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ABSTRACT: As a unique rocaglate (flavagline) natural product, aglaroxin C displays intriguing biological activity by inhibiting 

HCV viral entry.  To further elucidate structure-activity relationships and diversify the pyrimidinone scaffold, we report a concise 

synthesis of aglaroxin C utilizing a highly regioselective pyrimidinone condensation. We have prepared more than forty aglaroxin C 

analogues utilizing various amidine condensation partners. Through biological evaluation of analogues, we have discovered two lead 

compounds, CMLD012043 and CMLD012044, which show preferential bias for the inhibition of HCV viral entry vs. translation 

inhibition. Overall, the study demonstrates the power of chemical synthesis to produce natural product variants with both target 

inhibition bias and improved therapeutic indexes. 

INTRODUCTION 

Rocaglates (flavagline) natural products were first isolated 

from the dried roots and stems of Aglaia elliptifolia Merr. (fam-

ily Meliaceae) in 1982.1 Since then, over thirty rocaglate natural 

products have been identified with unique structures and intri-

guing biological activities.2, 3, 4 For instance, silvestrol (1, Fig-

ure 1)5 was identified as an excellent translation inhibitor for 

cancer chemotherapy,6 whereas other related natural products 

and analogues (2-4) displayed similar activities.7 In our previ-

ous studies, translation inhibition was found to be associated 

with inhibition of the DEAD box RNA helicase eIF4A.8 Owing 

to the interesting structures and biological activities of 

rocaglates, a number of total syntheses9 and medicinal chemis-

try studies 10 , 11  have been disclosed. Our group has a long-

standing interest in the synthesis of rocaglates and derivatives 

as well as investigations of their biology.6, 7, 8, 9g, i, k, o-q, 10a, c, e-f In 

2015, we reported the enantioselective synthesis of aglaiastatin 

(5) and aglaroxin C (6) through biomimetic kinetic resolution.9p 

Subsequent studies revealed that 5 was a promising translation 

inhibitor. In contrast, 6, containing a fully substituted pyrimidi-

none core, showed only moderate translation inhibition.9p In 

separate studies, we discovered that 6 inhibited hepatitis C viral 

(HCV) entry into host cells at a low µM concentration, poten-

tially through inhibition of the prohibitins (PHBs) as viral entry 

factors.12, 13 Notably, prohibitins 1 and 2 have been reported as 

general viral entry factors for other viruses including dengue 

virus type 2 (DENV-2)14 and Chikungunya.15 We were further 

encouraged by the observation that 6 did not induce cytotoxicity 

by translation inhibition at a concentration that is effective for 

inhibition of viral entry, providing a promising therapeutic in-

dex (TI) for potential treatment of HCV infection.12   
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HCV is a widespread viral pathogen. The recent estimated 

number of viral carriers is 143 million worldwide,16 and over 2% 

of the population in North America has been infected. In addi-

tion, chronic HCV infection causes severe liver diseases in car-

riers, including liver cancer and cirrhosis.17 In 2015, over a half 

million people died from diseases due to HCV infection.18 Re-

cently, direct-acting antiviral agents (DAAs) have become 

available to cure HCV infection19 by inhibiting the function of 

non-structural (NS) viral proteins. However, treatment effects 

of DAAs vary across different genotypes of HCV, and HCV 

potentially may develop resistance to these agents.20 For exam-

ple, the NS3 protease inhibitor simeprevir only treats genotypes 

1 and 4 of HCV, and several signature resistance mutations have 

been identified against this treatment.21 Sofosbuvir, a top NS5B 

inhibitor, failed in HCV treatment which was associated with 

resistance mutations (Figure SI1).22 Accordingly, discovery of 

alternative treatments for HCV is sorely needed. As PHB-

mediated cellular signaling pathways12 are required by all HCV 

genotypes to infect host cells, it is conceivable that a small mol-

ecule such as aglaroxin C (6) may block infection from multiple 

HCV genotypes.23 Additionally, targeting the host component 

for viral entry may create higher genetic barriers against re-

sistance.24 Lastly, aglaroxin C and analogues may also be valu-

able for dissecting the mechanisms of HCV entry and may in-

hibit other viruses sharing the same entry mechanism. 

