Synthesis of New (Pyrazol-3-yl)-1,3,4-oxadiazole Derivatives by Unexpected Aromatization During Oxidative Cyclization of 4,5-Dihydro-1*H*-pyrazole-3carbohydrazones and Their Biological Activities

K. Jagadeesh Prathap,^a* M. Himaja,^a Sunil V. Mali,^{a,b} and D. Munirajasekhar^a

^aSchool of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India

^bMedicinal Chemistry Division, Piramal Life Sciences, Nirlon Complex, Goregaon East, Mumbai 400 063, India

*E-mail: jagadeeshprathap@yahoo.co.in

Received March 3, 2012

DOI 10.1002/jhet.1765

Published online 3 December 2013 in Wiley Online Library (wileyonlinelibrary.com).

A series of novel 2-(4-(4-chlorophenyl)-1*H*-pyrazol-3-yl)-5-(Aryl)-1,3,4-oxadiazoles were synthesized by unexpected aromatization during oxidative cyclization of 4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazones using chloramine-T as an oxidant. The hydrazones were derived from 4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide and various substituted aldehydes. The structure of the synthesized compounds was confirmed by FTIR, ¹H NMR, ¹³C NMR, and mass spectral data. The synthesized compounds were evaluated for their antitubercular and antioxidant activities. All the compounds **4a–h** and **5a–h** showed good antitubercular activity against *Mycobacterium tuberculosis* (minimum inhibitory concentration = 25 µg/mL for **4f** and **4g**, 50–100 µg/mL for the rest). However, all the compounds exhibited poor antioxidant activity against 1,1-diphenyl-2-picryl-hydrazil free radical.

J. Hetercycl Chem., 51, 726 (2014).

INTRODUCTION

The development of drug resistance to clinically used agents has increased the demand for discovery of new chemical scaffolds with antimicrobial activity. Tuberculosis is a common and often deadly infectious disease caused by *Mycobacterium tuberculosis* in humans, and it is estimated that one-third of the world's population is currently infected with TB bacillus and, annually, 2.0 million deaths were found [1]. The incidence of TB infection has steadily risen in the last decade. The reemergence of TB infection has been linked to coinfection with the human immunodeficiency virus [2], and the treatment of tuberculosis has become a major problem because of the emergence of *M. tuberculosis* [3]. In this context, there is an urgent need for new chemical entities to fight against this disease with a novel mechanism of action.

Five-membered heterocycles are privileged structures with utility in medicinal chemistry. Among them, the 1,3,4-oxadiazole motif has been extensively used for many years as a bioisosteric replacement of acid, ester, and amide functionalities in medicinal chemistry, and its derivatives have a wide range of pharmaceutical and biological activities including antimicrobial [4], anticancer [5], insecticidal [6], anti-inflammatory [7], and antimycobacterial [8] activities. Biologically relevant entities containing the 1,3,4-oxadiazole motif include the human immunodeficiency virus integrase inhibitor I and the angiogenesis inhibitor II (Fig. 1) [9,10]. The widespread use of 1,3,4-oxadiazoles as a scaffold in medicinal chemistry establishes this moiety as an important bioactive class of heterocycles. These molecules are also utilized as pharmacophores because of their favorable metabolic profile and ability to engage in hydrogen bonding with the receptors.

Many pyrazole derivatives are acknowledged to possess a wide range of bioactivities. The pyrazole motif makes up the core structure of numerous biologically active compounds. 1*H*-Pyrazole and 4,5-dihydro-1*H*-pyrazole derivatives have been found to possess diverse applications in medicine, viz. antimicrobial [11–13], antiviral [14], antidiabetic [15], anti-inflammatory [16], anticancer [17], insecticidal [18], and antitubercular [19] activities.

In view of this, we made an effort to synthesize some new 4,5-dihydro-1H-pyrazol-3-yl)-1,3,4-oxadiazoles **6** by treating 4,5-dihydro-1H-pyrazole-3-carbohydrazones **4** with chloramine-T. Interestingly, we ended up with (pyrazol-3-yl)-1,3,4-oxadiazoles **5** by unexpected aromatization during

Figure 1. Biologically active compounds with the 1,3,5-oxadiazole motif.

oxidative cyclization of 4,5-dihydro-1H-pyrazole-3-carbohydrazones **4**. The newly synthesized compounds were tested for their antitubercular and antioxidant activities.

pyrazoline NH, respectively. Its LC-MS showed M+1 peak (239.1), and the FTIR also showed carbonyl and NH stretching frequencies.

