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Abstract: The discotic tetraphenylethylene (TPE) mesogens composing of a TPE core surrounded 

by four flexible 1,2,3-triazole dendritic paddles were synthesized efficiently via CuAAC click 

reaction. Interesting such TPE mesogens can self-assemble into not only the hexagonal columnar 

phase but also the rarely observed 3D micellar mIm3  cubic phase in their bulk states, as well as 

organogels with spherulitic or porous morphologies in organic solvents. AIE effects are observed 

in different aggregation states of such TPE mesogens. When such TPE mesogens are dispersed in 

nematic LC 5CB, dichroic ratio values up to 6.34 are obtained. Furthermore the emission colors of 

both pure TPE mesogens and the doped gel formed by doping TPE mesogen with DPP dye are 

tunable. Remarkably, TPE/12+DPP/2C8 complex can exhibit stable white light emission (WLE) 

in gel state and poly(ethylene glycol) (PEG) film.  

 

Keywords: tetraphenylethylene; self-assembly; AIE; organogels; white light emission 

 

1. Introduction 

 

Luminogens with aggregation-induced emission (AIE) effects are current research interest 

because of their enhanced emission phenomena in solid states [1] and their great values as novel 

optical materials [2] and sensors [3]. AIE luminogens have been introduced into the skeletons of 

liquid crystals (LCs) and organogelators, the obtained AIE-active LCs [4] and organogels [5] with 

their unique combination of optophysical and ordered self-assembly features, have shown 

fascinating properties and promising application [6]. 

Tetraphenylethylene (TPE) derivatives are a novel sort of AIE luminogens with simple 

molecular structures [7] and easily functionalized character. A lot of functional TPE-based 

derivatives have been developed and found applications as fluorescent chemosensors [8-10] 

bioprobes [11-13], optoelectronic materials [14] and others [15]. A few of AIE active LCs have 

been constructed with TPE core surrounded by either flexible alkyl/alkoxy chains or mesogenic 

units [4b] via ether, ester [16] or 1,2,3-triazole linkages [4c], however only smectic [16c,17] or 

columnar mesophases [4c,16a,e] have been displayed by these reported TPE mesogens, 

thermotropic three dimentional (3D) micellar cubic phases have never been observed in these 

reported TPE mesogens. 
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Thermotropic 3D micellar cubic phases (CubI) are resulted from the 3D self-assembly of 

spherical aggregates [18]. Surprisingly, the very complex nPm3  lattice, constructed by eight 

spheroidic aggregates is strongly favored for such type of cubic phase as found in cone shaped 

compounds [19], and in few discotic molecules including phthalocyanine derivatives [20,21] and 

hydrogen-bonded G-quartet supramolecules [22], flat triphenylenes, and conic cycotriveratrylenes 

with peripheries of dendritic groups [23]. Only in few exceptional cases, such as in molecules with 

extended aromatic units [24-26] and strongly polar groups at the apex [27] an mIm3  lattice (body 

centered cubic BCC) was observed instead, and the occurrence of this mIm3  cubic phase cannot 

be expected. 

On the other hand white-light emissive (WLE) materials have attracted considerable attention in 

information display, fluorescent sensors, and optical-recording systems [28]. They can be 

fabricated by merging components emitting three primary colors (red, green and blue) or two 

complementary colors (e.g. blue and yellow). Gelation of components emitting different colors 

can minimize the distance between the donor and acceptor molecules, and dedicate to the overlap 

of the emission spectra of the donor and the absorption spectra of the acceptor, which would be 

beneficial for the molecular energy transfer to obtain WLE materials with better performance [29]. 

Till now WLE gels containing the chromophore of organic molecules [30,31], organic metal 

coordination compounds [32] and rare earth metal ions [33] have been reported. Their great 

potentials in the areas including optical sensing, bio-imaging etc. would be expected [32c,34]. 

TPE active gels with blue, red and green emissions displayed morphologies with entangled 

bundles of fibrous aggregates [35], fibrous helical nanostructures [36], and a porous network 

structures [37] etc. have been reported. However, so far as we know, TPE organogel with WLE 

has not been reported. Recently, TPE based metal organic framework (MOF) [38] and metallacage 

[39] were used to fabricate white-light emissive diode (WLED), but TPE based metal-free organic 

white light emission materials has been rarely reported [ 40 ]. Based on these literature 

investigation, it should be very interesting to develop novel kinds of AIE-active LCs and 

organogels, as well as their application as optoelectronic devices. Therefore herein, we employed 

the click reaction to prepare the AIE-active discotic TPE mesogens consisting of a TPE core and 

four peripheral flexible triazole dendritic paddlers. The self assembly behavior, AIE and 

photophyical properties of such AIE-active discotic TPE mesogens were studied. The application 

of these TPE mesogens for WLE materials has also been investigated. 