Our goal was to reengineer the structure of aglaroxin C (6) to 

increase activity against HCV entry while minimizing transla-

tion inhibition, which may lead to undesired cytotoxicity.5, 6, 7, 8 

As the oxidation state change between 6 and aglaiastatin (5) led 

to different biological profiles, we speculated that the pyrimidi-

none subunit of 6 may be important for inhibition of HCV viral 

entry vs. translation inhibition. Our first-generation synthesis of 

aglaroxin C (6) utilized a key intermediate, keto-rocaglate 9,25 

which was synthesized through the excited state intramolecular 

proton transfer (ESIPT) [3+2] cycloaddition between 3-hy-

droxyflavone 7 and methyl cinnamate followed by α-ketol shift 

of the aglain intermediate 8 (Scheme 1).9i However, the late 

stage pyrimidinone synthesis in our first-generation synthetic 
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route is not ideal for rapid analog synthesis, affording 6 in low 

yield on a multi-milligram scale (Scheme 1).26 We also envi-

sioned that stepwise pyrimidinone synthesis may suffer from 

poor functional group tolerance in analogues due to the use of 

both acidic and oxidative conditions. Moreover, use of tethered 

aminoacetals such as 10 in the ester-amide exchange to produce 

intermediate 11 considerably narrows the diversity of accessi-

ble analogues due to limited availability of such building blocks. 

We therefore considered a streamlined synthesis of aglaroxin 

analogues through late stage, one-step pyrimidinone formation 

(Scheme 2). 

RESULTS AND DISCUSSION 

Development of a Direct Pyrimidinone Formation.  Our 

second-generation synthetic route (Scheme 2), which relies on 

condensation of keto-rocaglate (9) with commercially available 

amidines 13, was expected to flexibly provide analogues (12) 

for biological experiments. Pyrimidinones have served as bio-

logically important substructures in both drugs and natural 

products.27 , 28  There are many well-established and practical 

methods for the synthesis of pyrimidinones and pyrimidines, in-

cluding the Traube synthesis of purines,29 which inspired us to 

consider late stage construction of the pyrimidinone core of 

aglaroxin analogues.30 However, we anticipated that condensa-

tion between the structurally complex substrate 9 and amidines 

13 would be challenging. In particular, the highly ionizable ter-

tiary, benzylic alcohol adjacent to the ketoester moiety may pro-

vide unexpected reactivity under the reaction conditions.  

Our initial model study for pyrimidinone formation em-

ployed benzamidine as a simplified condensation partner. Mi-

crowave conditions (Table 1, entry 1) produced minimal 

amounts of pyrimidinone 12a in an unsatisfactory yield of 28% 

(determined by 1H NMR analysis) due to low conversion.9p 

Thermal conditions (entry 2) resulted in full consumption of 9, 

while cyclopentapyrimidinedione 16 and 3,5-dimethox-

yphloroglucinol were found as the major identified side prod-

ucts. The formation of fragmentation product 16 was found to 

correlate with the amount of 4-dimethylaminopyridine (DMAP) 

employed; reduction to 0.3 equivalents of DMAP minimized 
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production of 16 (entry 3) but also led to formation of an unex-

pected cyclization product, oxazoline 15. The structure of 15 

was confirmed by single crystal X-ray crystal structure analy-

sis.26 Reduced equivalents of the benzamidine reaction partner 

resulted in an incomplete reaction, with increased production of 

decarboxylation product 14 and retro-Nazarov products 17 (en-

tries 4 & 5).26 We next found that diluting the reaction eight-

fold improved the yield of 12a (entry 6). Increasing both tem-

perature and reaction time under dilute conditions eliminated 

the production of 15, but also led to a lower yield of 12a in favor 

of significant amounts of 16 (entry 7). Gratifyingly, by reducing 

the reaction time to 45 minutes, we obtained a 90% NMR yield 

of 12a with minimal fragmentation to 16 (entry 8); ultimately, 

an 81% isolated yield of 12a was obtained on a 100-mg scale. 