RESULTS AND DISCUSSION

Chemistry. The synthetic route for the preparation of pyrazoline-3-carbohydrazone derivatives **4a–h** and pyrazolooxadiazole derivatives **5a–h** is summarized in Scheme 1. The starting compound methyl 4-(4-chlorophenyl)-4, 5-dihydro-1*H*-pyrazole-3-carboxylate **1** was treated with hydrazine hydrate in methanol to obtain corresponding carbohydrazide **2**. The structure of **2** was confirmed by spectral analysis. The ¹H NMR spectrum of **2** in DMSO-*d*₆ revealed three multiplets at δ 3.31, 3.68, and 4.35 that represent three nonequivalent protons of pyrazoline ring, broad singlet at 4.21 represents -NH₂ protons, two doublets at δ 7.18 and 7.36 with *J*=8.4 correspond to 4-chlorophenyl ring, and two singlets at 7.73 and 9.18 belong to CONH and Pyrazoline-3-carbohydrazide **2** was condensed with different aldehydes **3a–h** in methanol to obtain corresponding hydrazones **4a–h** in high yields (Scheme 1). All these hydrazones have not been reported hitherto. The structure of the hydrazones was confirmed by ¹H NMR, MS, and FTIR spectral data. In each case, their ¹H NMR spectra in DMSO-*d*₆ revealed two characteristic signals in the region δ 8.11–8.15 and 8.26–8.44 that represents -N=CH-proton and -CONH proton, respectively. Their FTIR spectra showed the N-H stretch of the hydrazone as a broad band in the region 3449–3221 cm⁻¹. Further, their MS spectra showed [M+1] peak in ES positive mode.

The oxidation of hydrazones **4a–h** with chloramine-T [20] to generate nitrilimines followed by intramolecular cyclization with adjacent carbonyl group yielded 2-(4-(4-chlorophenyl)-1*H*-pyrazol-3-yl)-5-(aryl)-1,3,4-oxadiazoles **5a–h** instead of expected 2-(4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazol-3-yl)-

Scheme 1. Reaction sequence for the synthesis of 4,5-dihydro-1*H*-pyrazole-3-carbohydrazones 4a–h and (pyrazol-3-yl)-1,3,4-oxadiazole derivatives 5a–h.

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

5-(aryl)-1,3,4-oxadiazoles **6**. This is due to the unexpected aromatization of 4,5-dihydropyrazoline ring to pyrazole by second mole of chloramine-T under reflux conditions. Reaction mechanism for the formation of **5a-h** is given in Scheme 2.

Two moles of chloramine-T reagent were needed for the completion of the reaction with one mole of the substrate. One mole reagent was utilized for oxidation of hydrazone and another mole was consumed for the oxidation of 4,5-dihydropyrazoline ring. All the synthesized 2-(4-(4-chlorophenyl)-1*H*-pyrazol-3-yl)-5-(aryl)-1,3,4-oxadiazoles **5a–h** were characterized by FTIR, ¹H NMR, and mass spectral analysis. IR spectrum of oxadiazoles **5a–h** showed the absence of amide carbonyl frequency in the region 1730–1660 cm⁻¹ and showed a new peak at 1626–1590 cm⁻¹ because of C=N frequency. ¹H NMR showed peaks due to aromatic protons and other substituents in the expected region. Further ¹³C NMR, DEPT-135, and mass spectra confirm the structures of **5a–h**. The physical data of the compounds **2**, **4a–h**, and **5a–h** were given in Table 1.

Biological activity

Antitubercular activity. The antimycobacterial activity of the compounds **4a–h** and **5a–h** was assessed against *M*. *tuberculosis* H₃₇Rv (ATCC 27294) using microplate Alamar Blue assay [21]. This methodology is nontoxic, uses a thermally stable reagent, and shows good correlation with proportional and BACTEC radiometric methods [22,23], and the activity is expressed as the minimum inhibitory concentration (MIC) in µg/mL. The MIC is defined as the lowest drug concentration required to complete inhibition of bacterial growth. Pyrazinamide was used as standard. All the tested compounds **4a–h** and **5a–h** showed better *in vitro* activity (MIC 25–50 µg/mL) than pyrazinamide (MIC of 100 µg/mL). The MICs of the compounds were depicted in Table 2. Antioxidant activity. All the newly synthesized compounds **4a–h** and **5a–h** were screened for their free radical scavenging activity. The free radical scavenging activity of the synthesized compounds was determined by the 1,1-diphenyl-2-picryl-hydrazil (DPPH) method [24]. The samples were prepared at different concentrations in methanol (10, 20, 50, 75, and 100 µg/mL). Butylated hydroxy toluene (BHT), which is a good antioxidant, is taken as a standard in this study. However, all the compounds showed poor antioxidant activity (<30%) when compared with standard BHT (97%). This low activity is most probably due to the inability of all the compounds to catch free radicals. The percentage of free radical scavenging activity is shown in Table 3.

CONCLUSION

In conclusion, some new pyrazolo-oxadiazole derivatives were obtained by cyclization and unexpected aromatization of 4,5-dihydropyrazoline-3-carbohydrazones by chloramine-T trihydrate. Antitubercular activity study revealed that compounds 4f, 4g showed potent activity (25 µg/mL); 4a, 4b, 4c, 4d, 4e, 4h, 5a, 5c, 5d, 5e, 5f, 5g $(50 \,\mu\text{g/mL})$ displayed good activity than pyrazinamide by Alamar Blue assay method. The structure and biological activity relationship of title compounds showed that the presence of pyrazoline nucleus with carbohydrazone moiety (-CONHN=C-) and 1,3,4-oxadiazole nucleus with 4-chlorophenyl pyrazole moiety as well as biologically active fluoro, cyano, and methoxy groups attached to the phenyl ring are responsible for good antitubercular activity. All the compounds **4a-h** and **5a-h** displayed poor antioxidant activity when compared with standard BHT. This is most probably due to the inability of all the compounds to catch free radicals.