 

2. Results and discussion 

 

2.1. Synthesis  

 

All the target compounds were synthesized by using McMurry [41] and click reactions [42] as 

key steps (Scheme 1). The aromatic azides 2/n were obtained by nucleophilic substitution of 

appropriately substituted benzylchlorides 1/n with sodium azides. TPE phenol 3 was synthesized 

via the McMurry reaction from 4,4’-dihydroxybenzophenone [43]. The terminal alkyne 4 was 

obtained by etherification of TPE phenol 3 with propargyl bromide. Finally click reaction between 

terminal alkyne 4 and aromatic azides 2/n produced the target compounds TPE/n. 
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Scheme 1. Synthesis of compounds TPE/n: Reagents and conditions: (i) CnH2n+1Br, DMF, K2CO3, 90 °C, 12 h, 

92%; (ii) LiAlH4, THF, 25 °C, 2 h, 87%; (iii) SOCl2, THF, 25 °C, 1 h, 95%; (iv) KI, NaN3, DMF, 45 °C, 12 h, 

89%; (v) Zn, TiCl4, THF, -20 °C - 55 °C, 24 h, 32%; (vi) 3-Bromopropyne, K2CO3, CH3CN, 70 °C, 12 h, 93%; (vii) 

tert-Butanol, THF, H2O, sodium ascorbate, CuSO4·5H2O, 25 °C, 20 h, 75%-87%. 

 

2.2. Mesomorphic properties 

 

The mesomorphic behaviors of these molecules were studied by polarizing optical microscopy 

(POM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The phase 

transitions were summarized in Table 1. All the compounds were enantiotropic 

(thermodynamically stable) LCs. Columnar phases were displayed by all these compounds TPE/n. 

The lower homologues TPE/n with n = 8, 12 formed exclusively columnar phases in their whole 

mesomorphic temperature ranges, whereas additional optically isotropic phases with cubic lattices 

as higher temperature phases were found for higher homologues of TPE/n with n = 14, 16, 18 

(Table 1). Under POM, TPE/n with n = 8, 12 showed the typical columnar textures with 

spherulitic domains. Observed with an additional λ-retarder plate, the columnar phases are 

optically negative (Fig. 1a and Fig. S1), indicating that the intramolecular π-conjugation path 

(namely the long axis of the rigid cores) is on average vertical to the column long axis. This 

suggested that these compounds could self-assemble into optically uniaxial columnar mesophases. 

The wide-angle X-ray scattering (WAXS) patterns of all the columnar phases are diffuse and 

have their maximum at d = 0.45-0.52 nm (Fig. S3b, S4, S5b, S6, S7b, S8b, S9b, S10b), which 

confirm the liquid-crystalline nature of all the columnar phases. The small-angle X-ray scatting 

(SAXS) patterns of all the columnar phases showed three small-angle reflections with ratio of 

reciprocal spacing of 1 : 3
1/2

 : 2, suggesting (10), (11) and (20) planes of hexagonal lattice with 

p6mm symmetry (Fig. 1b, and Fig. S3a, S4a, S5a, S7a). The lattice parameters of the hexagonal 

columnar phases are 3.76 nm, 4.16 nm, 4.44 nm, 4.75 nm and 4.94 nm for compounds TPE/8, 

TPE/12, TPE/14, TPE/16, and TPE/18 respectively (Table 1, and Tables S1-S3, S5, S7, S9). By 

calculation, there is about one molecule in each unit cell for the columnar phases (Table 1 and 

Table S9) [44]. Therefore on average one molecule should form a disk which is surrounded by 

flexible alkyl chains. Piling up of the disks leadsto columns which further organize into p6mm 

phase. Due to the propeller-shape of the tetraphenylethene, two neighboring molecules within a 

column are presumably rotate by 45
o
 with respect to each other in order to achieve optimal space 

filling of the central core (Fig. 1c). The suggested models are consistent with the reconstructed 

electron density map (Fig. S11a), as well as the molecular dynamics (MD) annealed model (Fig. 

S11b) [45,46]. The intermolecular π-π interactions and microsegregation of the rigid aromatic core 
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from the surrounding alkyl chain tails, as well as intermolecular dipole-dipole interactions are the 

driving forces for the self-assembly of such hexagonal columnar phases. 