Interestingly, we found that the model reaction gave the almost 

identical yield in absence of DMAP under the optimized condi-

tions (entry 9), but we acheived better reproducibility when am-

idine hydrochloride salt was used with DMAP (vide infra).  

Proposed Mechanistic Pathway. According to trends ob-

served during reaction optimization, we propose the mechanis-

tic pathway depicted in Scheme 3. We postulate that water gen-

erated from the pyrimidinone condensation may hydrolyze 9 to 

the β-keto-acid intermediate 21, which undergoes decarboxyla-

tion to ketone 14. When no nucleophile was used, 14 and retro-

Nazarov product 17 were obtained. Presumably DMAP may 

promote intramolecular proton transfer to 19 followed by the 

extrusion of water to afford the retro-Nazarov precursor 20, 

whereas the formed water triggered decarboxylation of 9 (an 

alternative mechanism is shown in the SI). In the presence of 

the amidine, the desired formation of hemiaminals 22 and epi-

22 appears to compete with decarboxylation and retro-Nazarov 

reaction, which can be enhanced through use of increased 

equivalents of the amidine. Based on the Katrizky mechanism 

determined for the Traube reaction of β-keto esters and ami-

dines,31 two possible pathways may be envisioned for the for-

mation of pyrimidinone 12a. In one mechanism, hemiaminal 

epi-22, generated from disfavored concave-addition of the am-

idine to 9,9i may cyclize to dihydropyrimidinone 25 followed by 

extrusion of water. In contrast, hemiaminal 22, obtained from 

amidine addition to the convex face of 9, has an anti-relation-

ship between the aminal and ester thereby preventing direct cy-

clization. Instead, loss of water would produce the observed 

enamine 23, which we propose then cyclizes to 12a through ex-

trusion of methanol generating imidoyl ketene 24 followed by 

a 6π-electrocyclization to pyrimidinone 12a.32  To support the 

formation of hemiaminal 22, the oxazoline byproduct 15 was 

formed through cyclization of the tertiary alcohol of 22 to the 

amidine carbon followed by extrusion of ammonia (blue arrow). 

The formation of 22 is also supported by our isolation of 

enamine 23 from a 250 mg scale reaction, where a 28% yield of 

23 was found to precipitate after 10 minutes; we subsequently 

found that 23 can also be synthesized in 60% yield using 9 and 

benzamidine at 60 ℃ in toluene.26 Interestingly, isolated 23 was 

found to solely produce 12a with no observed formation of 15 

when 23 was resubjected to the reaction conditions. We ration-

alize that the sp3-hybridized hemiaminal carbon of 22 allows for 

a conformation necessary for intramolecular cyclization, 

whereas the sp2-hybridized enamine carbon of 23 prevents a 

similar cyclization. This conforms to the observation that ele-

vated temperatures facilitate extrusion of water generating 

enamine 23 and minimize formation of byproduct 15. In con-

trast, 15 did not generate 12a under the reaction conditions.  In 

a control experiment, DMAP was found to accelerate the frag-

mentation of 12a into 16 and 3,5-dimethoxyphloroglucinol.26 

Second-Generation Synthesis of Aglaroxin C. After deter-

mining optimal conditions for direct pyrimidinone formation, 

we next sought to apply these conditions to synthesize aglaroxin 

C (6). In this case, the requisite pyrrolidin-2-imine was com-

mercially available as an HCl salt (Table 2). Initial attempts us-

ing stepwise free-basing protocols failed due to the high-water 

solubility of the amidine; accordingly, we focused on in-situ 

free-basing conditions for optimization studies. Using excess 

base (entries 1 and 2), no conversion of substrate 9 was ob-

served after refluxing for 12 h. As 9 exists as mixture of 

enol/keto isomers, presumably excess base favors formation of 

an unreactive enolate. In contrast, use of excess pyrrolidin-2-

imine HCl salt (entry 3) did not induce pyrimidinone formation. 