Scheme 2. Reaction mechanism for the formation of 2-(4-(4-chlorophenyl)-1H-pyrazol-3-yl)-5-(aryl)-1,3,4-oxadiazoles 5a-h from 4a-h.

Physical data of the compounds 2, 4a–h, and 5a–h.								
Compound	R	Yield (%)	mp (°C)	mlz				
2		84.2	173–175	238				
4a	Н	89.6	187–188	326				
4b	3,4,5-Trimethoxy	84.7	196–197	416				
4c	3,5-Dimethoxy	88.2	191–193	386				
4d	2,4-Dimethoxy	85.1	185–187	386				
4e	4-Fluoro	88.6	191–192	344				
4f	4-Cyano	83.4	214-215	351				
4g	2,4,6-Trifluoro	90.2	187–189	380				
4h	2,4,6-Trimethyl	91.7	163–165	386				
5a	Н	61.4	219-220	333				
5b	3,4,5-Trimethoxy	62.6	242-244	412				
5c	3,5-Dimethoxy	64.7	214-216	382				
5d	2,4-Dimethoxy	58.7	146–148	382				
5e	4-Fluoro	62.7	246-247	340				
5f	4-Cyano	60.2	255-257	347				
5g	2,4,6-Trifluoro	58.3	215-216	376				
5h	2,4,6-Trimethyl	59.6	224–226	382				

Table 1

EXPERIMENTAL

General. Analytical grade solvents and commercially available reagents were used without further purification. The column chromatography was carried out over silica gel (60-120 mesh), purchased from Sisco Research Laboratories Pvt Ltd. Melting points were determined in open capillaries in electrical melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on 400-MHz and 500-MHz Bruker spectrometer in DMSO-d₆ or CDCl₃ using TMS as an internal standard. Chemical shifts are given in δ relative to TMS; the coupling constants are given in Hz. IR spectra in KBr disk were recorded from 4000 to 400 cm⁻¹ on Avatar 330 FTIR spectrometer equipped with DTGS detector (Thermo Scientific, India). Mass spectra were recorded using Agilent 1100 MSD spectrometer (Agilent Technologies) in electro spray mode. Compounds were checked for their purity by TLC on silica gel G plates, and spots were located by exposing to UV light and iodine vapors.

Procedure for the synthesis of 4-(4-chlorophenyl)-4,5dihydro-1*H*-pyrazole-3-carbohydrazide (2). To a turbid solution of methyl 4-(4-chlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylate 1 (5.0 g, 21 mmol) in methanol (25 mL) in an Round Bottom flask was added hydrazine hydrate (98%, 63 mmol,

Table 2 Antitubercular activity of 4a-h and 5a-h against Mycobacterium tuberculosis H₃₇Rv strain (ATCC 27294) by MABA method.^a

Table 3						
Antioxidant activity of 4a-h	and 5a-h against DPPH free radical.					

	MIC (µg/mL) ^b M. tuberculosis H ₃₇ Rv	Antioxidant activity of 4a-ii and 5a-ii against DFFH filee fadical.						
Compound			% inhibition at different concentrations (µg/mL)					
4 a	50	Compound	10	20	50	75	100	
4b	50							
4c	50	4a	7	9	15	18	19	
4d	50	4b	8	11	16	18	20	
4e	50	4c	6	9	14	17	18	
4f	25	4d	7	10	14	18	19	
4g	25	4e	8	11	16	17	18	
4h	50	4f	8	10	14	16	17	
5a	50	4g	9	13	19	25	26	
5b	100	4h	8	12	17	19	20	
5c	50	5a	3	6	8	9	9	
5d	50	5b	3	5	8	10	11	
5e	50	5c	2	5	9	9	10	
5f	50	5d	3	6	8	10	11	
5g	50	5e	4	7	9	9	10	
5h	100	5f	2	6	8	8	9	
Pyrazinamide	100	5g	4	7	9	10	12	
		5h	4	6	8	10	11	
AIC, minimum inhibitory concentration.		BHT	43	59	82	95	97	

^aMicroplate Alamar Blue assay.

^bSample concentrations tested from 0.2 to 100 µg/mL.

DPPH, 1,1-diphenyl-2-picryl-hydrazil; BHT, butylated hydroxy toluene.

3.05 mL), and the resulting clear reaction mixture (slight exothermic) was stirred for 16 h at room temperature. After the reaction was completed by TLC, excess methanol was evaporated from the reaction mixture under reduced pressure, and the resultant white precipitate was washed twice with little amount of water and was air-dried to obtain the pure compound **2** as a white solid.

