NCH₂O), 99.8 (CH-5), 114.3 (C-4a), 128.5 (CH-4-thienyl), 128.9 (CH-5-thienyl), 129.5 (CH-3-thienyl), 131.2 (C-2-thienyl), 139.9 (C-6), 150.3 (CH-2), 154.3 (C-4), 155.9 (C-7a) ppm. IR (KBr): $\tilde{v} = 3004$, 2959, 2929, 2893, 1544, 1485, 1413, 1353, 1302, 1248, 1138, 1123, 1069, 863, 839, 779, 764, 534 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₇H₂₄O₃N₃³²S₂²⁸Si 410.1023; found 410.1022.

6-(Furan-2-yl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-*TH*-**pyrrolo**[2,3-*d*]**pyrimidine (23d):** Starting from pyrrolo[2,3-*d*]**pyr**imidine **20d** (723 mg, 2 mmol) and *m*-CPBA (900 mg, 4 mmol), the reaction was performed according to the General Procedure to give **23d** (600 mg, 76%) as a yellow solid, m.p. 146 °C. ¹H NMR (500 MHz, CDCl₃): δ = -0.06 (s, 9 H, CH₃Si), 0.93-0.96 (m, 2 H, OCH₂CH₂Si), 3.36 (s, 3 H, CH₃SO₂), 3.62-3.65 (m, 2 H, OCH₂CH₂Si), 5.91 (s, 2 H, NCH₂O), 6.60 (dd, J_{4,3} = 3.5, J_{4,5} = 1.8 Hz, 1 H, H-4-furyl), 7.16 (dd, J_{3,4} = 3.5, J_{3,5} = 0.7 Hz, 1 H, H-3-furyl), 7.39 (s, 1 H, H-5), 7.64 (dd, J_{5,4} = 1.8, J_{5,3} = 0.7 Hz, 1 H, H-5-furyl), 8.93 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.5 (CH₃Si), 17.7 (OCH₂CH₂Si), 40.1 (CH₃SO₂), 66.8 (OCH₂CH₂Si), 71.3 (NCH₂O), 98.1 (CH-5), 112.3 (CH-4-furyl), 112.6 (CH-3-furyl), 114.3 (C-4a), 136.0 (C-6), 144.6 (C-2-furyl), 144.7 (CH-5-furyl), 150.2 (CH-2), 154.4 (C-4), 155.8 (C-7a) ppm. HRMS (ESI): m/z calcd. for $C_{17}H_{23}O_4N_3NaSSi$ 416.1071; found 416.1070.

4-(Methylsulfonyl)-6-(thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (23e): Starting from pyrrolo[2,3-d]pyrimidine 20e (755 mg, 2 mmol) and m-CPBA (900 mg, 4 mmol), the reaction was performed according to the General Procedure to give 23e (507 mg, 62%) as a yellow solid, m.p. 178 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.02$ (s, 9 H, CH₃Si), 0.99–1.03 (m, 2 H, OCH₂CH₂Si), 3.37 (s, 3 H, CH₃SO₂), 3.74–3.77 (m, 2 H, OCH₂CH₂Si), 5.78 (s, 2 H, NCH₂O), 7.24 (s, 1 H, H-5), 7.49 (dd, $J_{5,4} = 5.0, J_{5,2} = 2.9$ Hz, 1 H, H-5-thienyl), 7.57 (dd, $J_{4,5} = 5.0, J_{4,2}$ = 1.3 Hz, 1 H, H-4-thienyl), 8.07 (dd, $J_{2,5}$ = 2.9, $J_{2,4}$ = 1.3 Hz, 1 H, H-2-thienyl), 8.95 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, $CDCl_3$): $\delta = -1.4$ (CH₃Si), 18.0 (OCH₂CH₂Si), 40.1 (CH₃SO₂), 67.1 (OCH₂CH₂Si), 70.8 (NCH₂O), 99.1 (CH-5), 114.3 (C-4a), 126.6 (CH-2-thienyl), 126.9 (CH-5-thienyl), 128.2 (CH-4-thienyl), 130.5 (C-3-thienyl), 141.8 (C-6), 150.1 (CH-2), 154.3 (C-4), 155.8 (C-7a) ppm. IR (KBr): $\tilde{v} = 3102, 3007, 2953, 2929, 2896, 1583, 1550,$ 1467, 1350, 1311, 1251, 1135, 1126, 1072, 863, 833, 776, 534 $\rm cm^{-1}$. HRMS (ESI): m/z calcd. for C₁₇H₂₃N₃O₃SiS₂ 409.0950; found 409.0948.

6-(Furan-3-yl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (23f): Starting from pyrrolo[2,3-d]pyrimidine 20f (633 mg, 1.75 mmol) and *m*-CPBA (784 mg, 3.5 mmol), the reaction was performed according to the General Procedure to give 23f (430 mg, 62%) as a white solid. ¹H NMR (500 MHz, $CDC1_3$): $\delta = -0.03$ (s, 9 H, CH_3Si), 0.96–0.99 (m, 2 H, OCH₂CH₂Si), 3.36 (s, 3 H, CH₃SO₂), 3.67–3.70 (m, 2 H, OCH_2CH_2Si), 5.78 (s, 2 H, NCH₂O), 6.88 (dd, $J_{4,5} = 1.9$, $J_{4,2} =$ 0.9 Hz, 1 H, H-4-furyl), 7.19 (s, 1 H, H-5), 7.57 (bt, $J_{5,2} = J_{5,4} =$ 1.7 Hz, 1 H, H-5-furyl), 8.15 (dd, J_{2,5} = 1.5, J_{2,4} = 0.9 Hz, 1 H, H-2-thienyl), 8.93 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4 (CH_3Si), 17.9 (OCH_2CH_2Si), 40.0 (CH_3SO_2), 66.9$ (OCH₂CH₂Si), 70.7 (NCH₂O), 98.6 (CH-5), 110.4 (CH-4-furyl), 114.3 (C-4a), 116.0 (C-3-furyl), 138.8 (C-6), 142.6 (CH-2-furyl), 144.1 (CH-5-furyl), 150.0 (CH-2), 154.1 (C-4), 155.8 (C-7a) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₇H₂₃N₃O₄SiS 393.1179; found 393.1177.

6-(2,4-Dimethoxypyrimidin-5-yl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (23g): Starting from pyrrolo[2,3-d]pyrimidine 20g (650 mg, 1.5 mmol) and m-CPBA (672 mg, 3 mmol), the reaction was performed according to the General Procedure to give 23g (598 mg, 86%) as a white solid, m.p. 122 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.08$ (s, 9 H, CH₃Si), 0.82–0.85 (m, 2 H, OCH₂CH₂Si), 3.37 (s, 3 H, CH₃SO₂), 3.48-3.51 (m, 2 H, OCH₂CH₂Si), 4.03 (s, 3 H, CH₃O-4'), 4.09 (s, 3 H, CH₃O-2'), 5.63 (s, 2 H, NCH₂O), 7.19 (s, 1 H, H-5), 8.50 (s, 1 H, H-6'), 8.98 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.8 (OCH₂CH₂Si), 40.0 (CH₃SO₂), 54.5 (CH₃O-4'), 55.3 (CH₃O-2'), 67.0 (OCH₂CH₂Si), 71.4 (NCH₂O), 102.7 (CH-5), 105.9 (C-4a), 114.0 (C-5'), 138.1 (C-6), 150.6 (CH-2), 155.0 (C-4), 155.3 (C-7a), 160.1 (CH-6'), 166.0 (C-2'), 168.6 (C-4') ppm. IR (KBr): $\tilde{v} = 3031, 3007, 2953, 2923, 2890, 1601, 1550, 1470, 1401,$ 1380, 1344, 1320, 1248, 1081, 866, 839, 776, 761, 531 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₉H₂₇N₅O₅SSi 465.1502; found 465.1505.

6-(Trifluoromethyl)-4-(methylsulfonyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (231): Starting from pyrrolo[2,3-*d*]pyrimidine 201 (218 mg, 0.6 mmol) and *m*-CPBA (207 mg, 1.2 mmol), the reaction was performed according to the General Procedure to give 231 (168 mg, 71%) as a white solid, m.p. 145 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.04$ (s, 9 H, CH₃Si), 0.92–0.95 (m, 2 H, OCH₂CH₂Si), 3.38 (s, 3 H, CH₃SO₂), 3.58–3.62 (m, 2 H, OCH₂CH₂Si), 5.86 (s, 2 H, NCH₂O), 7.61 (q, $J_{5,F}$ = 1.1 Hz, 1 H, CH-5), 9.11 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.5 (CH₃Si), 17.7 (OCH₂CH₂Si), 39.8 (CH₃SO₂), 67.4 (OCH₂CH₂Si), 72.0 (NCH₂O), 104.1 [q, $J_{C,F}$ = 4.3 Hz, CH-5], 111.7 (C-4a), 120.0 (q, $J_{C,F}$ = 270.2 Hz, CF₃), 131.8 (q, $J_{C,F}$ = 39.5 Hz, C-6), 152.9 (CH-2), 155.1 (C-7a), 158.4 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): δ = -56.86 (s, 1 F, F-2) ppm. IR (KBr): \tilde{v} = 2956, 2926, 2893, 1547, 1431, 1371, 1344, 1320, 1233, 1180, 1159, 1138, 1093, 863, 836, 528 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₄H₂₀O₃N₃F₃NaSSi 418.0839; found 418.0838.

Amination of Sulfones to 7-Deazaadenines; General Procedure: A 4methylsulfonyl-7*H*-pyrrolo[2,3-*d*]pyrimidine **23a**–g and **231** (1 mmol) were dissolved in 1,4-dioxane (5 mL) and aq. ammonia (25% w/w, 5 mL) was added. The reaction mixture was stirred at 50 °C overnight, the solvents were evaporated, and the residue was purified by flash chromatography (HPFC; EtOAc/MeOH, 20:1).

6-(4-Methoxyphenyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7Hpyrrolo[2,3-d]pyrimidine-4-amine (24a): Starting from pyrrolo[2,3d]pyrimidine 23a (434 mg, 1 mmol), the reaction was performed according to the General Procedure to give 24a (308 mg, 83%) as a white solid, m.p. 142 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.03$ (s, 9 H, CH₃Si), 0.94–0.98 (m, 2 H, OCH₂CH₂Si), 3.70–3.74 (m, 2 H, OCH₂CH₂Si), 3.87 (s, 3 H, CH₃O), 5.19 (br. s, 2 H, NH₂), 5.54 (s, 2 H, NCH₂O), 6.38 (s, 1 H, H-5), 6.99–7.01 (m, 2 H, H-m-Ph), 7.65–7.67 (m, 2 H, H-o-Ph), 8.35 (s, 1 H, H-2) ppm. ¹³C NMR $(125.7 \text{ MHz}, \text{ CDCl}_3): \delta = -1.4 \text{ (CH}_3\text{Si}), 18.0 \text{ (OCH}_2\text{CH}_2\text{Si}), 55.3$ (CH₃O), 66.5 (OCH₂CH₂Si), 70.6 (NCH₂O), 97.1 (CH-5), 103.1 (C-4a), 114.1 (CH-m-Ph), 124.0 (C-i-Ph), 130.6 (CH-o-Ph), 139.2 (C-6), 151.8 (CH-2), 152.6 (C-7a), 156.0 (C-4), 159.9 (C-p-Ph) ppm. IR (KBr): $\tilde{v} = 3324$, 3138, 2950, 2917, 2899, 1664, 1592, 1553, 1455, 1440, 1314, 1248, 1222, 1084, 860, 833, 749, 737 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₉H₂₇O₂N₄Si 371.1898; found 371.1898.