We assume that DMAP is protonated by the amidine salt which 

negated its function. When a slight excess of amidine vs. Na-

OMe (entry 4) was used, we obtained 6 in 19% isolated yield. 

Consistent with our earlier optimization efforts, use of in-

creased concentration and 12 h reaction time resulted in a com-

plex reaction mixture containing fragmentation products (entry 

5).  Finally, use of 3.0 equiv. of amidine salt and 2.95 equiv. of 

NaOMe along with a catalytic amount of DMAP (40 mol%, 130 
oC) afforded 6 in 76% isolated yield on a 100-mg scale (entry 

6). 

Synthesis of Aglaroxin Analogues. With reliable annulation 

protocols available using both amidines and amidine salts, we 

next synthesized a library of aglaroxin analogues (Table 3). In 

general, direct pyrimidinone formation was found to tolerate 

both aromatic and aliphatic amidines. We observed consistent 

yields for formation of C-substituted pyrimidinones (12b-12f). 

For instance, simple aliphatic amidines reacted with 9 to afford 
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C-Me (12b) and C-Bn (12c) pyrimidinones. Hindered amidines 
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such as iso-butanamidine and cyclohexylcarboxamidine af-

forded the desired products 12d and 12e in excellent yields. In-

terestingly, condensation of carbomethoxyformamidine with 9 

was followed by an unexpected decarboxylation to produce the 

non-substituted product 12f in 53% yield. Moreover, we discov-

ered that the pyrimidinone condensation could tolerate various 

functional groups, including ester 12g (41%), cyclopropane 12h 

(91%), and methoxyl methylene 12i (52%). Ester exchange was 

observed when ethyl amidinoacetate was employed, producing 

compound 12g. Additionally, guanidine-type reaction partners 

successfully underwent condensation, yielding products such as 

12j (90% yield).  

Preliminary biological studies of the analog set indicated that 

C-aryl pyrimidinones consistently possessed good inhibition of 

HCV infection with low cytotoxicity (vide infra).26 Accordingly, 

we synthesized additional C-aryl pyrimidinone analogues with 

a variety of substitution patterns, with an initial focus on para-

substituted aryl benzamidines (Table 3, 12k-r). Generally, con-

densations tolerated both electron-rich and deficient benzami-

dines; however, we found that greater amounts of fragmentation 

products were generated using electron-deficient amidines (cf. 

compounds 12k-n 66-83% yield) with compound 12o, which 

was generated in 53% yield along with the corresponding frag-

mentation products. Compound 12m was further subjected to 

hydrogenolysis to afford the free phenol which may serve as a 

potential handle for further modifications.26 As expected, ana-

logues including para-halides (12p-12r) were synthesized in 

70-80% yields. Such compounds may also allow for late stage 

functionalization via aminations and SNAr reactions. We found 

that meta-substituted benzamidines were also workable, afford-

ing products (12s-12u) using the standard protocol in reasona-

ble yields (71%-73%). Using the sterically hindered ortho-sub-

stituted benzamidines, 12v and 12w were synthesized in mod-

erate yields (54% and 66%). Six C-heteroaryl substituted ana-

logues (12x-12ac) were also synthesized; in these cases, we ob-

served substantial fragmentation of the desired products. Only 

12x and 12z were obtained in reasonable yields (92% and 77%, 

respectively), while compounds 12y and 12aa-12ac were ob-

tained in yields averaging 50%.  

As we found that aglaroxin C (6, Table 2) was synthesized 

regioselectively using an unsymmetrical amidine, we also 

tested additional unsymmetrical amidines in the pyrimidinone 

formation. Among all products formed, we found that the N-

substituent was situated exclusively on the nitrogen adjacent to 

the pyrimidinone carbonyl (12ad-af). During the synthesis of 

12ae, a small amount of oxazoline 15 was obtained as the only 

observable side product. This result supports our mechanistic 

proposal (cf. Scheme 3) wherein the less sterically hindered, un-

substituted nitrogen likely engages in initial hemiaminal for-

mation with 9. Along these lines, we also synthesized 12ac, a 

ring-expanded analog of 6, in 69% yield. Unlike 12ad, adducts 

12ae and 12af were synthesized in 24 and 33% yields, respec-

tively; these reactions generated significant amounts of retro-

Nazarov and decarboxylated products, suggestive of lower 

overall reactivities among the N-substituted amidines.26 We 

also optimized the yield of 12ae to 39% by increasing the reac-

tion concentration to 0.2 M. Finally, using exo-keto-rocaglate 

as the starting material, we synthesized compounds 12ah and 

12ag, the C-3 epimers of 12a and 6, in 77 and 52% yields, re-

spectively. 