Yield 4.21 g (84.2%). mp 173–175°C; IR v (KBr) 3549, 3353, 3045, 2941, 1668 cm⁻¹; ¹H NMR (400 MHz) (DMSO- d_6): δ 3.31 (m, 1H, C₅Ha of pyrazoline), 3.68 (m, 1H, C₅Hb of pyrazoline), 4.21 (brs, 2H, NH₂), 4.35 (m, 1H, C₄H of pyrazoline), 7.18 (d, *J* = 8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.36 (d, *J* = 8.4 Hz, 2H, C₃ and C₅H of 4-Cl-Phenyl), 7.73 (s, 1H, -CONH-), 9.18 (s, 1H, pyrazoline-NH); LC-MS: 239.1 (M+1).

General procedure for the synthesis of N'-(substituted benzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide derivatives (4a-h). To a stirred suspension of 2 (2.1 mmol, 0.5 g) in methanol (8 mL) was added the appropriate aldehyde 3 (2.1 mmol) and stirred at room temperature for 30 min. The completion of the reaction was confirmed by TLC, and the precipitate formed was diluted with chilled water, filtered off, washed with water, and air-dried to give the corresponding hydrazide-hydrazone derivatives 4. The physical and spectral data of 4a-h are as follows.

N'-Benzylidene-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4a). Off white solid (yield 0.59 g, 86.2%). mp 187–188°C; IR υ (KBr) 3441, 3247, 3129, 2943, 1674 cm⁻¹; ¹H NMR (300 MHz) (DMSO- d_6): δ 3.48 (m, 1H, C₃Ha of pyrazoline), 3.90 (m, 1H, C₅Hb of pyrazoline), 4.44 (m, 1H, C₄H of pyrazoline), 7.21 (d, *J*=8.1 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.36–7.42 (m, 5H, C₃,C₅H of 4-Cl-Phenyl and C₃,C₄,C₅H of Phenyl), 7.60 (m, 2H, C₂,C₆H Phenyl), 8.15 (s, 1H, -CH=N-), 8.38 (s, 1H, -CONH-), 11.60 (s, 1H, pyrazoline-NH); LC-MS: 327.0 (M+1).

N⁻(3,4,5-Trimethoxybenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4b). Pale yellow solid (yield 0.74 g, 84.7%). mp 196–197°C; IR υ (KBr) 3435, 3221, 3108, 2928, 1656 cm⁻¹; ¹H NMR (300 MHz) (DMSO-*d*₆): δ 3.46 (m, 1H, C₅Ha of pyrazoline), 3.68 (s, 3H, 4-Methoxy), 3.79 (s, 6H, 3,5-Dimethoxy), 3.89 (m, 1H, C₅Hb of pyrazoline), 4.43 (m, 1H, C₄H of pyrazoline), 6.89 (s, 2H, C₂,C₆H of 3,4,5-Trimethoxyphenyl), 7.21 (d, *J*=8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.37 (d, *J*=8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.14 (s, 1H, -CH=N-), 8.28 (s, 1H, -CONH-), 11.60 (s, 1H, pyrazoline-NH); ¹³C NMR (75 MHz) (DMSO-*d*₆): δ 48.25, 56.68, 57.27, 60.98, 104.80, 129.29, 129.82, 130.90, 132.15, 139.78, 141.45, 146.50, 147.47, 153.94, 158.80; LC-MS: 417.0 (M + 1).

N'-(3,5-Dimethoxybenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4c). Pale yellow solid (yield 0.71 g, 88.2%). mp 191–193°C; IR v (KBr) 3432, 3124, 2927, 1642 cm⁻¹; ¹H NMR (400 MHz) (DMSO-*d*₆): δ 3.47 (m, 1H, C₅Ha of pyrazoline), 3.75 (s, 6H, 3,5-Dimethoxy), 3.89 (m, 1H, C₅Hb of pyrazoline), 4.43 (m, 1H, C₄H of pyrazoline), 6.52 (s, 1H, C₄H of 3.5-Dimethoxyphenyl), 6.74 (s, 2H, C₂,C₆H of 3,5-Drimethoxyphenyl), 7.21 (d, *J*=8 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.37 (d, *J*=7.6 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.15 (s, 1H, -CH=N-), 8.29 (s, 1H, -CONH-), 11.59 (s, 1H, pyrazoline-NH); LC-MS: 387.1 (M+1).

N'-(2,4-Dimethoxybenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4d). Pale yellow solid (yield 0.69 g, 85.1%). mp 185–187°C; IR υ (KBr) 3439, 3143, 2936, 1668 cm⁻¹; ¹H NMR (400 MHz) (DMSO-*d*₆): δ 3.45 (m, 1H, C₅Ha of pyrazoline), 3.81 (s, 3H, 4-Methoxy), 3.84 (s, 3H, 2-Methoxy), 3.90 (m, 1H, C₅Hb of pyrazoline), 4.43 (m, 1H, C₄H of pyrazoline), 6.69 (d, J=8.4 Hz, 1H, C₅H of 2,4-Dimethoxyphenyl), 6.74 (s, 1H, C₃H of 2,4-Dimethoxyphenyl), 7.44 (d, J=8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.61 (d, J=8.4 Hz, 2H, C₃C₅H of 4-Cl-Phenyl), 7.73 (d, J=8 Hz, 1H, C₆H of 2,4-Dimethoxyphenyl), 8.13 (s, 1H, -CH=N-), 8.26 (s, 1H, -CONH-), 11.58 (s, 1H, pyrazoline-NH); MS: 387.0 (M + 1).