6-(Pyridin-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine-4-amine (24b): Starting from pyrrolo[2,3-d]pyrimidine 23b (404 mg, 1 mmol), the reaction was performed according to the General Procedure to give 24b (320 mg, 94%) as a yellowish solid, m.p. 137 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.15$ (s, 9 H, CH₃Si), 0.82–0.85 (m, 2 H, OCH₂CH₂Si), 3.52–3.55 (m, 2 H, OCH2CH2Si), 5.51 (br. s, 2 H, NH2), 6.09 (s, 2 H, NCH2O), 6.85 (s, 1 H, H-5), 7.26 (ddd, $J_{5,4}$ = 7.4, $J_{5,6}$ = 4.8 Hz, $J_{5,3}$ = 1.2 Hz, 1 H, H-5-py), 7.76 (btd, $J_{4,5} = J_{4,3} = 7.7$, $J_{4,6} = 1.8$ Hz, 1 H, H-4py), 7.82 (dt, $J_{3,4} = 8.0$, $J_{3,5} = J_{3,6} = 1.1$ Hz, 1 H, H-3-py), 8.37 (s, 1 H, H-2), 8.68 (ddd, $J_{6,5}$ = 4.8, $J_{6,4}$ = 1.8 Hz, $J_{6,3}$ = 1.0 Hz, 1 H, H-6-py) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (OCH₂CH₂Si), 66.2 (OCH₂CH₂Si), 71.2 (NCH₂O), 100.6 (CH-5), 102.9 (C-4a), 122.5 (CH-5-py), 122.8 (CH-3-py), 136.7 (C-6), 136.8 (CH-4-py), 149.5 (CH-6-py), 150.9 (C-2-py), 152.0 (CH-2), 153.2 (C-7a), 156.4 (C-4) ppm. IR (KBr): v = 3309, 3114, 3043, 2950, 1673, 1595, 1589, 1562, 1556, 1455, 1323, 1248, 1096, 1069, 863, 839, 761 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₇H₂₃N₅OSi 341.1672; found 341.1671.

6-(Thiophen-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine-4-amine (24c): Starting from pyrrolo[2,3-d]pyrimidine **23c** (410 mg, 1 mmol), the reaction was performed according to the General Procedure to give **24c** (316 mg, 91%) as a yellowish solid, m.p. 151 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.04$ (s, 9 H, CH₃Si), 0.94–0.98 (m, 2 H, OCH₂CH₂Si), 3.67–3.70 (m, 2 H, OCH₂CH₂Si), 5.58 (br. s, 2 H, NH₂), 5.68 (s, 2 H, NCH₂O), 6.59 (s, 1 H, H-5), 7.14 (dd, $J_{4,5} = 5.1$, $J_{4,3} = 3.6$ Hz, 1 H, H-4-thienyl), 7.38 (dd, $J_{5,4} = 5.1$, $J_{5,3} = 1.2$ Hz, 1 H, H-5-thienyl), 7.58 (dd, $J_{3,4} = 3.6$, $J_{3,5} = 1.2$ Hz, 1 H, H-3-thienyl), 8.33 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.9 (OCH₂CH₂Si), 66.4 (OCH₂CH₂Si), 70.6 (NCH₂O), 98.7 (CH-5), 102.9 (C-4a), 126.6 (CH-5-thienyl), 127.6 (CH-3-thienyl), 128.2 (CH-4-thienyl), 132.4 (C-6), 132.6 (C-2-thienyl), 150.9 (CH-2), 152.3 (C-7a), 155.6 (C-4) ppm. IR (KBr): $\tilde{v} = 3455$, 3291, 3159, 3090, 2950, 2914, 1643, 1592, 1547, 1476, 1311, 1248, 1081, 863, 854, 833, 707 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₆H₂₂N₄OSiS 346.1284; found 346.1286.

6-(Furan-2-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3*d*[pyrimidine-4-amine (24d): Starting from pyrrolo[2,3-d]pyrimidine **23d** (393 mg, 1 mmol), the reaction was performed according to the General Procedure to give 24d (280 mg, 85%) as a yellowish solid, m.p. 153 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.07$ (s, 9 H, CH₃Si), 0.91–0.94 (m, 2 H, OCH₂CH₂Si), 3.61–3.64 (m, 2 H, OCH2CH2Si), 5.64 (br. s, 2 H, NH2), 5.75 (s, 2 H, NCH2O), 6.53 (dd, $J_{4,3} = 3.4$, $J_{4,5} = 1.8$ Hz, 1 H, H-4-furyl), 6.72 (s, 1 H, H-5), 6.92 (dd, $J_{3,4}$ = 3.4, $J_{3,5}$ = 0.8 Hz, 1 H, H-3-furyl), 7.53 (dd, $J_{5,4}$ = 1.8, $J_{5,3} = 0.8$ Hz, 1 H, H-5-furyl), 8.31 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.8 (OCH₂CH₂Si), 66.2 (OCH₂CH₂Si), 71.0 (NCH₂O), 96.9 (CH-5), 102.9 (C-4a), 109.2 (CH-3-furyl), 111.8 (CH-4-furyl), 129.3 (C-6), 142.9 (CH-5furyl), 145.7 (C-2-furyl), 151.0 (CH-2), 152.2 (C-7a), 155.9 (C-4) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₆H₂₃O₂N₄Si 331.1585; found 331.1585.

6-(Thiophen-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine-4-amine (24e): Starting from pyrrolo[2,3-d]pyrimidine 23e (410 mg, 1 mmol), the reaction was performed according to the General Procedure to give 24e (292 mg, 84%) as a white solid, m.p. 159 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.04$ (s, 9 H, CH₃Si), 0.96–0.99 (m, 2 H, OCH₂CH₂Si), 3.72–3.75 (m, 2 H, OCH2CH2Si), 5.42 (br. s, 2 H, NH2), 5.64 (s, 2 H, NCH2O), 6.53 (s, 1 H, H-5), 7.42 (dd, J_{5,4} = 5.0, J_{5,2} = 2.9 Hz, 1 H, H-5-thienyl), 7.44 (dd, $J_{4,5} = 5.0$, $J_{4,2} = 1.4$ Hz, 1 H, H-4-thienyl), 7.84 (dd, $J_{2,5}$ = 2.9, $J_{2,4}$ = 1.3 Hz, 1 H, H-2-thienyl), 8.34 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 18.0 (OCH₂CH₂Si), 66.5 (OCH₂CH₂Si), 70.6 (NCH₂O), 97.4 (CH-5), 102.9 (C-4a), 124.0 (CH-2-thienyl), 126.2 (CH-5-thienyl), 128.1 (CH-4-thienyl), 131.8 (C-3-thienyl), 134.5 (C-6), 151.2 (CH-2), 152.4 (C-7a), 155.8 (C-4) ppm. IR (KBr): $\tilde{v} = 3446, 3288, 3135, 3102, 2950, 2917, 2890,$ 1634, 1595, 1556, 1470, 1302, 1293, 1251, 1081, 860, 836 cm⁻¹. HRMS (ESI): m/z calcd. for $C_{16}H_{22}N_4OSiS$ 346.1284; found 346.1283.

6-(Furan-3-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo[2,3***d***]pyrimidine-4-amine (24f): Starting from pyrrolo[2,3-***d***]pyrimidine 23f** (394 mg, 1 mmol), the reaction was performed according to the General Procedure to give **24f** (248 mg, 71%) as a white solid. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.05$ (s, 9 H, CH₃Si), 0.93–0.97 (m, 2 H, OCH₂CH₂Si), 3.65–3.69 (m, 2 H, OCH₂CH₂Si), 5.57 (br. s, 2 H, NH₂), 5.63 (s, 2 H, NCH₂O), 6.51 (s, 1 H, H-5), 6.76 (dd, $J_{4,5} = 1.9, J_{4,2} = 0.9$ Hz, 1 H, H-4-furyl), 7.51 (t, $J_{5,2} = J_{5,4} = 1.7$ Hz, 1 H, H-5-furyl), 7.97 (dd, $J_{2,5} = 1.5, J_{2,4} = 0.9$ Hz, 1 H, H-2-thi-enyl), 8.31 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.4$ (CH₃Si), 17.9 (OCH₂CH₂Si), 66.3 (OCH₂CH₂Si), 70.5 (NCH₂O), 97.1 (CH-5), 102.9 (C-4a), 110.4 (CH-4-furyl), 116.7 (C-3-furyl), 131.1 (C-6), 141.0 (CH-2-furyl), 143.5 (CH-5-furyl), 150.6 (CH-2), 152.2 (C-7a), 155.5 (C-4) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₆H₂₃O₂N₄Si 331.1585; found 331.1585.

6-(2,4-Dimethoxypyrimidin-5-yl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine-4-amine (24g): Starting from pyrrolo[2,3-*d*]pyrimidine deazapurine 23g (465 mg, 1 mmol), the reaction was performed according to the General Procedure to give 24g (374 mg, 93%) as a white solid, m.p. 104 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.10$ (s, 9 H, CH₃Si), 0.80–0.83 (m, 2 H,

OCH₂CH₂Si), 3.47–3.49 (m, 2 H, OCH₂CH₂Si), 4.01 (s, 3 H, CH₃O-4'), 4.07 (s, 3 H, CH₃O-2'), 5.50 (s, 2 H, NCH₂O), 5.58 (br. s, 2 H, NH₂), 6.51 (s, 1 H, H-5), 8.35 (s, 1 H, H-2), 8.43 (s, 1 H, H-6') ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = –1.5 (CH₃Si), 17.8 (OCH₂CH₂Si), 54.4 (CH₃O-4'), 55.1 (CH₃O-2'), 66.3 (OCH₂CH₂Si), 71.1 (NCH₂O), 101.0 (CH-5), 102.9 (C-4a), 107.0 (C-5'), 130.1 (C-6), 151.0 (CH-2), 152.1 (C-7a), 155.7 (C-4), 159.8 (CH-6'), 165.5 (C-2'), 168.8 (C-4') ppm. IR (KBr): \tilde{v} = 3437, 3413, 3339, 3219, 3138, 2959, 2896, 1646, 1610, 1586, 1559, 1473, 1398, 1377, 1299, 1251, 1087, 1015, 866, 833 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₈H₂₆N₆O₃Si 402.1836, found 402.1835.

6-(Trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo-[2,3-d]pyrimidine-4-amine (24I): Starting from pyrrolo[2,3-d]pyrimidine deazapurine 231 (130 mg, 0.33 mmol), the reaction was performed according to the General Procedure to give 24l (100 mg, 90%) as a white solid, m.p. 140 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.06$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 3.57– 3.60 (m, 2 H, OCH₂CH₂Si), 5.71 (s, 2 H, NCH₂O), 5.80 (br. s, 2 H, NH₂), 6.96 (q, J_{5F} = 1.1 Hz, 1 H, H-5), 8.40 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (OCH₂CH₂Si), 66.8 (OCH₂CH₂Si), 71.6 (NCH₂O), 101.1 (C-4a), 102.5 (q, $J_{C,F}$ = 4.4 Hz, CH-5), 120.7 (q, $J_{C,F}$ = 268.7 Hz, CF₃), 125.1 (q, J_{C,F} = 39.3 Hz, C-6), 152.5 (C-7a), 153.1 (CH-2), 157.0 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): δ = -56.03 (s, 1 F, F-2) ppm. IR (KBr): v = 3135, 2953, 2929, 1655, 1601, 1562, 1544, 1365, 1314, 1251, 1180, 1129, 1120, 869, 836 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₃H₂₀ON₄F₃Si 333.1353; found 333.1353.

Deprotection of SEM Group; General Procedure: A SEM-protected pyrrolo[2,3-*d*]pyrimidine **19a–h**, **19j–l**, **24a–g**, **24l**, or **27j–l** was dissolved in trifluoroacetic acid (2 mL) and the reaction mixture was stirred at room temp. for 30 min. The mixture was then diluted with NaHCO₃ (to pH 7) and EtOAc (25 mL) was added. The layers were separated and the aqueous layer was extracted with EtOAc (×2). The combined organic layers were dried with sodium sulfate, and concentrated under reduced pressure to give a solid. Aq. ammonia (25% w/w, 15 mL) was added and the mixture was stirred at room temp. overnight to form white precipitate of product, which was isolated by filtration.

4-Methoxy-6-(4-methoxyphenyl)-*TH***-pyrrolo**[**2**,**3-***d*]**pyrimidine (21a):** Starting from pyrrolo[2,3-*d*]**pyrimidine 19a** (772 mg, 2 mmol), the reaction was performed according to the General Procedure to give **21a** (458 mg, 90%) as a white solid, m.p. 278 °C. ¹H NMR (600.1 MHz, CDCl₃): δ = 3.80 (s, 3 H, CH₃O-*p*), 4.04 (s, 3 H, CH₃O-4), 6.83 (s, 1 H, H-5), 7.01–7.03 (m, 2 H, H-*m*-C₆H₄OMe), 7.85–7.87 (m, 2 H, H-*o*-C₆H₄OMe), 8.36 (s, 1 H, H-2), 12.41 (br. s, 1 H, NH) ppm. ¹³C NMR (150.9 MHz, CDCl₃): δ = 53.5 (CH₃O-4), 55.4 (CH₃O-*p*), 93.6 (CH-5), 106.0 (C-4a), 114.6 (CH-*m*-C₆H₄OMe), 123.9 (C-*i*-C₆H₄OMe), 126.9 (CH-*o*-C₆H₄OMe), 136.8 (C-6), 150.3 (CH-2), 153.7 (C-7a), 159.4 (C-*p*-C₆H₄OMe), 161.8 (C-4) ppm. IR (KBr): \tilde{v} = 3150, 3013, 2995, 2941, 2842, 1622, 1598, 1544, 1503, 1482, 1332, 1254, 1177, 1126, 1024, 976, 890, 827, 773 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₄H₁₄O₂N₃ 256.1081; found 256.1081.