 

 

Fig. 1. Colhex/p6mm phase of TPE/12: (a) Textures under POM cooling at T = 70 °C; (b) XRD patterns at T = 

70 °C; (c) The model for Colhex phase; (d) XRD patterns of CubI/ mIm3  at T = 80 °C, the insert is the model of 

mIm3  phase. 

 

  As mentioned above, the lower homologues of TPE/n with n = 8, 12 form exclusively columnar 

phases in the whole mesomorphic temperature ranges, whereas additional optically isotropic 

phases with cubic lattices were found in the higher temperature ranges for higher homologues of 

TPE/n with n = 14, 16, 18. The DSC data further confirmed the existence of two different LC 

phases (Fig. S2c-e). This thermal behavior was also examined by polarized optical microscopy 

(POM). Taking compound TPE/14 as an example, on cooling from the isotropic liquid phase, 

optically isotropic phase (nonbirefringent) with high viscous was observed at 80 °C, which was 

typically found in the cubic mesophases (Fig. S1e and S1f). On further cooling to 45 °C, the 

sheet-like texture was observed instead, indicating another LC phase (Fig. S1c and S1d). Under all 

the situations the cubic phase occurred in the higher temperature range above the columnar phase 

(Table 1). Thus upon chain elongation or temperature increasing, a transition from columnar to a 

cubic phase was observed. Because the curvature of the aromatic/aliphatic interface increased with 

rising temperature or elongation of alkyl chain, the cubic phases reported here were anticipated to 

be micellar cubic phases (CubI) [47]. In the small-angle region there were several sharp reflections 

with reciprocal spacing ratio of 1 : 2
1/2

 : 3
1/2

 : 2, indexed as (110), (200), (211) and (220) of a body 

centered lattice (Fig. 1d), the most likely space group was mIm3  with lattice parameter acub = 

4.44 nm, 4.75 nm and 4.94 nm for the cubic phase of compounds TPE/n (n = 14, 16, 18) 

respectively (Table 1 and Tables S4, S6, S8, S9). 

 

(a) (b) 

(c) (d) 
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Table 1 

The phase transition temperatures, XRD data and other data of compounds TPE/n.[a] 

[a] Transition temperatures and transition enthalpies were determined by DSC (5 K min-1) and confirmed by POM, 

peak temperatures of the 2nd heating scan were given; abbreviations: Cr = crystal, Colhex/p6mm = hexagonal 

columnar phase with p6mm symmetry, CubI/ mIm3  = cubic phase with space group mIm3 , Iso = isotropic liquid, a 

= lattice parameter; μ = number of molecules in the columnar slice for Colhex/p6mm phase (μ = (a2/2) 3 h(NA/M)ρ, 

assuming density of ρ = 1 g/cm3 and h = the height of each stratum of the columns measured by WAXS) or number 

of molecules in each spheroidic aggregates on average for CubI/ mIm3  phase (μ = ncell/2). 

 

By comparison, the isotropic temperature of the columnar phase of TPE/12 is 30 °C lower than 

that of the literature reported TPE triazole derivative 2 [4c] (Fig. S12) with the same alkoxyl chain 

length but without flexible methylenene oxide linkages in the peripheral, which indicated that the 

flexibility of peripheral triazole dendritic paddles has great influence on the stability of the 

mesophase. In the discotic TPE mesogens reported here, the flexibility of peripheral triazole 

dendritic paddles allowed the adoption of different conformations, leading to the denser packing 

of the TPE core units and favoring a much stronger interface curvature, thus leading to the 

formation of more stable columnar phase for compounds (TPE/n, n = 8, 12, 14, 16, 18) and 

micellar cubic phases for longer chain compounds (TPE/n, n = 14, 16, 18). 

It should be noted that this is the first time that TPE derivatives display a micellar cubic phase, 

and most interesting the micellar cubic phase is with the rarely observed mIm3  (body centered) 

lattice. 

 

2.3. Gel properties 

 

The gelation behavior of selected representative compounds TPE/12 and TPE/14 were tested in 

different solvents. The results were summarized in Table S10. The two compounds could gelate 

1,4-dioxane and ethyl acetate (EA). The morphologies of the formed gels were studied by using a 

scanning electron microscope (SEM). The morphologies of the xerogels obtained from TPE/12 

and TPE/14 in EA showed spherical structures with an average diameter of 5 μm (Fig. 2a and Fig. 

S13a). The morphologies of xerogels obtained from TPE/12 and TPE/14 in 1,4-dioxane however 

showed a 3D porous structures with the diameters of 8 μm and 1 μm respectively (Fig. 2b and Fig. 