N'-(4-Fluorobenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*pyrazole-3-carbohydrazide (4e). White solid (yield 0.64 g, 88.6%). mp 191–192°C; IR v (KBr) 3431, 3327, 3117, 2925, 2854, 1695, 1636 cm⁻¹; ¹H NMR (300 MHz) (DMSO-*d*₆): δ 3.47 (m, 1H, C₅Ha of pyrazoline), 3.88 (m, 1H, C₅Hb of pyrazoline), 4.43 (m, 1H, C₄H of pyrazoline), 7.21 (d, *J*=8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.27 (d, *J*=8.7 Hz, 2H, C₂ and C₆H of 4-F-Phenyl), 7.37 (d, *J*=8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 7.65 (t, *J*=14.1 Hz, 2H, C₃,C₅H of 4-F-Phenyl), 8.15 (s, 1H, -CH=N-), 8.37 (s, 1H, -CONH-), 11.60 (s, 1H, pyrazoline-NH); MS: 345.1 (M+1), 367.1 (M+Na).

N'-(4-Cyanobenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*pyrazole-3-carbohydrazide (4f). Off white solid (yield 0.64 g, 86.8%). mp 214–215°C; IR v (KBr) 3471, 3325, 3096, 2923, 2227, 1670 cm⁻¹; ¹H NMR (300 MHz) (DMSO-*d*₆): δ 3.49 (m, 1H, C₅Ha of pyrazoline), 3.92 (m, 1H, C₅Hb of pyrazoline), 4.45 (m, 1H, C₄H of pyrazoline), 7.21 (d, *J* = 8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.37 (d, *J* = 8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 7.77 (d, *J* = 8.4 Hz, 2H, C₂,C₆H of 4-CN-Phenyl), 7.87 (d, *J* = 8.4 Hz, 2H, C₃,C₅H of 4-CN-Phenyl), 8.27 (s, 1H, -CH=N-), 8.43 (s, 1H, -CONH-), 11.85 (s, 1H, pyrazoline-NH); MS: 352.1 (M + 1), 350.1 (M − 1).

N'-(2,4,6-Trifluorobenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4g). Off white solid (yield 0.72 g 90.2%). mp 187–189°C; IR v (KBr) 3448, 3134, 2931, 1673 cm⁻¹; ¹H NMR (400 MHz) (DMSO- d_6): δ 3.48 (m, 1H, C₅H_a of pyrazoline), 3.91 (m, 1H, C₅H_b of pyrazoline), 4.44 (m, 1H, C₄H of pyrazoline), 7.20 (d, *J*=8 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.27 (t, *J*=16.8 Hz, 2H, C₃,C₅H of 2,4,6-trifluorophenyl), 7.37 (d, *J*=8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.21 (s, 1H, -CH=N-), 8.44 (s, 1H, -CONH-), 11.79 (s, 1H, pyrazoline-NH); LC-MS: 381.1 (M + 1).

N'-(2,4,6-Trimethylbenzylidene)-4-(4-chlorophenyl)-4,5-dihydro-1*H*-pyrazole-3-carbohydrazide (4h). White solid (yield 0.68 g, 87.9%). mp 163–165°C; IR v (KBr) 3448, 3297, 3109, 2934, 1697 cm⁻¹; ¹H NMR (300 MHz) (DMSO- d_6): δ 2.11 (s, 3H, 4-Me), 2.22 (s, 6H, 2,6-Dimethyl), 3.46 (m, 1H, C₅H_a of pyrazoline), 3.88 (m, 1H, C₅H_b of pyrazoline), 4.41 (m, 1H, C₄H of pyrazoline), 6.87 (s, 2H, C₃,C₅H of 2,4,6trimethylphenyl), 7.22 (d, *J* = 8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.37 (d, *J* = 8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.11 (s, 1H, -CH=N-), 8.71 (s, 1H, -CONH-), 11.45 (s, 1H, pyrazoline-NH); MS: 369.1 (M+1), 391.1 (M+Na).