As a comparison to the direct condensation with unsymmet-

rical amidines, we also attempted alkylations of 12a to produce 

compounds 12ai-aj (Table 4) 12al-an (see Supporting Infor-

mation).26 Unfortunately, all attempted alkylations displayed 

poor chemo- and regioselectivity, favoring the undesired O-al-

kylation products such as O-methoxypyrimidine 12ai. 

BIOLOGICAL STUDIES 

Structure-Activity Relationships. We next evaluated the li-

brary of (±)-aglaroxin analogues and side products against HCV 

infection, and also tested their corresponding cytotoxicity in hu-

man hepatic (Huh) 7.5.1 cells.26 In comparison to aglaroxin C 

(6), C-alkyl substituted pyrimidinones 12b-d and 12h (Table 3) 

exhibited increased inhibition against HCV infection, whereas 

12e-g had decreased activities. Nevertheless, the C-aryl substi-

tuted products (12a, k-w) showed a promising increase of inhi-

bition of HCV infection with similar or reduced cytotoxicity in 

comparison to 6. Excitingly, 12l (CMLD012043) and 12s 

(CMLD012044) showed a three-fold greater inhibition of HCV 

infection in comparison to 6, while 12l and 12s exhibited rela-

tively low cytotoxicity to Huh-7.5.1 cells (less than 50% cell 

death at 200 μM). Thus, the two lead compounds (12l and 12s) 

provided excellent selectivity indexes (SI) in inhibiting HCV 

infection (vide infra). Notably, among all the C-heteroaryl sub-

stituted aglaroxin analogues (12x-12ac), only 12y and 12ab dis-

played slightly increased inhibition of HCV infection relative to 

6. The six-membered ring analog 12ad and guanidine-type ad-

ducts 12j and 12af were found to have moderate antiviral activ-

ity.  

To further understand structure-activity relationships (SAR) 

among aglaroxin analogues, we highlight ten compounds in Ta-

ble 4 along with dose-response curves depicting their effective-

ness in both HCV infection and cytotoxicity assays. As a bench-

mark compound, 6 was found to inhibit HCV infection with an 

EC50 of 1.3 μM and showed a CC50 of 12 μM. Of note, EC50 and 

CC50 values were calculated according to the fitted sigmoid 

curves, which are reported as absolute values (indicating the 

concentration of compounds providing 50% inhibition and 50% 

cell death, respectively). Next, we compared the EC50 of cyclo-

hexyl- (12e) and phenyl-substituted (12a) pyrimidinones and 

found that C-aryl substitutions led to improved potency against 

viral infection (420 nM vs. 2.5 μM). The C-3 epimer (12ah) of 

12a was found to be inactive against HCV infection and no cy-

totoxicity. It is apparent that a syn-relationship of the two aryl 

rings on the cyclopenta[b]benzofuran core is crucial for HCV 

inhibition.  

Based on the observation that N-methylated isomer 12ae was 

one-fold more active than 12a (EC50 0.2 μM vs. 0.42 μM) with 

similar cytotoxicities (CC50 7.3 μM vs. 8.1 μM),33 we next uti-

lized methylation to evaluate other sites for introduction of tar-

get identification tags. In contrast to N-methylation, we ob-

served a decrease in inhibition of HCV infection (EC50 = 9.2 

μM) with the O-methylated pyrimidine 12ai. The doubly meth-

ylated product 12aj was also found inactive and non-toxic. Fi-

nally, we studied the impact of substituting the conjugated C-

aryl group of the pyrimidinone (cf. 12l, 12o, and 12s). Com-

pound 12o, with an electron-withdrawing CF3-group, had 

higher cytotoxicity (CC50 = 10 μM), and only a one-fold better 

EC50 (0.24 μM) for HCV inhibition than 12l and 12s (EC50 ~ 

0.5 μM). The two lead compounds 12l and 12s displayed im-
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7 