4-Methoxy-6-(pyridin-2-yl)-7*H*-**pyrrolo**[**2**,**3**-*d*]**pyrimidine (21b):** Starting from pyrrolo[2,3-*d*]pyrimidine **19b** (356 mg, 1 mmol), the reaction was performed according to the General Procedure to give **21b** (192 mg, 85%) as a white solid, m.p. >350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 4.06 (s, 3 H, CH₃O), 7.20 (s, 1 H, H-5), 7.34 (ddd, $J_{5,4}$ = 7.5, $J_{5,6}$ = 4.8 Hz, $J_{5,3}$ = 1.1 Hz, 1 H, H-5-py), 7.89 (td, $J_{4,5}$ = $J_{4,3}$ = 7.8, $J_{4,6}$ = 1.8 Hz, 1 H, H-4-py), 8.06 (dt, $J_{3,4}$ = 8.0, $J_{3,5}$ = $J_{3,6}$ = 1.1 Hz, 1 H, H-2-furyl), 8.41 (s, 1 H, H-2), 8.64 (ddd, $J_{6,5}$ = 4.8, $J_{6,4}$ = 1.8 Hz, $J_{6,3}$ = 1.0 Hz, 1 H, H-6-py), 12.64 (v. br. s., 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 53.6 (CH₃O), 97.4 (CH-5), 105.8 (C-4a), 120.2 (CH-3-py), 123.0 (CH-5-py), 136.5 (C-6), 137.4 (CH-4-py), 149.7 (CH-6-py), 149.9 (C-2-py), 151.6 (CH-2), 153.6 (C-7a), 162.7 (C-4) ppm. IR (KBr): \tilde{v} = 3066, 3007, 2983, 2935, 2857, 2797, 1601, 1589, 1580, 1479, 1458, 1443, 1410, 1329, 1278, 1242, 1180, 1126, 979, 887, 842, 752 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₂H₁₀ON₄Na 249.0747; found 249.0746.

4-Methoxy-6-(thiophen-2-yl)-*7H*-**pyrrolo**[**2**,**3**-*d*]**pyrimidine (21c):** Starting from pyrrolo[2,3-*d*]**pyrimidine 19c** (724 mg, 2 mmol), the reaction was performed according to the General Procedure to give **21c** (416 mg, 90%) as a yellowish solid, m.p. 227 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 4.04 (s, 3 H, CH₃O), 6.68 (s, 1 H, H-5), 7.15 (dd, $J_{4,5}$ = 5.1, $J_{4,3}$ = 3.6 Hz, 1 H, H-4-thienyl), 7.58 (br. d, $J_{5,4}$ = 5.1 Hz, 1 H, H-5-thienyl), 7.62 (br. d, $J_{3,4}$ = 3.6 Hz, 1 H, H-3-thienyl), 8.38 (s, 1 H, H-2), 12.60 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 53.8 (CH₃O), 95.0 (CH-5), 106.0 (C-4a), 125.3 (CH-3-thienyl), 126.6 (CH-5-thienyl), 128.6 (CH-4-thienyl), 131.8 (C-6), 134.6 (C-2-thienyl), 151.2 (CH-2), 153.8 (C-7a), 162.3 (C-4) ppm. IR (KBr): \tilde{v} = 3210, 3123, 3069, 2988, 2947, 2875, 2842, 1610, 1592, 1562, 1485, 1407, 1344, 1329, 1299, 1216, 1183, 1123, 973, 890, 773, 695 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₁H₁₀ON₃S 232.0539; found 232.0539.

6-(Furan-2-yl)-4-methoxy-7*H***-pyrrolo[2,3-***d***]pyrimidine (21d): Starting from pyrrolo[2,3-***d***]pyrimidine 19d** (345 mg, 1 mmol), the reaction was performed according to the General Procedure to give **21d** (172 mg, 80%) as a white solid, m.p. 243 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 4.04 (s, 3 H, CH₃O), 6.64 (dd, $J_{4,3}$ = 3.4, $J_{4,5}$ = 1.8 Hz, 1 H, H-4-furyl), 6.67 (s, 1 H, H-5), 6.99 (dd, $J_{3,4}$ = 3.4, $J_{3,5}$ = 0.8 Hz, 1 H, H-3-furyl), 7.79 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-3-furyl), 7.79 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-3-furyl), 7.79 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-5-furyl), 8.38 (s, 1 H, H-2), 12.59 (v. br. s., 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 53.6 (CH₃O), 96.7 (CH-5), 105.5 (C-4a), 107.5 (CH-3-furyl), 112.2 (CH-4-furyl), 128.4 (C-6), 143.6 (CH-5-furyl), 146.7 (C-2-furyl), 151.1 (CH-2), 153.5 (C-7a), 162.2 (C-4) ppm. IR (KBr): \tilde{v} = 3117, 3075, 2989, 2941, 2893, 2818, 1598, 1586, 1524, 1482, 1458, 1410, 1344, 1326, 1296, 1248, 1183, 1132, 1075, 1006, 973, 884, 830, 764, 740, 656 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₁H₁₀O₂N₃ 216.0768; found 216.0768.

4-Methoxy-6-(thiophen-3-yl)-7*H***-pyrrolo[2,3-***d***]pyrimidine (21e): Starting from pyrrolo[2,3-***d***]pyrimidine 19e** (723 mg, 1 mmol), the reaction was performed according to the General Procedure to give **21e** (414 mg, 90 %) as a white solid, m.p. 232 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 4.04 (s, 3 H, CH₃O), 6.85 (s, 1 H, H-5), 7.66 (dd, $J_{5,4}$ = 5.1, $J_{5,2}$ = 2.9 Hz, 1 H, H-5-thienyl), 7.69 (dd, $J_{4,5}$ = 5.1, $J_{4,2}$ = 1.4 Hz, 1 H, H-4-thienyl), 8.00 (dd, $J_{2,5}$ = 2.9, $J_{2,4}$ = 1.4 Hz, 1 H, H-2-thienyl), 8.37 (s, 1 H, H-2), 12.47 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 53.4 (CH₃O), 94.8 (CH-5), 105.6 (C-4a), 121.1 (CH-2-thienyl), 126.1 (CH-4-thienyl), 127.5 (CH-5-thienyl), 133.0 and 133.2 (C-6,C-3-thienyl), 150.6 (CH-2), 153.4 (C-7a), 162.1 (C-4) ppm. IR (KBr): \tilde{v} = 3216, 3126, 3081, 3066, 3016, 2983, 2944, 2863, 1610, 1592, 1562, 1479, 1341, 1323, 1180, 1126, 973, 899, 878, 770, 653 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₁H₁₀ON₃S 232.0539; found 232.0539.

6-(Furan-3-yl)-4-methoxy-7*H***-pyrrolo[2,3-***d***]pyrimidine (21f): Starting from pyrrolo[2,3-***d***]pyrimidine 19f (691 mg, 2 mmol), the reaction was performed according to the General Procedure to give 21f (281 mg, 65%) as a white solid, m.p. 218 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): \delta = 4.04 (s, 3 H, CH₃O), 6.79 (d,** *J***_{5,NH} = 2.1 Hz, 1 H, H-5), 7.05 (dd,** *J***_{4,5} = 1.9,** *J***_{4,2} = 0.8 Hz, 1 H, H-4-furyl), 7.77 (t,** *J***_{5,2} =** *J***_{5,4} = 1.7 Hz, 1 H, H-5-furyl), 8.21 (br. dd,** *J***_{2,5} = 1.5,** *J***_{2,4} = 0.8 Hz, 1 H, H-2-furyl), 8.36 (s, 1 H, H-2), 12.37 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): \delta = 53.4 (CH₃O),**

94.8 (CH-5), 105.5 (C-4a), 108.4 (CH-4-furyl), 118.4 (C-3-furyl), 129.7 (C-6), 139.8 (CH-2-furyl), 144.5 (CH-5-furyl), 150.5 (CH-2), 153.4 (C-7a), 161.8 (C-4) ppm. IR (KBr): $\tilde{v} = 3216$, 3174, 3141, 3129, 3001, 2944, 2899, 2860, 1604, 1586, 1491, 1338, 1332, 1159, 1129, 1072, 973, 872, 767, 650, 588 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₁H₁₀O₂N₃ 216.0768; found 216.0768.

6-(3-Aminophenyl)-4-methoxy-7*H*-pyrrolo[2,3-*d*]pyrimidine (21h): Pyrrolo[2,3-d]pyrimidine 19h (1.02 g, 2.75 mmol) was used according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give 21h (147 mg, 22%) as a yellowish solid, m.p. 296 °C. ¹H NMR $(500.0 \text{ MHz}, [D_6]\text{DMSO}): \delta = 4.04 \text{ (s, 3 H, CH}_3\text{O}), 5.15 \text{ (br. s, 2)}$ H, NH₂), 6.57 (ddd, $J_{6',5'} = 7.8$, $J_{6',2'} = 2.2$ Hz, $J_{6',4'} = 1.2$ Hz, 1 H, H-6'), 6.71 (s, 1 H, H-5), 7.02-7.06 (m, 2 H, H-2',4'), 7.09 (t, $J_{5',4'} = J_{5',6'} = 7.9$ Hz, 1 H, H-5'), 8.36 (s, 1 H, H-2), 12.38 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 53.5 (CH₃O), 94.1 (CH-5), 105.8 (C-4a), 110.9 (CH-2'), 113.5 (CH-4'), 114.3 (CH-6'), 129.6 (CH-5'), 131.8 (C-3'), 137.8 (C-6), 149.2 (C-1'), 150.5 (CH-2), 153.6 (C-7a), 162.0 (C-4) ppm. IR (KBr): $\tilde{v} =$ 3330, 3225, 3126, 1983, 2947, 1598, 1586, 1479, 1355, 1126, 776 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₃H₁₃ON₄ 241.1084; found 241.1084.

6-(Uracil-5-yl)-pyrrolo[2,3-d]pyrimidin-4-one (22i): Pyrrolo[2,3d pyrimidine 19g (731 mg, 1.75 mmol) was deprotected according to the General Procedure directly followed by heating to reflux in a solution of THF/dioxane/HCl (1:1:1, 9 mL) for 2 h. The reaction mixture was evaporated and ethanol (5 mL) was added. The mixture was then kept in a refrigerator overnight to furnish 22i (416 mg, 97%) as yellowish crystals, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.00 (d, $J_{5,\text{NH}}$ = 2.3 Hz, 1 H, H-5), 7.83 (s, 1 H, H-2), 7.97 (d, $J_{6',\rm NH}$ = 6.1 Hz, 1 H, H-6'), 11.31 (dd, $J_{\rm NH,6'}$ = 6.1, $J_{\rm NH,NH}$ = 1.8 Hz, 1 H, NH-1'), 11.39 (d, $J_{\rm NH,NH}$ = 1.8 Hz, 1 H, NH-3'), 11.85 (v. br. s, 1 H, NH-3), 11.90 (d, $J_{\rm NH,5}$ = 2.3 Hz, 1 H, NH-7) ppm. $^{13}\mathrm{C}$ NMR (125.7 MHz, [D₆]DMSO): δ = 101.4 (CH-5), 104.9 (C-5'), 108.6 (C-4a), 126.8 (C-6), 137.7 (CH-6'), 143.9 (CH-2), 148.7 (C-7a), 150.7 (C-2'), 158.5 (C-4), 162.6 (C-4') ppm. IR (KBr): $\tilde{v} = 3261, 3219, 3183, 3156, 3114, 3063, 2908,$ 1706, 1682, 1583, 1565, 1524, 1416, 1257, 1227, 1192, 914, 824, 782, 555 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₀H₇O₃N₅²³Na 268.0441; found 268.0442.