General procedure for the synthesis of 2-(4-(4-chlorophenyl)-1*H*-pyrazol-3-yl)-5-(aryl)-1,3,4-oxadiazole derivatives (5a–h). A mixture of 4 (1.55 mmol) and chloramine-T trihydrate (3.72 mmol) in ethanol (10 mL) was refluxed under stirring for 4 h. The reaction mixture was then concentrated under reduced pressure, and the residue was extracted with ethyl acetate (25 mL). The extract was washed with 10% NaHCO₃ (10 mL), water (10 mL), and then dried over Na₂SO₄. The solvent was evaporated, and the resulted crude product was subjected to the column chromatography using ethyl acetate–pet ether (12:88) as eluent to obtain 2-(4-(4-chlorophenyl)-1*H*-pyrazol-3-yl)-5-(aryl)-1,3,4-oxadiazole derivatives 5. The physical and spectral data of 5a-h are as follows. **2-(4-(4-Chlorophenyl)-1***H***-pyrazol-3-yl)-5-phenyl-1,3,4-oxadiazole (5a). White solid (yield 0.32 g, 64.9%). mp 219–220°C; IR v (KBr) 3438, 3135, 1597 cm⁻¹; ¹H NMR (500 MHz) (DMSO-d_6): \delta 7.49 (d, J=8.5 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.61–7.71 (m, 5H, C₃,C₅H of 4-Cl-Phenyl and C₃,C₄,C₅H of Phenyl), 7.99 (d, 2H, J=8 Hz, C₂,C₆H Phenyl), 8.30 (s, 1H, Pyrazole-H), 13.91 (brs, 1H, Pyrazole-NH); MS: APCI⁺ 323.0 (M + 1).** *Anal***. Calcd For C₁₇H₁₁ClN₄O: C, 63.26; H, 3.44; N, 17.36; Found: C, 63.39; H, 3.37; N, 17.29.**

2-(4-(4-Chlorophenyl)-1*H*-pyrazol-3-yl)-5-(3,4,5-trimethoxyphenyl)-**1,3,4-oxadiazole (5b)**. Off white solid (yield 0.31 g, 62.6%). mp 242– 244°C; IR v (KBr) 3435, 3149, 2924, 1590 cm⁻¹; ¹H NMR (400 MHz) (DMSO-*d*₆): δ 3.74 (s, 3H, 4-Methoxy), 3.86 (s, 6H, 3,5-Dimethoxy), 7.16 (s, 2H, C₂,C₆H of 3,4,5-Trimethoxyphenyl), 7.51 (d, *J*=8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.65 (d, *J*=8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.29 (s, 1H, Pyrazole-H), 13.89 (s, 1H, pyrazole-NH); ¹³C NMR (75 MHz) (DMSO-*d*₆): δ 56.52, 60.70, 104.22, 118.81, 121.86, 128.65, 130.68, 130.93, 131.16, 132.43, 133.60, 141.04, 153.91, 160.49, 163.79; MS: ES⁺ 413.22 (M+1). *Anal.* Calcd For C₂₀H₁₇ClN₄O₄: C, 58.19; H, 4.15; N, 13.57; Found: C, 58.12; H, 4.12; N, 13.39.

2-(4-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-5-(3,5-dimethoxyphenyl)-1,3,4-oxadiazole** (5c). Light brown solid (yield 0.32 g, 64.7%). mp 214–216°C; IR v (KBr) 3447, 3148, 2921, 1602 cm⁻¹; ¹H NMR (400 MHz) (DMSO-*d*₆): δ 3.83 (s, 6H, 3,5-Dimethoxy), 6.76 (s, 1H, C₄H of 3.5-Dimethoxyphenyl), 7.04 (s, 2H, C₂.C₆H of 3,5-Drimethoxyphenyl), 7.49 (d, *J*=8 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.67 (d, *J*=6.8 Hz, 2H, C₃.C₅H of 4-Cl-Phenyl), 8.27 (s, 1H, Pyrazole-H), 13.89 (s, 1H, pyrazole-NH); LC-MS: 383.0 (M + 1). *Anal.* Calcd For C₁₉H₁₅ClN₄O₃: C, 59.61; H, 3.95; N, 14.64; Found: C, 59.53; H, 3.91; N, 14.48.

2-(4-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-5-(2,4-dimethoxyphenyl)-1,3,4-oxadiazole (5d)**. Off white solid (yield 0.29 g, 58.7%). mp 146–148°C; IR v (KBr) 3467, 3086, 2925, 1617 cm⁻¹; ¹H NMR (400 MHz) (DMSO-*d*₆): δ 3.84 (s, 3H, 4-Methoxy), 3.87 (s, 3H, 2-Methoxy), 6.72 (d, *J*=8.4 Hz, 1H, C₅H of 2,4-Dimethoxyphenyl), 6.77(s, 1H, C₃H of 2,4-Dimethoxyphenyl), 6.77(s, 1H, C₃H of 2,4-Dimethoxyphenyl), 7.48 (d, *J*=7.6 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.66 (d, *J*=7.2 Hz, 2H, C₃C₅H of 4-Cl-Phenyl), 7.78 (d, *J*=8 Hz, 1H, C₆H of 2,4-Dimethoxyphenyl), 8.29 (s, 1H, Pyrazole-H), 13.84 (brs, 1H, pyrazole-NH); MS: 383.1 (M+1).