S13b). The different morphologies may be due to the different gelator-gelator/gelator-solvent 

interactions [48] and different polarities of the solvents. 
 

Comp. T/°C [∆H/kJ mol-1] a/nm (T/°C) μ 

TPE/8 Cr <20 Colhex/p6mm 81.5 [3.1] Iso ahex = 3.76 (60) 1.27 

TPE/12 Cr <20 Colhex/p6mm 100.5 [3.0] Iso ahex = 4.16 (70) 1.21 

TPE/14 Cr 33.9 [72.7] Colhex/p6mm 62.1 [0.4] CubI/

mIm3  93.9 [0.8] Iso 

ahex = 4.44 (50) 

acub = 4.93 (80) 

1.27 

23.3 

TPE/16 Cr 41.9 [76.9] Colhex/p6mm 59.3 [1.1] CubI/

mIm3  96.4 [0.4] Iso 

ahex = 4.75 (40)  

acub = 5.24 (70) 

1.36 

20.6 

TPE/18 Cr 58.9 [76.9] Colhex/p6mm 75.9 [1.1] CubI/

mIm3  115.6 [0.4] Iso 

ahex = 4.94 (55) 

acub = 5.31 (100) 

1.33 

19.6 
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Fig. 2. SEM images of the xerogels: (a) TPE/12 in ethyl acetate; (b) TPE/12 in 1,4-dioxane. 

 

2.4. Photophysical properties  

 

2.4.1. AIE in LC states 

The AIE in LC states was tested with the representive compound TPE/14. Upon heating 

TPE/14 from room temperature, PL spectra were recorded in its solid, LC and isotropic liquid 

states (Fig. 3). The fluorescence intensity is strongest in the solid state, slightly weaker in the LC 

states, and weakest in the isotropic liquid (Fig. 3a and 3b). Usually, the maximum wavelength 

changed little, but the emission intensity became weaker upon rising temperature. As shown in Fig. 

3c, the emission color was bright blue for the Cr, then changed to be sky blue in the temperature 

range of Colhex phase. Finally, the emission color changed to be bright green at the temperature 

range for the CubI phase. The light green emission persisted in the liquid phase but became 

dimmer upon rising temperature. The quenching of fluorescence by intermolecular π-π stacking 

might be accompanied by non-radiative decay processes, being ascribed to an increased molecular 

mobility at a higher temperature and thus the increased possibility of the excited state to relax by 

internal energy conversion or transfer via collision [4c]. The emission color change of TPE/14 

observed during the heating process could be observed during cooling process too. This means 

that the change in emission color can be controlled simply by temperature. Such property could be 

applied to manufacture stimuli-responsive functional materials. 

 

 

(a) (b) 

Liquid CubI Colhex Cr 

20°C 40°C 60°C 80°C 100°C 

(b) 

(c) 

(a) 
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Fig. 3. (a) Emission spectra of compound TPE/14 recorded during heating from solid to Colhex via CubI to 

isotropic phase; (b) Plot of the emission intensity of the maximum wavelength vs the temperature; (c) Emission 

color change of TPE/14 as a function of temperature under 365 nm UV light. 

 

2.4.2. AIE in gel states  

Compounds TPE/n displayed gelation-induced fluorescence enhancement effect. As shown in 

Fig. S15a, the TPE/12 was nonfluorescent under 365 nm UV light irradiation when the gel was 

heated into the solution state. But strong blue emission light was observed in gel state when 

TPE/12 solution was cooled down. 

The fluorescence intensity of TPE/12 in the gel state and in the solution with the same 

concentration in EA was compared (Fig. S15b). The fluorescence intensity of the solution of 

TPE/12 was rather weak. In contrast the fluorescence intensity of the corresponding gel of 

TPE/12 increased by approximately 32.3 fold higher than that in solution. Such significant 

fluorescence increase from the gels was probably ascribed to the formation of more ordered 

assemblies in gel state. The organogels showed thermo-reversible property. For example after 

slowly heating TPE/12 gel in EA to the higher temperature, the solution became clear. On cooling 

to room temperature, immobile gels was formed again (Fig. S16). The fluorescence intensity of 

the gel could be reversibly controlled with the gel solution transition by alternate cooling and 

heating process (Fig. S15). These switchable fluorescent organogels could have potentials as 

information storage devices [49-51]. 