proved EC50s in the viral infection assay but displayed low cy-

totoxicity; neither compound reached 50% cell death up to 200 

μM concentration (maximum cytotoxicity plateau: 40% and 35% 

cell death for 12l and 12s, respectively). Of note, we observed 

a similar plateauing of cytotoxicity using aglaroxin C (6) and its 

analogues (12e, 12a, and 12ae). In contrast, the 4’-trifluoro-

methylphenyl analog 12o achieved close to 100% cell death. 

For a more reliable comparison of cytotoxicities among these 

compounds, we also calculated the area under the cytotoxicity 

curve (AUC) by integration,34 an alternative method for accu-

rately quantifying low cytotoxicity.35 In this manner, AUC0.2-200 

analysis indicates that 12e, 12a, and 12ai share similar cytotox-

icities to 6, whereas 12l and 12s exhibit relatively lower cyto-

toxicities. Extending this analysis to compare the SI among the 

analogues, we next calculated the AUC0.2-20(EC/CC) ratios, de-

termining that 12ae, 12l, 12o, and 12s had wider therapeutic 

windows (0.6 to greater than 2-fold increase in the SI) than 6. 

Based on the performance of 12l and 12s using these metrics, 
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we utilized these two lead compounds for further biological in-

vestigations including mechanism studies.  

To further characterize the mode of action of the two lead 

compounds 12l and 12s, we independently synthesized each of 

their respective enantiomers and investigated their biological 

activities in both the HCV viral infection and cytotoxicity as-

says (Table 5). As expected, only (+)-12l and (+)-12s displayed 

HCV inhibition, whereas the other enantiomers (-)-12l, and (-)-

12s were found to be inactive and non-toxic.26 Interestingly, we 

noticed that maximum cytotoxicity plateau of both active enan-

tiomer (+)-12l and (+)-12s increased substantially compared to 

their racemic counterparts (±)-12l and (±)-12s. To verify this 

result, a secondary MTS cell viability assay was also performed 

on racemic compounds (±)-12k, (±)-12l, and (±)-12o, and 

showed nearly identical toxicity curves as were observed in the 

CellTiter-Glo assay.26 While these results warrant further inves-

tigation, they suggest a potential rationale for the observed SI 

enhancement in which the “inactive” enantiomers may reduce 

or otherwise mitigate the cytotoxic effects of the active species 

through an as-yet undefined mechanism.  

Aglaroxin Analogues Do Not Affect HCV RNA Replica-

tion and Translation. We subsequently evaluated the ability of 

the aglaroxin C analogues to inhibit HCV RNA replication and 

mRNA translation using an HCV replicon system which har-

bors a full-length HCV Genotype 1b RNA genome.36 In repli-

con cells, HCV RNA replicates and is translated into viral pro-

teins without forming infectious viruses. Hence, this system 

permits accurate assessment of any effects on viral RNA repli-

cation and translation. As shown in Figure 2, compounds (+)-

12l and (+)-12s when used at 2 µM for 3 h did not inhibit HCV 

RNA replication or protein synthesis. This data implies that the 

observed inhibitory effects of (+)-12l and (+)-12s were unlikely 

due to inhibition of viral RNA replication or mRNA translation. 

To corroborate these findings, we assembled an in vitro trans-

lation inhibition assay where a bicistronic reporter mRNA was 

programmed for translation in Krebs-2 extracts (Figure 3).37 In 

this system, translation of the Firefly luciferase (FLuc) transla-

tion is cap-dependent whereas Renilla luciferase (RLuc) trans-

lation is dependent upon the HCV internal ribosome entry site 

(IRES) (Fig. 3A).  It was observed that translation inhibition of 

firefly luciferase by 6 and analogues 12l and 12s were minimal 

in comparison with CR-1-31-B (Figure 1, 4), a highly potent 

rocaglate translation inhibitor showing strong inhibition of cap-

dependent protein synthesis (Figure 3B).10c This data suggests 

that HCV mRNA translation is not inhibited by 6 and its ana-

logues 12l and 12s.  