2-(4-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-5-(4-fluorophenyl)-1,3,4oxadiazole (5e). White solid (yield 0.31 g, 62.7%). mp 246–247°C; IR v (KBr) 3446, 3142, 1604 cm⁻¹; ¹H NMR (400 MHz) (DMSO-***d***₆): \delta 7.46–7.50 (m, 4H, C₂,C₆H of 4-Cl-Phenyl, and C₂,C₆H of 4-F-Phenyl), 7.70 (d,** *J***=7.2 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.05 (t,** *J***=13.2 Hz, 2H, C₃,C₅H of 4-F-Phenyl), 8.29 (s, 1H, Pyrazole-H), 13.91 (s, 1H, pyrazole-NH); ¹³C NMR (125 MHz) (DMSO-***d***₆): \delta 117.23 (d,** *J***=22.5 Hz), 120.43, 121.76, 128.66, 129.72 (d,** *J***=10 Hz), 130.69, 130.81, 130.96, 132.34, 133.45, 160.61, 163.28, 164.60 (d,** *J***=248.75 Hz). DEPT-135: \delta 117.22 (d,** *J***=22 Hz), 128.66, 129.71 (d,** *J***=8.75 Hz), 130.70, 130.96. MS: 341.0 (M+1).**

2-(4-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-5-(4-cyanophenyl)-1,3,4oxadiazole (5f). White solid (yield 0.31 g, 62.7%). mp 255– 257°C; IR v (KBr) 3438, 3135, 2231, 1602 cm⁻¹; ¹H NMR (400 MHz) (DMSO-***d***₆): \delta 7.47 (d,** *J***=7.6 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.68 (d,** *J***=7.6 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 8.08 (d,** *J***=7.6 Hz, 2H, C₂,C₆H of 4-CN-Phenyl), 8.14 (d,** *J***=7.6 Hz, 2H, C₃,C₅H of 4-CN-Phenyl), 8.30 (s, 1H, pyrazole-H), 13.94 (s, 1H, pyrazole-NH).** *Anal.* **Calcd For C₁₈H₁₀ClN₅O: C, 62.17; H, 2.90; N, 20.14; Found: C, 62.03; H, 2.87; N, 19.97.** **2-(4-(4-Chlorophenyl)-1***H***-pyrazol-3-yl)-5-(2,4,6-trifluorophenyl)-1,3,4-oxadiazole (5g**). Off white solid (yield 0.29 g, 58.3%). mp 215-216°C; IR υ (KBr) 3436, 3146, 1603 cm⁻¹; ¹H NMR (400 MHz) (CDCl₃): 6.88 (t, J = 16.4 Hz, 2H, C₃,C₅H of 2,4,6-trifluorophenyl), 7.41 (d, J = 8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.57 (d, J = 8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 7.95 (s, 1H, pyrazole-H), 11.96 (br, 1H, pyrazole-NH); LC-MS: 377.1 (M + 1).

2-(4-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-5-(2,4,6-trifluorophenyl)-1,3,4-oxadiazole (5h). White solid (yield 0.33 g, 66.8%). mp 224-226°C; IR v (KBr) 3431, 3149, 2929, 1626 cm⁻¹; ¹H NMR (400 MHz) (CDCl₃): \delta 2.23 (s, 6H, 2,6-Dimethyl), 2.32 (s, 3H, 4-Me), 6.95 (s, 2H, C₃,C₅H of 2,4,6-trimethylphenyl), 7.38 (d,** *J***=8.4 Hz, 2H, C₂ and C₆H of 4-Cl-Phenyl), 7.51 (d,** *J***=8.4 Hz, 2H, C₃,C₅H of 4-Cl-Phenyl), 7.83 (s, 1H, pyrazole-H), 12.78 (br, 1H, pyrazole-NH); LC-MS: 365.1 (M+1).** *Anal.* **Calcd For C₂₀H₁₇ClN₄O: C, 65.84; H, 4.70; N, 15.36; Found: C, 65.69; H, 4.65; N, 15.17.**

Antitubercular activity. Briefly, $200 \,\mu\text{L}$ of sterile deionized water was added to all outer perimeter wells of sterile 96-well plate to minimized evaporation of medium in the test wells during incubation. The 96-well plate received $100 \,\mu\text{L}$ of the Middlebrook 7H9 broth, and a serial dilution of compounds was made directly on plate. The final drug concentrations tested were 0.2 to $100 \,\mu\text{g}/\text{mL}$. Plates were covered and sealed with parafilm and incubated at 37°C for 5 days. After this time, $25 \,\mu\text{L}$ of freshly prepared 1:1 mixture of Almar Blue reagent and 10% tween 80 was added to the plate and incubated for 24 h. A blue color in the well was interpreted as no bacterial growth, and a pink color was scored as growth. The MIC was defined as lowest drug concentration that prevented the color change from blue to pink.

Antioxidant activity. Briefly, 1 mL of 0.1 mM methanolic solution of DPPH was added to 3 mL of the synthesized samples at different concentrations in methanol (10, 20, 50, 75, $100 \mu g/$ mL). The samples were kept in the dark for 30 min; after which, the absorbance was measured at 517 nm in UV spectrophotometer (Systronics 2202). In its radical form, DPPH absorbs at 517 nm, but upon reduction by an antioxidant or a radical species, its absorption decreases. Lower absorbance of the reaction mixture indicates higher free radical scavenging activity. BHT, which is a good antioxidant, is taken as a standard in this study.