6-(4-Methoxyphenyl)-7*H***-pyrrolo[2,3-***d***]pyrimidine-4-amine (25a): Starting from pyrrolo[2,3-***d***]pyrimidine 24a** (148 mg, 0.4 mmol), the reaction was performed according to the General Procedure to give **25a** (77 mg, 80%) as a white solid, m.p. 324 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 3.79 (s, 3 H, CH₃O), 6.76 (d, *J*_{5,NH} = 2.2 Hz, 1 H, H-5), 6.88 (br. s, 2 H, NH₂), 7.00–7.02 (m, 2 H, H-*m*-Ph), 7.69–7.71 (m, 2 H, H-*o*-Ph), 8.01 (s, 1 H, H-2), 11.87 (br. d, *J*_{NH,5} = 2.0 Hz, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 55.4 (CH₃O), 94.8 (CH-5), 103.8 (C-4a), 114.6 (CH-*m*-Ph), 124.7 (C-*i*-Ph), 126.2 (CH-*o*-Ph), 133.8 (C-6), 151.8 (CH-2), 152.0 (C-7a), 157.1 (C-4), 158.9 (C-*p*-Ph) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₃H₁₃ON₄ 241.1084; found 241.1084.

6-(Pyridin-2-yl)-7*H***-pyrrolo[2,3-***d***]pyrimidine-4-amine (25b): Starting from pyrrolo[2,3-***d***]pyrimidine 24b** (256 mg, 0.75 mmol), the reaction was performed according to the General Procedure to give **25b** (117 mg, 74%) as a white solid, m.p. 326 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.08 (br. s, 2 H, NH₂), 7.23 (br. s, 1 H, H-5), 7.25–7.28 (m, 1 H, H-5-py), 7.82–7.88 (m, 2 H, H-3,4-py), 8.07 (s, 1 H, H-2), 8.59 (dt, $J_{6,5}$ = 4.7, $J_{6,4}$ = $J_{6,3}$ = 1.4 Hz, 1 H, H-6-py), 12.08 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 99.2 (CH-5), 103.8 (C-4a), 119.1 (CH-3-py), 122.2 (CH-5-py), 133.5 (C-6), 137.3 (CH-4-py), 149.7 (CH-6-py), 150.2

(C-2-py), 152.1 (C-7a), 153.0 (CH-2), 157.9 (C-4) ppm. IR (KBr): $\tilde{v} = 3398, 3078, 2971, 2923, 2845, 2809, 1637, 1622, 1595, 1580, 1464, 1443, 1359, 1284, 758 cm⁻¹. HRMS (ESI):$ *m/z*calcd. for C₁₁H₁₀N₅ 212.0931; found 212.0931.

6-(Thiophen-2-yl)-7*H***-pyrrolo[2,3-***d***]pyrimidine-4-amine (25c): Starting from pyrrolo[2,3-***d***]pyrimidine 24c** (347 mg, 1 mmol), the reaction was performed according to the General Procedure to give **25c** (160 mg, 74%) as a greyish solid, m.p. 345 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.73 (s, 1 H, H-5), 6.96 (br. s, 2 H, NH₂), 7.11 (dd, $J_{4,5}$ = 5.1, $J_{4,3}$ = 3.6 Hz, 1 H, H-4-thienyl), 7.46 –7.50 (m, 2 H, H-3,5-thienyl), 8.03 (s, 1 H, H-2), 12.06 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 96.4 (CH-5), 103.5 (C-4a), 123.5 (CH-3-thienyl), 125.0 (CH-5-thienyl), 128.3 (CH-4-thienyl), 128.5 (C-6), 135.4 (C-2-thienyl), 151.9 (C-7a), 152.4 (CH-2), 157.2 (C-4) ppm. IR (KBr): \tilde{v} = 3464, 3300, 3117, 3108, 3096, 2988, 1637, 1586, 1556, 1485, 1314, 764, 698 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₀H₉N₄S 217.0542; found 217.0543.

6-(Furan-2-yl)-*TH***-pyrrolo**[**2**,3-*d*]**pyrimidine-4-amine** (**25d**): Pyrrolo[2,3-*d*]**pyrimidine 24d** (248 mg, 0.75 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **25d** (119 mg, 79%) as a white solid, m.p. 300 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.59 (dd, $J_{4,3}$ = 3.4, $J_{4,5}$ = 1.8 Hz, 1 H, H-4-furyl), 6.76 (d, $J_{5,\text{NH}}$ = 1.9 Hz, 1 H, H-5), 6.83 (dd, $J_{3,4}$ = 3.4, $J_{3,5}$ = 0.9 Hz, 1 H, H-3-furyl), 7.00 (br. s, 2 H, NH₂), 7.72 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.9 Hz, 1 H, H-5-furyl), 8.03 (s, 1 H, H-2), 11.99 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 95.4 (CH-5), 103.3 (C-4a), 105.8 (CH-3-furyl), 151.7 (C-7a), 152.4 (CH-2), 157.4 (C-4) ppm. IR (KBr): \tilde{v} = 3461, 3309, 3150, 3117, 3102, 2980, 2839, 1640, 1592, 1574, 1476, 1302, 1015, 767 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₀H₉ON₄ 201.0771; found 201.0771.

6-(Thiophen-3-yl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine (25e): Pyrrolo[2,3-d]pyrimidine 24e (260 mg, 0.75 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give 25e (117 mg, 72%) as a white solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.74 (d, $J_{5,\text{NH}}$ = 2.2 Hz, 1 H, H-5), 6.91 (br. s, 2 H, NH₂), 7.48 (dd, $J_{4,5} = 5.0$, $J_{4,2} = 1.3$ Hz, 1 H, H-4-thienyl), 7.64 (dd, $J_{5,4} = 5.0$, $J_{5,2} = 2.9$ Hz, 1 H, H-5-thienyl), 7.82 (dd, $J_{2,5} = 2.9$, $J_{2,4} = 1.3$ Hz, 1 H, H-2-thienyl), 8.02 (s, 1 H, H-2), 11.92 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): $\delta = 96.0$ (CH-5), 103.4 (C-4a), 119.6 (CH-2-thienyl), 125.5 (CH-4-thienyl), 127.5 (CH-5-thienyl), 130.1 (C-6), 133.8 (C-3-thienyl), 151.7 (C-7a), 152.1 (CH-2), 157.3 (C-4) ppm. IR (KBr): v = 3467, 3297, 3111, 3087, 3025, 2905, 1646, 1595, 1562, 1485, 1320, 791, 761 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₀H₉N₄S 217.0542; found 217.0543.

6-(Furan-3-yl)-7*H***-pyrrolo[2,3-***d***]pyrimidine-4-amine (25f): Pyrrolo[2,3-***d***]pyrimidine 24f** (247 mg, 0.75 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **25f** (98 mg, 65%) as a white solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 6.63$ (d, $J_{5,NH} = 2.1$ Hz, 1 H, H-5), 6.84 (dd, $J_{4,5} = 1.9$, $J_{4,2} = 0.9$ Hz, 1 H, H-4-furyl), 6.88 (br. s, 2 H, NH₂), 7.75 (t, $J_{5,4} = J_{5,2} = 1.7$ Hz, 1 H, H-5-furyl), 8.01 (s, 1 H, H-2), 8.10 (dd, $J_{2,5} = 1.6$, $J_{2,4} = 0.9$ Hz, 1 H, H-2-furyl), 11.81 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): $\delta = 95.9$ (CH-5), 103.3 (C-4a), 108.6 (CH-4-furyl), 118.9 (C-3-furyl), 126.5 (C-6), 138.9 (CH-2-furyl), 144.5 (CH-5-furyl), 151.7 (C-7a), 152.0 (CH-2), 157.0 (C-4) ppm. IR (KBr): $\tilde{v} = 3458$, 3297, 3168, 3117, 2893, 2929, 2860, 1643, 1592, 1577, 1482, 1335, 1320, 779,

770 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₀H₉ON₄ 201.0771; found 201.0771.

6-(Uracil-5-yl)-pyrrolo[2,3-d]pyrimidin-4-amine (25i): Pyrrolo[2,3d pyrimidine 24g (302 mg, 0.75 mmol) was deprotected according to the General Procedure directly followed by heating to reflux in a solution of THF/dioxane/HCl (1:1:1, 9 mL) for 24 h. The reaction mixture was evaporated and ethanol (5 mL) was added. The mixture was then kept in a refrigerator overnight to furnish 25i (141 mg, 77%) as yellowish crystals, m.p. >350 °C. ^{1}H NMR (500.0 MHz, [D₆]DMSO): δ = 7.52 (d, $J_{5,\text{NH}}$ = 2.2 Hz, 1 H, H-5), 8.15 (d, $J_{6',\text{NH}}$ = 6.1 Hz, 1 H, H-6'), 8.32 (s, 1 H, H-2), 11.48 (d, $J_{\rm NH, NH}$ = 1.8 Hz, 1 H, NH-3'), 11.51 (dd, $J_{\rm NH, 6'}$ = 6.1, $J_{\rm NH, NH}$ = 1.8 Hz, 1 H, NH-1'), 12.81 (d, $J_{\rm NH,5}$ = 2.2 Hz, 1 H, NH-7) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 100.9 (CH-5), 102.1 (C-4a), 103.8 (C-5'), 130.7 (C-6), 139.2 (CH-6'), 142.3 (CH-2), 148.5 (C-7a), 150.4 (C-4), 150.5 (C-2'), 162.2 (C-4') ppm. IR (KBr): $\tilde{v} =$ 3318, 3267, 3150, 3043, 2956, 2851, 2788, 2729, 1709, 1676, 1595, 1574, 1446, 1442, 1245, 1224, 1216, 770 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₀H₉O₂N₆ 245.0782; found 245.0782.

4,6-Dichloro-*TH***-pyrrolo**[**2,3-***d***]pyrimidine** (**28j**): Pyrrolo[2,3-*d*]pyrimidine **27j** (318 mg, 1 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **28j** (124 mg, 66%) as a white solid, m.p. 250 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.72 (s, 1 H, H-5), 8.60 (s, 1 H, H-2), 12.48 (v. br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 97.3 (CH-5), 117.3 (C-4a), 127.6 (C-6), 149.4 (C-4), 150.9 (CH-2), 151.4 (C-7a) ppm. IR (KBr): \tilde{v} = 3126, 3072, 2962, 2935, 2794, 2678, 2651, 1610, 1565, 1497, 1443, 1338, 1260, 1213, 988, 872, 815 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₆H₃N₃Cl₂ 186.9704; found 186.9705.

6-Bromo-4-chloro-7*H***-pyrrolo[2,3-***d***]pyrimidine (28k):** Pyrrolo[2,3-*d*]pyrimidine 27k (363 mg, 1 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give 28k (174 mg, 75%) as a white solid, m.p. 258 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 6.80$ (s, 1 H, H-5), 8.58 (s, 1 H, H-2), 13.43 (v. br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): $\delta = 101.2$ (CH-5), 114.4 (C-6), 117.6 (C-4a), 149.1 (C-4), 150.8 (CH-2), 152.5 (C-7a) ppm. IR (KBr): $\tilde{v} = 3123$, 3090, 3069, 3022, 2950, 2920, 2875, 2803, 1604, 1559, 1494, 1422, 1335, 1263, 1210, 988, 866, 806 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₆H₃N₃ClBr 230.9199; found 230.9200.

4-Chloro-6-(trifluoromethyl)-7H-pyrrolo[2,3-*d***]pyrimidine (28)**: Pyrrolo[2,3-*d*]pyrimidine **271** (246 mg, 0.7 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **281** (113 mg, 73%) as a white solid, m.p. 191 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.30 (q, $J_{5,F}$ = 1.3 Hz, 1 H, H-5), 8.79 (s, 1 H, H-2), 13.92 (v. br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 101.4 (br. q, $J_{C,F}$ = 3.7 Hz, CH-5), 115.8 (C-4a), 120.7 (br. q, $J_{C,F}$ = 268.8 Hz, CF₃), 127.4 (q, $J_{C,F}$ = 39.7 Hz, C-6), 152.4 (C-7a), 153.3 (CH-2), 153.4 (C-4) ppm. ¹⁹F NMR (470.3 MHz, [D₆]DMSO): δ = δ = -56.66 (s, 1 F, CF₃) ppm. IR (KBr): \hat{v} = 3093, 3081, 2992, 2863, 2809, 2758, 2696, 1598, 1577, 1547, 1416, 1314, 1257, 1245, 1222, 1180, 1141, 979, 872 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₇H₃N₃ClF₃ 220.9968; found 220.9969.