Aglaroxin Analogues Inhibit HCV Entry. As aglaroxin C 

was previously reported to inhibit HCV entry,12 we carried out 

two sets of experiments to test whether compounds 12l and 12s 

also inhibit viral entry. Firstly, we generated infectious lentivi-

ral pseudotypes bearing glycoproteins of HCV (HCVpp), 

Chikungunya virus (CHIKVpp), Ebola virus (Ebolapp), and ve-

sicular stomatitis virus (VSVpp). Compositionally, these 

pseudotyped viruses differ only in viral envelopes because they 

are packaged using the same lentiviral reporter construct with a 

separate construct expressing specified viral envelope protein. 

Hence, the only difference among these pseudoviral particles is 

the mode of entry, which is dictated by the particular viral gly-

coprotein found on the viral envelopes. Compounds 12l and 12s, 
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as both the racemates and single (+)-enantiomers, specifically 

inhibited HCVpp and CHIKVpp but not Ebolapp and VSVpp 

(Figure 4, A and B). Interestingly, like rocaglamide, compounds 

(+)-12l and (+)-12s as well as their racemic versions also inhib-

ited Dengue virus infection (Figure 4C). It is worth mentioning 

that HCV, Dengue virus, and CHIKV all utilize PHBs to enter 

cells; further studies are warranted to determine whether com-

pounds 12l and 12s directly target PHBs.  Secondly, to confirm 

inhibition of HCV entry, we performed time-of-addition exper-

iments using the lead compounds 12l and 12s wherein com-

pounds were added at different times relative to when the virus 

was added to cells. Similar to 6, 12l and 12s displayed maximal 

anti-HCV activity when added together with the virus, but par-

tially lost their activity when added 3 h after infection was ini-

tiated (Figure 4D). This finding confirmed that 12l and 12s are 

preferentially inhibiting viral entry.  

CONCLUSION 

    In summary, we have developed a second-generation syn-

thesis of aglaroxin C using late-stage, direct pyrimidinone for-

mation of a keto-rocaglate scaffold. Using this method, we have 

used commercially available amidines as reaction partners to 

(1) Lu King, M.; Chiang, C.-C.; Ling, H.-C.; Fujita, E.; Ochiai, 

M.; McPhail, A. T. X-Ray Crystal Structure of Rocaglamide, a 

Novel Antileulemic 1H-Cyclopenta[b]benzofuran from Aglaia 

elliptifolia J. Chem. Soc., Chem. Commun. 1982, 1150. 

(2) For isolation of aglaroxin C, see: (a) Kokpol, U.; Venaskul-

chai, B.; Simpson, J.; Weavers, R. T. Isolation and X-Ray Struc-

ture Determination of a Novel Pyrimidinone from Aglaia odo-

rata. J. Chem. Soc., Chem. Commun. 1994, 773; (b) Ohse, T.; 

synthesize a library of over forty aglaroxin C analogues. Among 

newly synthesized analogues, we successfully demonstrated 

SAR for inhibition of HCV infection and identified two aryl py-

rimidinone lead compounds, 12l and 12s, which have low cyto-

toxicities to Huh 7.5.1 cells. Additional biological studies with 

12l and 12s indicate that the mechanism of inhibition of HCV 

infection is through inhibition of HCV viral entry, rather than 

by blocking viral replication and translation. Finally, 12l and 

12s are also effective against infection of other viruses includ-

ing Dengue and Chikungunya, both of which have been found 

to use prohibitins (PHBs) as an entry factor. These studies illus-

trate the power of chemical synthesis to bias inhibition of HCV 

viral entry vs. translation inhibition and improve properties in-

cluding therapeutic index. Further studies toward target identi-

fication of 12l, 12s, and related compounds is currently in pro-

gress and will be reported in due course. 
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