The capability to scavenge the DPPH radical was calculated using the following equation:DPPH. Scavenging effect (%)=[($A_c - A_s$)/ A_o) 100] where A_c is the absorbance of the control reaction and A_s is the absorbance in the presence of sample.

Acknowledgments. We acknowledge the Head, SAIF, IIT, Chennai, for NMR spectra. We are thankful to IICT, Hyderabad for providing MS and LC-MS facility. We also acknowledge SAIF, CDRI, Lucknow, for providing elemental analysis data. We are very much thankful to the Head, Department of microbiology, Maratha Mandal Dental College, Belgaum, Karnataka, for antitubercular activity studies.

REFERENCES AND NOTES

[1] http://www.who.int/tb/challenges/xdr/xdr_map_june08.pdf

[2] Goldfeld, A.; Elner, J. Tuberculosis 2007, 87, S26.

[3] Singh, P.; Mishra, A. K.; Malonia, S. K.; Chauhan, D. S.; Sharma, V. D.; Venkatesan, K.; Katoch, V. M. J Commun Dis 2006, 38, 288. [4] Kadi, A. A.; El-Brollosy, N. R.; Al-Deeb, O. A.; Habib, E. E.;

Ibrahim, T. M.; El-Emam, A. A., Eur J Med Chem 2007, 42, 235.[5] Kumar, D.; Sundaree, S.; Johnson, E. O.; Shah, K. Bioorg Med

Chem Lett 2009, 19, 4492. [6] Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.;

[6] Zheng, A., El, Z., Wang, T., Chen, W., Huang, G., Elu, C., Song, G. J Fluorine Chem 123, 2003, 123, 163.

[7] Jayashankar, B.; Rai, K. M. L.; Baskaran, N.; Sathish, H. S. Eur J Med Chem 2009, 44, 3898.

[8] Mamolo, M. G.; Zampieri, D.; Vio, L.; Fermeglia, M.; Ferrone, M.; Pricl, S.; Scialino, G.; Banfi, E. Bioorg Med Chem 2005, 13, 3797.

[9] Johns, B. A. PCT Int Appl. WO 2004101512, 2004.

[10] Piatnitski, E.; Kiselyov, A.; Doody, J.; Hadari, Y.; Ouyang, S.; Chen, X. PCT Int Appl. WO 2004052280, 2004.

[11] Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.; Akberali, P.
 M.; Shetty, N. S. Bioorg Med Chem 2006, 14, 2040.

[12] Liu, X. H.; Cui, P.; Song, B. A.; Bhadury, P. S.; Zhu, H. L.; Wang, S. F. Bioorg Med Chem 2008, 16, 4075.

[13] Gilbert, A. M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.; Petersen, P. J.; Katz, A. H. J Med Chem 2006, 49, 6027.

[14] El-Sabbagh, O. I.; Baraka, M. M.; Ibrahim, S. M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A. A. Eur J Med Chem 2009, 44, 3746. [15] Jun, M. A.; Park, W. S.; Kang, S. K.; Kim, K. Y.; Kim, K. R.; Rhee, S. D.; Bae, M. A.; Kang, N. S.; Sohn, S. K.; Kim, S. G.; Lee, J. O.; Lee, D. H.; Cheon, H. G.; Kim, S. S.; Ahn, J. H. Eur J Med Chem 2008, 43, 1889.

[16] Bekhit, A. A.; Tarek, A. A. Bioorg Med Chem 2004, 12, 1935.
[17] Xia, Y.; Dong, Z. W.; Zhao, B. X.; Ge, X.; Meng, N.; Shin, D. S.; Miao, J. Y. Bioorg Med Chem 2007, 15, 6893.

[18] Jagadeesh, P. K.; Himaja, M.; Mali, S. V. Indian J Heterocycl Chem 2010, 19, 385.

[19] Castagnolo, D.; Logu, A. D.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M.; Supino, S.; Meleddu, R.; Chisu, L.; Botta, M. Bioorg Med

Chem 2008, 16, 8587. [20] Gaonkar, S. L.; Rai, K. M. L.; Prabhuswamy, B. Eur J Med

[20] Gaonkar, S. L.; Kai, K. M. L.; Fraonuswamy, B. Eur J Med Chem 2006, 41, 841.

[21] Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M. T.; Cook, M. B.;

Quenzer, V. K.; Ferguson, R. M.; Gilman, R. H. J Clin Microbiol 1998, 36, 362.

[22] Reis, R. S.; Neves, Jr. I.; Lourenço, S. L. S.; Fonseca, L. S.; Lourenço, M. C. S. J Clin Microbiol 2004, 42, 2247.

[23] Vanitha, J. D.; Paramasivan, C. N. Diagn Microbiol Infect Dis 2004, 49, 179.

[24] Gülçin, I. Life Sci 2006, 78, 803.