6-Chloro-4-methoxy-7*H***-pyrrolo[2,3-***d***]pyrimidine (21j):** Pyrrolo[2,3-*d*]pyrimidine **19j** (471 mg, 1.5 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **21j** (150 mg, 55%) as a white solid, m.p. 235 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 4.01$ (s, 3 H, CH₃O), 6.52 (s, 1 H, H-5), 8.38 (s, 1 H, H-2),

12.89 (v.br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): $\delta = 53.9$ (CH₃O), 96.6 (CH-5), 105.3 (C-4a), 122.9 (C-6), 151.3 (CH-2), 152.1 (C-7a), 161.5 (C-4) ppm. IR (KBr): $\tilde{v} = 3174, 3129, 3084, 3055, 2962, 2938, 2893, 2869, 2821, 2744, 2711, 2678, 2660, 1601, 1583, 1488, 1458, 1413, 1347, 1326, 1305, 114, 1096, 970, 940, 893, 815, 791, 653 cm⁻¹. HRMS (ESI):$ *m*/*z*calcd. for C₇H₇ON₃Cl 184.0272; found 184.0272.

6-Bromo-4-methoxy-*TH***-pyrrolo**[**2**,**3**-*d*]**pyrimidine (21k):** Starting from pyrrolo[2,3-*d*]**pyrimidine 19k** (347 mg, 1.25 mmol), the reaction was performed according to the General Procedure to give **21k** (142 mg, 50%) as a white solid, m.p. 234 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 4.01 (s, 3 H, CH₃O), 6.60 (s, 1 H, H-5), 8.36 (s, 1 H, H-2), 12.84 (v. br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 53.6 (CH₃O), 100.1 (CH-5), 105.9 (C-4a), 109.3 (C-6), 150.8 (CH-2), 153.3 (C-7a), 160.0 (C-4) ppm. IR (KBr): \tilde{v} = 3697, 3129, 3087, 3049, 2988, 2959, 2938, 2866, 2818, 1607, 1589, 1479, 1461, 1413, 1347, 1326, 1141, 979, 896 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₇H₇ON₃⁷⁹Br 227.9767; found 227.9768.

4-Methoxy-6-(trifluoromethyl)-7*H***-pyrrolo[2,3-***d***]pyrimidine (21): Pyrrolo[2,3-***d***]pyrimidine 19** (420 mg, 1.2 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **211** (198 mg, 75%) as a white solid, m.p. 190 °C. ¹H NMR (500 MHz, [D₆]DMSO): δ = 3.44 (s, 3 H, CH₃O), 7.10 (q, *J*_{5,F} = 1.3 Hz, 1 H, H-5), 8.54 (s, 1 H, H-2), 13.36 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 54.1 (CH₃O), 100.6 (q, *J*_{C,F} = 3.7 Hz, CH-5), 104.0 (C-4a), 121.2 (q, *J*_{C,F} = 267.8 Hz, CF₃), 124.0 (q, *J*_{C,F} = 39.2 Hz, C-6), 153.3 (C-7a), 153.7 (CH-2), 163.9 (C-4) ppm. ¹⁹F NMR (470.3 MHz, [D₆]DMSO): δ = -56.00 (s, 1 F, CF₃) ppm. IR (KBr): \hat{v} = 3111, 3081, 2998, 2956, 2854, 2827, 2732, 2678, 2630, 1592, 1556, 1491, 1413, 1335, 1320, 1296, 1254, 1192, 1177, 1126, 1084, 967, 893, 845, 788, 719, 659 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₈H₇ON₃F₃ 218.0536; found 218.0534.

6-(Trifluoromethyl)-7*H***-pyrrolo[2,3-***d***]pyrimidine-4-amine (25I): Pyrrolo[2,3-***d***]pyrimidine 24I** (100 mg, 0.3 mmol) was deprotected according to the General Procedure. Crude product was purified by chromatography on silica gel (CHCl₃/MeOH, 10:1) to give **25I** (55 mg, 90%) as a white solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.09 (q, $J_{5',F}$ = 1.4 Hz, 1 H, H-5), 7.32 (br. s, 2 H, NH₂), 8.14 (s, 1 H, H-2), 12.68 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 101.6 (C-4a), 101.7 (q, $J_{C,F}$ = 3.8 Hz, CH-5), 120.8 (q, $J_{C,F}$ = 38.8 Hz, C-6), 121.5 (q, $J_{C,F}$ = 266.9 Hz, CF₃), 151.9 (C-7a), 154.6 (CH-2), 158.7 (C-4) ppm. ¹⁹F NMR (470.3 MHz, [D₆]DMSO): δ = -55.67 (s, 1 F, CF₃) ppm. IR (KBr): \tilde{v} = 3494, 3072, 2983, 2920, 2845, 2809, 2735, 2669, 1661, 1586, 1380, 1329, 1204, 1177, 1120, 1081 cm⁻¹. HRMS (ESI): *m*/z calcd. for C₇H₆N₄F₃ 203.0539; found 203.0538.

Deprotection of the OMe Group to give Pyrrolo[2,3-d]pyrimidin-4ones; General Procedure: To a stirred mixture of a 4-methoxy-7*H*pyrrolo[2,3-d]pyrimidine **21a**–f, **21h**, or **21l** (0.50 mmol, 1 equiv.) and NaI (272 mg, 2.5 mmol, 5 equiv.) in anhydrous MeCN (5 mL), TMSCl (438 μ L, 2.5 mmol, 5 equiv.) was slowly added and the mixture was stirred at 80 °C for 18 h. The precipitate was filtered off, washed carefully with MeCN, and dissolved in water, and pH of the solution was adjusted to 7 using solid K₂CO₃. The product precipitated and was filtered off.

6-(4-Methoxyphenyl)-3*H***-pyrrolo[2,3-***d***]pyrimidin-4(7***H***)-one (22a): Starting from pyrrolo[2,3-***d***]pyrimidine 21a** (128 mg, 0.5 mmol), the reaction was performed according to the General Procedure to give **22a** (103 mg, 85%) as a greyish solid, m.p. > 300 °C. ¹H NMR (500 MHz, CDCl₃): δ = 3.78 (s, 3 H, CH₃O), 6.79 (d, *J*_{5,NH} = 2.4 Hz, 1 H, H-5), 6.97–6.99 (m, 2 H, H-*m*-C₆H₄OMe), 7.75–7.76

(m, 2 H, H-*o*-C₆H₄OMe), 7.84 (bd, $J_{2,NH} = 3.2$ Hz, 1 H, H-2), 11.81 (br. s, 1 H, NH-3), 12.22 (br. d, $J_{NH,5} = 2.4$ Hz, 1 H, NH-7) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -55.3$ (CH₃O), 97.9 (CH-5), 109.2 (C-4a), 114.5 (CH-*m*-C₆H₄OMe), 124.3 (C-*i*-C₆H₄OMe), 126.2 (CH-*o*-C₆H₄OMe), 133.4 (C-6), 143.2 (CH-2), 149.2 (C-7a), 158.3 (C-4), 158.8 (C-*p*-C₆H₄OMe) ppm. IR (KBr): $\tilde{v} = 3192$, 3111, 3093, 3028, 3001, 2962, 2899, 2863, 2836, 1664, 1610, 1527, 1497, 1380, 1299, 1281, 1263, 1242, 1183, 1024, 914, 839, 809, 776, 620 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₃H₁₂O₂N₃ 242.0924; found 242.0925.

6-(Pyridin-2-yl)-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one (22b): Starting from pyrrolo[2,3-d]pyrimidine 21b (113 mg, 0.5 mmol), the reaction was performed according to the General Procedure to give **22b** (75 mg, 71%) as a greyish solid, m.p. >300 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.17 (s, 1 H, H-5), 7.27 (ddd, $J_{5,4}$ = 7.5, $J_{5,6} = 4.8$ Hz, $J_{5,3} = 1.1$ Hz, 1 H, H-5-py), 7.83 (ddd, $J_{4,3} =$ 8.0, $J_{4,5} = 7.5$ Hz, $J_{4,6} = 1.8$ Hz, 1 H, H-4-py), 7.89 (s, 1 H, H-2), 7.94 (dt, $J_{3,4} = 8.0$, $J_{3,5} = J_{3,6} = 1.1$ Hz, 1 H, H-3-py), 8.58 (ddd, $J_{6,5} = 4.8, J_{6,4} = 1.8$ Hz, $J_{6,3} = 1.0$ Hz, 1 H, H-6-py), 11.89 (br. s, 1 H, NH-3), 12.48 (br. s, 1 H, NH-7) ppm. ¹³C NMR (125.7 MHz, $[D_6]DMSO$: $\delta = 101.8$ (CH-5), 109.4 (C-4a), 119.4 (CH-3-py), 122.3 (CH-5-py), 133.2 (C-6), 137.2 (CH-4-py), 144.5 (CH-2), 149.5 (CH-6-py), 149.7 (C-7a), 149.9 (C-2-py), 158.6 (C-4) ppm. IR (KBr): $\tilde{v} = 3111, 3043, 2956, 2908, 2854, 2830, 1667, 1595, 1568,$ 1529, 1467, 1443, 1428, 1257, 1210, 1156, 919, 878, 836, 752 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₁H₈ON₄Na 235.0590; found 235.0590.

6-(Thiophen-2-yl)-3*H***-pyrrolo[2,3-***d***]pyrimidin-4(7***H***)-one (22c): Starting from pyrrolo[2,3-***d***]pyrimidine 21c** (231 mg, 1 mmol), the reaction was performed according to the General Procedure to give **22c** (195 mg, 90%) as a yellowish solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 6.62$ (s, 1 H, H-5), 7.08–7.10 (m, 1 H, H-4-thienyl), 7.45–7.48 (m, 2 H, H-3,5-thienyl), 7.86 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): $\delta = 99.0$ (CH-5), 109.1 (C-4a), 123.4 (CH-3-thienyl), 125.0 (CH-5-thienyl), 128.2 (CH-4-thienyl), 128.6 (C-6), 135.2 (C-2-thienyl), 144.1 (CH-2), 149.6 (C-7a), 158.4 (C-4) ppm. IR (KBr): $\tilde{v} = 3198$, 3138, 3105, 3072, 3037, 2959, 2911, 2845, 1673, 1589, 1535, 1494, 1431, 1386, 1254, 1195, 919, 856, 770, 683 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₀H₆ON₃S 216.0237; found 216.0239.

6-(Furan-2-yl)-3*H***-pyrrolo[2,3-***d***]pyrimidin-4(7***H***)-one (22d): Starting from pyrrolo[2,3-***d***]pyrimidine 21d** (65 mg, 0.3 mmol), the reaction was performed according to the General Procedure to give product **22d** (55 mg, 92%) as a greyish solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.57 (dd, $J_{4,3}$ = 3.4, $J_{4,5}$ = 1.8 Hz, 1 H, H-4-furyl), 6.61 (s, 1 H, H-5), 7.79 (dd, $J_{3,4}$ = 3.4, $J_{3,5}$ = 0.8 Hz, 1 H, H-3-furyl), 7.69 (dd, $J_{5,4}$ = 1.8, $J_{5,3}$ = 0.8 Hz, 1 H, H-5-furyl), 7.84 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 97.9 (CH-5), 105.3 (CH-3-furyl), 108.9 (C-4a), 112.0 (CH-4-furyl), 125.8 (C-6), 142.4 (CH-5-furyl), 144.4 (CH-2), 147.8 (C-2-furyl), 149.9 (C-7a), 159.1 (C-4) ppm. IR (KBr): \tilde{v} = 3189, 3120, 3078, 3040, 2971, 2914, 2890, 2833, 2818, 2773, 2708, 1652, 1595, 1565, 1518, 1431, 1389, 1257, 1216, 1012, 919, 890, 839, 773, 731, 620 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₀H₇O₂N₃Na 224.0430; found 224.0431.

6-(Thiophen-3-yl)-3*H***-pyrrolo[2,3-***d***]pyrimidin-4(7***H***)-one (22e): Starting from pyrrolo[2,3-***d***]pyrimidine 21e** (231 mg, 1 mmol), the reaction was performed according to the General Procedure to give **22e** (152 mg, 70%) as a greyish solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 6.80$ (s, 1 H, H-5), 7.60 (dd, $J_{4,5} =$ 5.0, $J_{4,2} = 1.5$ Hz, 1 H, H-4-thienyl), 7.61 (dd, $J_{5,4} = 5.0$, $J_{5,2} =$ 2.7 Hz, 1 H, H-5-thienyl), 7.84 (dd, $J_{2,5} = 2.7$, $J_{2,4} = 1.5$ Hz, 1 H, H-2-thienyl), 7.86 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 99.2 (CH-5), 109.0 (C-4a), 119.3 (CH-2-thienyl), 125.9 (CH-4-thienyl), 127.2 (CH-5-thienyl), 129.8 (C-6), 133.6 (C-3-thienyl), 144.1 (CH-2), 149.3 (C-7a), 158.8 (C-4) ppm. IR (KBr): \tilde{v} = 3201, 3186, 3174, 3129, 3081, 3060, 2989, 2914, 2854, 1673, 1655, 1586, 1568, 1541, 1446, 1422, 1245, 1207, 1186, 1084, 961, 917, 857, 761, 600 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₀H₆ON₃S 216.0237; found 216.0238.

6-(Furan-3-yl)-3*H***-pyrrolo[2,3-***d***]pyrimidin-4(7***H***)-one (22f): Starting from pyrrolo[2,3-***d***]pyrimidine 21f** (215 mg, 1 mmol), the reaction was performed according to the General Procedure to give **22f** (160 mg, 80%) as a greyish solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 6.69$ (s, 1 H, H-5), 6.97 (dd, $J_{4,5} = 1.9, J_{4,2} = 0.9$ Hz, 1 H, H-4-furyl), 7.72 (t, $J_{5,4} = J_{5,2} = 1.7$ Hz, 1 H, H-5-furyl), 7.84 (s, 1 H, H-2), 8.10 (dd, $J_{2,5} = 1.5, J_{2,4} = 0.9$ Hz, 1 H, H-2, 18.10 (dd, $J_{2,5} = 1.5, J_{2,4} = 0.9$ Hz, 1 H, H-2-furyl), 108.8 (C-4a), 118.6 (C-3-furyl), 126.4 (C-6), 138.8 (CH-4-furyl), 108.8 (C-4a), 118.6 (C-3-furyl), 126.4 (C-7a), 158.3 (C-4) ppm. IR (KBr): $\tilde{v} = 3105, 3037, 2965, 2848, 2806, 2717, 2663, 1679, 1562 cm⁻¹. 1601, 1559, 1425, 1389, 1242, 1213. HRMS (ESI):$ *m/z*calcd. for C₁₀H₇N₃O₂ 201.0538; found 201.0540.

6-(3-Aminophenyl)-3H-pyrrolo[2,3-*d*]**pyrimidin-4(7***H***)-one (22h): Starting from pyrrolo[2,3-***d***]pyrimidine 21h** (120 mg, 0.5 mmol), the reaction was performed according to the General Procedure to give **22h** (85 mg, 75%) as a greyish solid, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): $\delta = 5.10$ (br. s, 2 H, NH₂), 6.50 (ddd, $J_{6',5'} = 7.9, J_{6',2'} = 2.2$ Hz, $J_{6',4'} = 1.1$ Hz, 1 H, H-6'), 6.67 (d, $J_{5,NH} = 2.2$ Hz, 1 H, H-5), 6.94–6.97 (m, 2 H, H-2',4'), 7.05 (t, $J_{5',4'} = J_{5',6'} = 8.0$ Hz, 1 H, NH-7) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): $\delta = 98.4$ (CH-5), 109.1 (C-4a), 110.3 (CH-2'), 112.8 (CH-4'), 113.6 (CH-6'), 129.5 (CH-5'), 132.1 (C-3'), 134.3 (C-6), 143.6 (CH-2), 149.1 and 149.2 (C-1',7a), 158.4 (C-4) ppm. IR (KBr): $\tilde{v} = 3401, 3321, 3219, 3147, 3028, 2959, 2899, 2854, 1673, 1613, 1595, 1482, 1263, 1239, 919, 773 cm⁻¹. HRMS (ESI):$ *m*/*z*calcd. for C₁₂H₁₁ON₄ 227.0927; found 227.0930.

6-(Trifluoromethyl)-*3H***-pyrrolo**[**2**,3-*d*]**pyrimidin-4**(7*H*)**-one (221):** Starting from pyrrolo[2,3-*d*]**pyrimidine 211** (163 mg, 0.75 mmol), the reaction was performed according to the General Procedure to give **221** (45 mg, 30%) as a greyish solid, m.p. >350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 6.88 (s, 1 H, H-5), 7.88 (s, 1 H, H-2), 11.76 (v. br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 103.1 (CH-5), 107.9 (C-4a), 122.2 (br. q, *J*_{C,F} = 266.8 Hz, CF₃), 123.2 (m, C-6), 144.6 (m, CH-2), 151.6 (m, C-7a), 158.9 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): δ = -55.36 (s, 1 F, F-2) ppm. IR (KBr): \tilde{v} = 3075, 2995, 2920, 2830, 1691, 1592, 1532, 1389, 1219, 1207, 1177, 1123 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₇H₄ON₃F₃Na 226.0199; found 226.0198.

One-Pot C-H Borylation/Substitution Sequence; General Procedures

Procedure A: Pyrrolo[2,3-*d*]pyrimidine **1**, **8**, or **9** (2 mmol, 1 equiv.), bispinacolatodiboron (0.61 g, 2.4 mmol, 1.2 equiv.), [Ir(COD)-OMe]₂ (66 mg, 0.1 mmol, 5 mol-%), and 4,4'-di-*tert*-butyl-2,2'-bipyridine (54 mg, 0.2 mmol, 10 mol-%) were dissolved in anhydrous THF (15 mL) under Ar. The solution was heated at 80 °C in a septum-sealed vial and stirred under argon for 20 h. The solvent was removed under reduced pressure and the crude mixture was then dissolved in acetone (10 mL). A solution of CuCl₂ (807 mg, 6.0 mmol, 3 equiv.) in water (10 mL) was added and the mixture was heated for 4 h at 80 °C. The solution was cooled to room temperature, diluted with EtOAc (25 mL) and with a saturated aq. solution of NH₄Cl (25 mL). The aqueous solution was then ex-

tracted three times with EtOAc and the combined organic layers were dried with Na_2SO_4 , filtered, and the solvents were evaporated under vacuum. The crude product was purified by flash chromatography (HPFC; hexane/EtOAc).

Procedure B: Performed as described in Procedure A, but using CuBr₂ (1.34 g, 6.0 mmol, 3 equiv.) instead of CuCl₂.

Procedure C: Pyrrolo[2,3-d]pyrimidine 1, 8, 9, or 10 (2 mmol, 1 equiv.), bispinacolatodiboron (0.61 g, 2.4 mmol, 1.2 equiv.), [Ir(COD)OMe]₂ (66 mg, 0.1 mmol, 5 mol-%), and 4,4'-di-tertbutyl-2,2'-bipyridine (54 mg, 0.2 mmol, 10 mol-%) were dissolved in anhydrous THF (10 mL) under Ar. The solution was heated at 80 °C in a septum-sealed vial and stirred under argon for 20 h. The solvent was removed under reduced pressure, then the crude mixture was dissolved in CH₂Cl₂ (8 mL). The solution was transferred by using a syringe into an oven-dried sealed bomb that was placed with CuTc (38 mg, 0.2 mmol, 10 mol-%), 1,10-phenanthroline (72 mg, 0.4 mmol, 20 mol-%), LiOH·H₂O (168 mg, 4 mmol, 2 equiv.) and Togni's reagent (726 mg, 2.2 mmol, 1.1 equiv.) under Ar. The reaction system was quickly degassed through three freezepump-thaw cycles and refilled with Ar. The reaction was stirred at 45 °C for 18 h. The solution was then cooled to room temperature, and CH₂Cl₂ (25 mL) and a saturated solution of NH₄Cl (25 mL) were added. The aqueous solution was then extracted two times with CH₂Cl₂ and the combined organic layers were dried with Na₂SO₄, filtered, and the solvents were evaporated under vacuum. The crude product was purified by flash chromatography (HPFC; hexane/EtOAc).

Procedure D: Pyrrolo[2,3-d]pyrimidine 1 (0.5 mmol, 1 equiv.), bispinacolatodiboron (152 mg, 0.6 mmol, 1.2 equiv.), [Ir(COD)OMe]₂ (17 mg, 0.025 mmol, 5 mol-%), and 4,4'-di-tert-butyl-2,2'-bipyridine (13 mg, 0.05 mmol, 10 mol-%) were dissolved in anhydrous THF (5 mL) under Ar. The solution was heated at 80 °C in a septum-sealed vial and stirred under argon for 20 h. The solvent was removed under reduced pressure, then the residue was dissolved in acetone (10 mL) and Cu(NO₃)₂·3H₂O (242 mg, 1 mmol, 2 equiv.), Zn(CN)₂ (176 mg, 1.5 mmol, 3 equiv.), and CsF (76 mg, 0.5 mmol, 1 equiv.) were added to the reaction vessel followed by H₂O (4 mL). The flask was sealed with a Teflon-lined cap, and the green suspension was stirred vigorously at 100 °C for 2.5 h. The solution was cooled to room temp., and EtOAc (15 mL) and a saturated solution of NH₄Cl (15 mL) were added. The aqueous solution was then extracted three times with EtOAc and the combined organic layers were dried with Na₂SO₄, filtered, and the solvents were evaporated under vacuum. The crude product was purified by flash chromatography (HPFC; hexane/EtOAc).

7-Benzyl-6-chloro-4-phenyl-7*H***-pyrrolo[2,3-***d***]pyrimidine (26j): Starting from 1 (285 mg, 1 mmol), the reaction was performed according to General Procedure A to give 26**j (146 mg, 46%) as a yellowish solid, m.p. 118 °C. ¹H NMR (500 MHz, CDCl₃): δ = 5.58 (s, 2 H, CH₂-Bn), 6.82 (s, 1 H, H-5), 7.26–7.34 (m, 5 H, H-*o*,*m*,*p*-Bn), 7.48–7.58 (m, 3 H, H-*m*,*p*-Ph), 8.06–8.08 (m, 2 H, H-*o*-Ph), 8.98 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = 45.7 (CH₂-Bn), 99.0 (CH-5), 115.2 (C-4a), 127.4 (CH-*o*-Bn), 127.9 (CH-*p*-Bn), 128.6 (C-6), 128.7 (CH-*o*-Ph), 128.7 (CH-*m*-Bn), 128.9 (CH-*m*-Ph), 130.2 (CH-*p*-Ph), 136.3 (C-*i*-Bn), 137.8 (C-*i*-Ph), 151.5 (C-7a), 151.8 (CH-2), 156.3 (C-4) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₉H₁₅N₃Cl 320.0949; found 320.0949.

7-Benzyl-6-bromo-4-phenyl-7*H***-pyrrolo**[**2**,**3**-*d*]**pyrimidine (26k):** Starting from **1** (285 mg, 1 mmol), the reaction was performed according to General Procedure B to give **26k** (229 mg, 63%) as a yellowish solid, m.p. 110 °C. ¹H NMR (499.8 MHz, CDCl₃): δ = 5.60 (s, 2 H, CH₂Ph), 6.98 (s, 1 H, H-5), 7.26–7.33 (m, 5 H, H- *o*,*m*,*p*-Bn), 7.51–7.58 (m, 3 H, H-*m*,*p*-Ph), 8.08–8.10 (m, 2 H, H-*o*-Ph), 8.97 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = 46.9 (CH₂Ph), 103.4 (CH-5), 116.0 (C-6), 116.9 (C-4a), 127.4 (CH-*o*-Bn), 127.9 (CH-*p*-Bn), 128.8 (CH-*m*-Bn), 128.9 (CH-*o*-Ph), 129.0 (CH-*m*-Ph), 130.4 (CH-*p*-Ph), 136.0 (C-*i*-Bn), 151.2 (CH-2), 152.1 (C-7a), (C-4 and C-*i*-Ph not detected) ppm. HRMS (ESI): *m*/*z* calcd. for C₁₉H₁₅N₃Br 364.0444; found 364.0444.

7-Benzyl-4-phenyl-6-(trifluoromethyl)-7*H*-pyrrolo[2,3-*d*]pyrimidine (261): Starting from 1 (285 mg, 1 mmol), the reaction was performed according to General Procedure C to give 26l (120 mg, 34%) as a white solid. ¹H NMR (499.8 MHz, CDCl₃): δ = 5.68 (s, 2 H, CH₂Ph), 7.18–7.19 (m, 2 H, H-*o*-Bn), 7.26–7.31 (m, 3 H, H-*m*,*p*-Bn), 7.30 (q, *J*_{H,F} = 1.1 Hz, 1 H, H-5), 7.54–7.61 (m, 3 H, H-*m*,*p*-Ph), 8.10–8.12 (m, 2 H, H-*o*-Ph), 9.10 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = 46.8 (CH₂Ph), 103.7 (q, *J*_{C,F} = 4.3 Hz, CH-5), 116.9 (C-4a), 120.7 (q, *J*_{C,F} = 269.2 Hz, CF₃), 126.9 (CH-*o*-Bn), 127.8 (CH-*p*-Bn), 128.1 (q, *J*_{C,F} = 38.1 Hz, C-6), 128.6 (CH-*m*-Bn), 128.9 (CH-*o*-Ph), 129.0 (CH-*m*-Ph), 130.8 (CH-*p*-Ph), 136.3 (C-*i*-Bn), 137.2 (C-*i*-Ph), 153.2 (C7a), 154.1 (CH-2), 160.2 (C-4) ppm. ¹⁹F{¹H} NMR (470.3 MHz, CDCl₃): δ = -55.79 ppm. HRMS (ES1): *m*/*z* calcd. for C₂₀H₁₅N₃F₃ 354.1213; found 354.1214.

7-Benzyl-6-cyano-4-phenyl-7*H***-pyrrolo**[**2**,**3***-d*]**pyrimidine** (**26m**): Starting from **1** (143 mg, 0.5 mmol), the reaction was performed according to General Procedure D to give **26m** (90 mg, 58%) as a white solid, m.p. 123 °C. ¹H NMR (499.8 MHz, CDCl₃): δ = 5.65 (s, 2 H, CH₂Ph), 7.31–7.33 (m, 1 H, H-*p*-Bn), 7.35–7.36 (m, 2 H, H-*m*-Bn), 7.42–7.44 (m, 2 H, H-*o*-Bn), 7.49 (s, 1 H, H-5), 7.56–7.59 (m, 3 H, H-*m*,*p*-Ph), 8.06–8.08 (m, 2 H, H-*o*-Ph), 9.14 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = 47.6 (CH₂Ph), 111.2 (C-6), 112.4 (CH-5), 112.5 (CN), 114.0 (C-4a), 128.2 (CH-*o*-Bn), 128.50 (CH-*p*-Bn), 128.95 (CH-*m*-Bn), 128.98 (CH-*o*-Ph), 129.12 (CH-*m*-Ph), 131.1 (CH-*p*-Ph), 135.5 (C-*i*-Bn), 136.8 (C-*i*-Ph), 151.8 (C-7a), 154.9 (CH-2), 160.7 (C-4) ppm. HRMS (ESI): *m*/*z* calcd. for C₂₀H₁₅N₄ 311.1291; found 311.1290.

4,6-Dichloro-7-[2-(trimethylsilyl)ethoxymethyl]-7H-pyrrolo[2,3-d]pyrimidine (27j): Starting from **8** (568 mg, 2 mmol), the reaction was performed according to General Procedure A to give **27j** (350 mg, 55%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.06$ (s, 9 H, CH₃Si), 0.90–0.94 (m, 2 H, OCH₂CH₂Si), 3.58– 3.61 (m, 2 H, OCH₂CH₂Si), 5.70 (s, 2 H, NCH₂O), 6.62 (s, 1 H, H-5), 8.65 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta =$ -1.5 (CH₃Si), 17.7 (OCH₂CH₂Si), 67.1 (OCH₂CH₂Si), 70.8 (NCH₂O), 99.0 (CH-5), 117.1 (C-4a), 129.2 (C-6), 150.9 (C-4), 151.7 (CH-2), 154.5 (C-7a) ppm. IR (KBr): $\tilde{v} = 3114$, 2950, 2920, 2896, 2866, 1592, 1577, 1541, 1503, 1455, 1446, 1419, 1383, 1344, 1254, 1248, 1207, 1186, 1126, 1093, 911, 860, 839, 779, 755 cm⁻¹. HRMS (ESI): *m/z* calcd. for C₁₂H₁₇ON₃Cl₂NaSi 340.0410; found 340.0410.

6-Bromo-4-chloro-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-**pyrrolo-[2,3-***d***]pyrimidine (27k):** Starting from **8** (568 mg, 2 mmol), the reaction was performed according to General Procedure B to give **27k** (403 mg, 56%) as a white solid, m.p. 49 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.06$ (s, 9 H, CH₃Si), 0.90–0.94 (m, 2 H, OCH₂CH₂Si), 3.57–3.60 (m, 2 H, OCH₂CH₂Si), 5.71 (s, 2 H, NCH₂O), 6.77 (s, 1 H, H-5), 8.64 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.7 (OCH₂CH₂Si), 67.0 (OCH₂CH₂Si), 71.9 (NCH₂O), 103.1 (CH-5), 116.6 (C-6), 118.0 (C-4a), 150.8 (C-4), 151.2 (CH-2), 152.2 (C-7a) ppm. IR (KBr): $\tilde{v} =$ 3105, 2956, 2917, 2902, 2881, 2866, 1583, 1541, 1485, 1458, 1434, 1416, 1386, 1350, 1257, 1248, 1180, 1090, 1075, 1033, 911, 860,

839, 779, 749 cm⁻¹. HRMS (ESI): m/z calcd. for $C_{12}H_{18}ON_3BrClSi$ 362.0086, found 362.0086.

4-Chloro-6-(trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (271): Starting from 8 (568 mg, 2 mmol), the reaction was performed according to General Procedure C to give 271 (264 mg, 38%) as a colorless oil. ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3)$: $\delta = -0.06$ (s, 9 H, CH₃Si), 0.91–0.94 (m, 2 H, OCH₂CH₂Si), 3.57–3.61 (m, 2 H, OCH₂CH₂Si), 5.79 (s, 2 H, NCH₂O), 7.12 (q, *J*_{5,F} = 1.1 Hz, 1 H, H-5), 8.79 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (OCH₂CH₂Si), 67.2 (OCH₂CH₂Si), 72.0 (NCH₂O), 103.6 (q, J_{C,F} = 4.4 Hz, CH-5), 115.6 (C-4a), 120.2 (q, $J_{C,F}$ = 269.3 Hz, CF₃), 129.0 (q, $J_{C,F}$ = 39.7 Hz, C-6), 154.0 (C-7a), 153.4 (CH-2), 154.6 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): $\delta = -56.61$ (s, 1 F, F-2) ppm. IR (KBr): $\tilde{v} = 3950, 2929, 2899, 1592, 1553, 1544, 1446,$ 1431, 1413, 1371, 1353, 1248, 1189, 1147, 1096, 860, 842 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₃H₁₈ON₃ClF₃Si 352.0854; found 352.0855.

6-Chloro-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo-[2,3-d]pyrimidine (19j):** Starting from **9** (1116 mg, 4 mmol), the reaction was performed according to General Procedure A to give **19j** (590 mg, 47%) as a white solid, m.p. 80 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.07$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 3.57–3.60 (m, 2 H, OCH₂CH₂Si), 4.10 (s, 3 H, CH₃O), 5.66 (s, 2 H, NCH₂O), 6.51 (s, 1 H, H-5), 8.47 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.7 (OCH₂CH₂Si), 53.8 (CH₃O), 66.6 (OCH₂CH₂Si), 70.5 (NCH₂O), 97.8 (CH-5), 105.0 (C-4a), 124.8 (C-6), 151.3 (CH-2), 152.1 (C-7a), 161.9 (C-4) ppm. IR (KBr): $\tilde{v} = 3261, 3102, 3060, 3001, 2953, 2923, 2899, 2869, 1712, 1685, 1661, 1595, 1559, 1503, 1479, 1464, 1410, 1377, 1314, 1245, 1230, 1099, 1060, 917, 860, 839, 794, 755 cm⁻¹. HRMS (ESI):$ *m/z*calcd. for C₁₃H₂₀O₂N₃ClNaSi 336.0906; found 336.0906.

6-Bromo-4-methoxy-7-[2-(trimethylsilyl)ethoxymethyl]-7*H***-pyrrolo-[2,3-d]pyrimidine (19k):** Starting from **9** (1116 mg, 4 mmol), the reaction was performed according to General Procedure B to give **19k** (490 mg, 34%) as a white solid, m.p. 82 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.06$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 3.56–3.60 (m, 2 H, OCH₂CH₂Si), 4.11 (s, 3 H, CH₃O), 5.67 (s, 2 H, NCH₂O), 6.65 (s, 1 H, H-5), 8.45 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.5$ (CH₃Si), 17.7 (OCH₂CH₂Si), 53.8 (CH₃O), 66.6 (OCH₂CH₂Si), 71.6 (NCH₂O), 102.1 (CH-5), 106.0 (C-4a), 111.8 (C-6), 151.3 (CH-2), 152.9 (C-7a), 161.7 (C-4) ppm. IR (KBr): $\tilde{v} = 3099$, 2953, 2914, 1896, 1863, 1595, 1473, 1461, 1416, 1383, 1353, 1317, 1242, 1227, 1093, 911, 842 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₁₃H₂₀O₂N₃BrNaSi 380.0400; found 380.0401.

4-Methoxy-6-(trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-*7H*-**pyrrolo**[2,3-*d*]**pyrimidine (191):** Starting from **9** (1116 mg, 4 mmol), the reaction was performed according to General Procedure C to give **191** (472 mg, 34%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.07$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 3.56–3.59 (m, 2 H, OCH₂CH₂Si), 4.14 (s, 3 H, CH₃O), 5.75 (s, 2 H, NCH₂O), 7.02 (q, $J_{5,F} = 1.2$ Hz, 1 H, H-5), 8.58 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): $\delta = -1.6$ (CH₃Si), 17.7 (OCH₂CH₂Si), 54.0 (CH₃O), 66.7 (OCH₂CH₂Si), 71.6 (NCH₂O), 102.9 (q, $J_{C,F} = 4.5$ Hz, CH-5), 103.8 (C-4a), 120.7 (q, $J_{C,F} = 268.7$ Hz, CF₃), 125.9 (q, $J_{C,F} = 39.2$ Hz, C-6), 153.7 (CH-2), 153.9 (C-7a), 164.2 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): $\delta = -56.07$ (s, 1 F, F-2) ppm. HRMS (ESI): *m/z* calcd. for C₁₄H₂₁O₂N₃F₃Si 348.1350; found 348.1351. 4-(Methylsulfanyl)-6-(trifluoromethyl)-7-[2-(trimethylsilyl)ethoxymethyl]-7*H*-pyrrolo[2,3-*d*]pyrimidine (201): Starting from 10 (1116 mg, 4 mmol), the reaction was performed according to General Procedure C to give 201 (472 mg, 34%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃): $\delta = -0.06$ (s, 9 H, CH₃Si), 0.90–0.93 (m, 2 H, OCH₂CH₂Si), 2.72 (s, 3 H, CH₃S), 3.56–3.59 (m, 2 H, OCH_2CH_2Si), 5.75 (s, 2 H, NCH₂O), 7.01 (q, $J_{5,F}$ = 1.1 Hz, 1 H, H-5), 8.76 (s, 1 H, H-2) ppm. ¹³C NMR (125.7 MHz, CDCl₃): δ = -1.6 (CH₃Si), 11.9 (CH₃S), 17.7 (OCH₂CH₂Si), 66.8 (OCH_2CH_2Si) , 71.5 (NCH_2O), 103.1 (q, $J_{C,F} = 4.3$ Hz, CH-5), 113.8 (C-4a), 120.6 (q, $J_{C,F}$ = 269.1 Hz, CF₃), 126.5 (q, $J_{C,F}$ = 39.2 Hz, C-6), 150.4 (C-7a), 153.2 (CH-2), 164.7 (C-4) ppm. ¹⁹F NMR (470.3 MHz, CDCl₃): δ = -56.20 (s, 1 F, F-2) ppm. IR (KBr): $\tilde{v} = 2953, 2923, 2890, 1556, 1443, 1368, 1275, 1251, 1183, 1153,$ 1129, 1090, 860, 833 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₄H₂₁ON₃F₃SSi 364.1121; found 364.1123.

4-Amino-7*H***-pyrrolo[2,3-***d***]pyrimidine-6-carboxamide (25m):** A solution of **28I** (111 mg, 0.5 mmol) and aq. ammonia (25% w/w, 5 mL) in dioxane (5 mL) was stirred in an autoclave at 120 °C for 18 h. The solvents were then evaporated and the residue was purified by flash chromatography (HPFC; CHCl₃/MeOH, 5:1) to give **25m** (45 mg, 50%) as a white powder, m.p. > 350 °C. ¹H NMR (500.0 MHz, [D₆]DMSO): δ = 7.08 (s, 1 H, H-5), 7.16 (br. s, 2 H, NH₂-4), 7.35 and 7.70 (2×br. s, 2×1 H, CONH₂), 8.07 (s, 1 H, H-2), 11.82 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]-DMSO): δ = 103.05 (C-4a and CH-5), 128.4 (C-6), 151.4 (C-7a), 154.2 (CH-2), 158.9 (C-4), 162.5 (CO) ppm. IR (KBr): \tilde{v} = 3428, 3404, 3330, 3177, 3108, 2995, 2908, 2782, 1694, 1655, 1628, 1598, 1538, 1437, 1386, 1335 cm⁻¹. HRMS (ESI): *m*/*z* calcd. for C₇H₈ON₅ 178.0723; found 178.0721.

6-(3-Aminophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (25h): A mixture of pyrrolo[2,3-d]pyrimidin-4-one 22h (57 mg, 0.25 mmol), benzyltriethylammonium chloride (114 g, 0.5 mmol), and N,N-dimethylaniline (35 µL, 0.275 mmol) in anhydrous MeCN (2.5 mL) was stirred at room temp., then phosphorus oxychloride (115 μ L, 1.25 mmol) was added. The mixture was stirred at 100 °C for 6 h, then the solvents were evaporated under reduced pressure and the residue was diluted with water and neutralized with aqueous ammonia to pH 7. The crude intermediate was filtered, washed with cold water, then with hydrochloric acid and again with cold water. After drying under reduced pressure, the intermediate was placed in steel bomb and aq. ammonia (25% w/w, 2 mL) in dioxane (2 mL) was added. The mixture was stirred at 120 °C for 18 h, then the solvents were evaporated and the residue was purified by flash chromatography (HPFC; CHCl₃/MeOH, 5:1) to give 25h (22 mg, 40%) as a brown solid, m.p. >350 °C. ¹H NMR (500.0 MHz, [D₆]-DMSO): $\delta = 6.53$ (ddd, $J_{6',5'} = 8.0$, $J_{6',2'} = 2.2$ Hz, $J_{6',4'} = 1.0$ Hz, 1 H, H-6'), 6.83 (d, J_{5,NH} = 1.9 Hz, 1 H, H-5), 6.92–6.96 (m, 2 H, H-2',4'), 7.08 (bt, $J_{5',4'} = J_{5',6'} = 7.9$ Hz, 1 H, H-5'), 7.32 (br. s, 2 H, NH₂-4), 8.09 (s, 1 H, H-2), 12.07 (br. s, 1 H, NH) ppm. ¹³C NMR (125.7 MHz, [D₆]DMSO): δ = 96.1 (CH-5), 103.5 (C-4a), 110.3 (CH-2'), 112.9 (CH-4'), 113.9 (CH-6'), 129.6 (CH-5'), 132.2 (C-3'), 135.5 (C-6), 149.2 (C-1'), 149.8 (CH-2), 151.3 (C-7a), 155.7 (C-4) ppm. IR (KBr): \tilde{v} = 3348, 3120, 2956, 2926, 2851, 1673, 1619, 1601, 1538, 1488, 1317, 1287, 764 cm⁻¹. HRMS (ESI): m/z calcd. for C₁₂H₁₂N₅ 226.1087; found 226.1086.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra of the products.

Acknowledgments

This work was supported by institutional support of the Charles University, Prague and the Academy of Sciences of the Czech Republic (RVO: 61388963), by the Czech Science Foundation (P207/ 12/0205, grants to M. K. and M. H.), and by Gilead Sciences, Inc.

- For a review, see: S. Tumkevicius, J. Dodonova, *Chem. Hetero-cycl. Compd.* 2012, 48, 258–279.
- [2] a) P. Nauš, R. Pohl, I. Votruba, P. Džubák, M. Hajdúch, R. Ameral, G. Birkuš, T. Wang, A. S. Ray, R. Mackman, T. Cihlar, M. Hocek, J. Med. Chem. 2010, 53, 460–470; b) A. Bourderioux, P. Nauš, P. Perlíková, R. Pohl, I. Pichová, I. Votruba, P. Džubák, P. Konečný, M. Hajdúch, K. M. Stray, T. Wang, A. S. Ray, J. Y. Feng, G. Birkus, T. Cihlar, M. Hocek, J. Med. Chem. 2011, 54, 5498–5507; c) P. Nauš, O. Caletková, P. Konečný, P. Džubák, K. Bogdanová, M. Kolář, J. Vrbková, L. Slavětínská, E. Tloušťová, P. Perlíková, M. Hajdúch, M. Hocek, J. Med. Chem. 2014, 57, 1097–1110.
- [3] X. Y. Jiao, D. J. Kopecky, J. S. Liu, J. Q. Liu, J. C. Jaen, M. G. Cardozo, R. Sharma, N. Walker, H. Wesche, S. Li, E. Farrelly, S. H. Xiao, Z. Wang, F. Kayser, *Bioorg. Med. Chem. Lett.* 2012, 22, 6212–6217.
- [4] A. Gangee, H. D. Jain, S. F. Queener, R. L. Kisliuk, J. Med. Chem. 2008, 51, 4589–4600.
- [5] S. Ding, T. Y. H. Wu, A. Brinker, E. C. Peters, W. Hur, N. S. Gray, P. G. Schultz, *Proc. Natl. Acad. Sci. USA* 2003, 100, 7632–7637.
- [6] P. Traxler, P. R. Allegrini, R. Brandt, J. Brueggen, R. Cozens, D. Fabbro, K. Grosios, H. A. Lane, P. McSheehy, J. Mestan, T. Meyer, C. Tang, M. Wartmann, J. Wood, G. Caravatti, *Cancer Res.* 2004, 64, 4931–4941.
- [7] X. Zhao, W. Huang, Y. Wang, M. Xin, Q. Jin, J. Cai, F. Tang, Y. Zhao, H. Xiang, *Bioorg. Med. Chem.* 2015, 23, 891–901.
- [8] a) S. Tumkevicius, J. Dodonova, K. Kazlauskas, V. Masevisius, L. Skardziute, S. Jursenas, *Tetrahedron Lett.* 2010, 51, 3902– 3906; b) R. V. Urbonas, V. Poskus, J. Bucevicius, J. Dodonova, S. Tumkevicius, *Synlett* 2013, 24, 1383–1386.
- [9] J. Dodonova, S. Tumkevicius, RSC Adv. 2014, 4, 35966-35974.
- [10] V. Prieur, J. Rubio-Martinez, M. Font-Bardia, G. Guillaumet, M. D. Pujol, *Eur. J. Org. Chem.* 2014, 1514–1524.
- [11] M. Krömer, M. Klečka, L. Slavětínská, B. Klepetářová, M. Hocek, Eur. J. Org. Chem. 2014, 7203–7210.
- [12] a) A. Mayasundari, N. Fujii, *Tetrahedron Lett.* 2010, *51*, 3597–3598; b) V. Prieur, N. Heindler, J. Rubio-Martinez, G. Guillaumet, M. D. Pujol, *Tetrahedron* 2015, *71*, 1207–1214.
- [13] S. J. Kaspersen, Ch. Sorum, V. Willassen, E. Fuglseth, E. Kjobli, G. Bjorkoy, E. Sundby, B. H. Hoff, *Eur. J. Med. Chem.* 2011, 46, 6002–6014.
- [14] For recent reviews on C-H activation of nucleobases, see: a) Y. Liang, S. F. Wnuk, *Molecules* 2015, 20, 4874–4901; b) V. Gayake, Y. S. Sanghvi, I. J. S. Fairlamb, A. R. Kapdi, *Chem. Commun.* 2015, 51, 11944–11960; c) M. Abdoli, Z. Mirjafary, H. Saeidian, A. Kakanejadifard, *RSC Adv.* 2015, 5, 44371–44389. For recent examples from other laboratories, see: d)

T. E. Storr, J. A. Strohmeier, C. G. Baumann, I. J. S. Fairlamb, *Chem. Commun.* **2010**, *46*, 6470–6472; e) T. E. Storr, C. G. Baumann, R. J. Thatcher, S. De Ornellas, A. C. Whitwood, I. J. S. Fairlamb, *J. Org. Chem.* **2009**, *74*, 5810–5821; f) B. Vaňková, V. Krchňák, M. Soural, J. Hlaváč, *ACS Comb. Sci.* **2011**, *13*, 496–500; g) R. R. Chamala, D. Parrish, P. Pradham, M. K. Lakshman, *J. Org. Chem.* **2013**, *78*, 7423–7435; h) H.-M. Guo, W.-H. Rao, H.-Y. Niu, L.-L. Jiang, G. Meng, J.-J. Jin, X. N. Yang, G.-R. Qu, *Chem. Commun.* **2011**, *47*, 5608–5610.

- [15] I. Čerňa, R. Pohl, B. Klepetářová, M. Hocek, J. Org. Chem. 2008, 73, 9048–9054.
- [16] I. Čerňa, R. Pohl, B. Klepetářová, M. Hocek, J. Org. Chem. 2010, 75, 2302–2308.
- [17] M. Klečka, R. Pohl, B. Klepetářová, M. Hocek, Org. Biomol. Chem. 2009, 7, 866–868.
- [18] a) M. Klečka, R. Pohl, J. Čejka, M. Hocek, *Org. Biomol. Chem.* **2013**, *11*, 5189–5193; b) M. Klečka, L. Poštová Slavětínská, E. Tloušťová, P. Džubák, M. Hajdúch, M. Hocek, *MedChem-Comm* **2015**, *6*, 576–580.
- [19] N. Sabat, M. Klečka, L. Slavětínská, B. Klepetářová, M. Hocek, RSC Adv. 2014, 4, 62140–62143.
- [20] For a review, see: a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, *Chem. Rev.* 2010, *110*, 890–931. For recent examples, see: b) S. M. Preshlock, B. Ghaffari, P. E. Maligres, S. W. Krska, R. E. Maleczka, M. R. Smith, *J. Am. Chem. Soc.* 2013, *135*, 7572–7582; c) M. A. Larsen, J. F. Hartwig, *J. Am. Chem. Soc.* 2014, *136*, 4287–4299.
- [21] R. Wu, E. D. Smidansky, H. S. Oh, R. Takhampunya, R. Padmanabhan, C. E. Cameron, B. R. Peterson, *J. Med. Chem.* 2010, 53, 7958–7966.
- [22] Q. Lin, D. Meloni, Y. Pan, M. Xia, J. Rodgers, S. Shepard, M. Li, L. Galya, B. Metcalf, T. Yue, P. Liu, J. Zhou, *Org. Lett.* **2009**, *11*, 1999–2002.
- [23] G. A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275-286.
- [24] J. M. Murphy, C. C. Tzschucke, J. F. Hartwig, Org. Lett. 2007, 9, 757–760.
- [25] J. M. Muchowski, D. R. Solas, J. Org. Chem. 1984, 49, 203– 205.
- [26] R. Nencka, M. Šála, M. Dejmek, M. Dračínský, A. Holý, H. Hřebabecký, *Synthesis* 2010, 23, 4119–4130.
- [27] G. A. Olah, S. C. Narang, B. G. B. Gupta, R. Malhotra, J. Org. Chem. 1979, 44, 1247–1251.
- [28] H. Rosemeyer, F. Seela, Helv. Chim. Acta 1988, 71, 1573-1585.
- [29] J. M. Murphy, X. Liao, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 15434–15435.
- [30] C. J. Barnett, M. E. Kobierski, J. Heterocycl. Chem. 1994, 31, 1181–1184.
- [31] T. Liu, X. Shao, Y. Wu, Q. Shen, Angew. Chem. Int. Ed. 2012, 51, 540–543.
- [32] C. W. Liskey, X. Liao, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 11389–11391.

Received: September 10, 2015 Published Online: November 17, 2015