 

2.4.3. AIE in aggregate states 

AIE properties of these compounds in aggregate states were studied in a mixture solution of 

THF/water. The fluorescence intensity of 10 μm TPE/14 in THF/water mixture with different 

water contents were recorded by PL spectra. As shown in Fig. S17, the fluorescence intensity was 

very weak and changed little as the water fraction of the THF/water mixture increased from 0% to 

20%. After the water fraction reached >20%, the fluorescence intensity largely increased with the 

increase the water fraction up to 90%, which was approximately 9-fold higher than that in the pure 

THF. This indicated that the aggregates formed in the mixture. Dynamic light scattering 

measurements unveiled that nanoparticles were formed in the solvent mixture, whereas the 

diameter of the aggregates was determined to be 231 nm for TPE/14 in THF/water mixture with 

fw = 90% (Fig. S18). 

 

2.5. Polarized emission spectra and the dichroic ratio 

 

In recent years, light-emission liquid crystal displays (LE-LCDs) [17d,52] are considered as 

power efficient devices and are promising alternatives to conventional LCDs because they remove 

the polarizers and color filters. To realize such devices, strong fluorescent materials with a 

dichroic property are required. Combined with their liquid crystalline properties, TPE derivatives 

showed moderate fluorescent emission in the solid state (ΦF = 20.5%), it can be predicted that 

such AIE-active mesogens could be applied to fabricate LE-LCDs. In order to evaluate the 

potential application of TPE/n in LE-LCD, TPE/18 as a representative compound was chosen to 

dissolve in commercial nematic liquid crystal 5CB at a concentration of 0.5% w/w for studying 

the dichroic ratio of polarized emission spectra in electric field-on (1 KHz, 8V) and electric 
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field-off states (Fig. S19, S20) [53]. Then the dichroic ratios were measured to be 6.34 in the 

electric field-off state (Fig. 4a) and about 1 in the electric field-on state (Fig. 4b). Based on this 

polarized fluorescence measurements, it can be predicted that the LC mixture of TPE derivatives 

and commercially available nematic LCs could be used to manufacture the LE-LCD. 

 

     

Fig. 4. Polarized fluorescence spectra of light-emitting LC cell in (a) electric field-off (1 KHz, 8V) and (b) electric 

field-on states. The dichroic ratio (NF) was determined from the formula: NF = F┴/F//, where F┴ and F// are the 

rubbing direction of the LC cell perpendicular and parallel to the polarization direction of the detector, 

respectively. 

 

2.6. WLE in gel and PEG film 

 

The pure TPE/12 gel exhibited cyan emission (400 nm - 600 nm). Its CIE coordinates were 

found to be (0.22, 0.32) (Fig. S21). Therefore it could generate white light by blending orange 

emission DPP derivative DPP/2C8 (3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione)  

[54]. The absorption spectrum of DPP/2C8 was between 262-575 nm (Fig. S22). The partial 

overlap of spectrum was ideal for incorporating this DPP/2C8 into the gel of TPE for energy 

transfer application and also for tuning the emission color. The gels were obtained by adding 

DPP/2C8 into TPE/12 solution in EA (5 mg/mL). The dopped gels showed the changes in the 

emission spectra from blue, green, white to orange under UV light with varying DPP/2C8 mole 

ratio (Fig. 5a). After doping 20 μL of the DPP/2C8 with a concentration of 10
-3

 (M) into TPE/12, 

the emission spectrum of the dopped gel covered the spectral range of 400-700 nm with three 

emission peaks centered at 471 nm, 567 nm, and 607 nm, respectively (Fig. 5a). The commission 

Internationale de L’eclairage (CIE) coordinates were found to be (0.32, 0.33) (Fig. S21), which 

was quite close to that of ideal white light emission (0.33, 0.33) [55]. The morphologies of the 

WLE gel were studied by SEM. The SEM image of the WLE xerogel showed tightly packed 

nanospheres with diameter of 3 μm (Fig. 5b) which was different from the morphology of xerogel 

of pure TPE/12 as shown in Fig. 2a. 

 

(a) (b) 
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Fig. 5. (a) Changes in the emission spectra of TPE/12 gel in EA with varying DPP/2C8 mole ratio (1 gel: pure 

TPE/12; 2 gel: TPE/12 with 4 μL DPP/2C8; 3 gel: TPE/12 with 20 μL DPP/2C8; 4 gel: TPE/12 with 100 μL 

DPP/2C8; 5 gel: TPE/12 with 500 μL DPP/2C8, inset: photographs showing luminescent colors upon irradiation 

with 365 nm light with different DPP/2C8 concentrations, (b) SEM images of the xerogels 3. 

 

  Considering WLE materials employed in displaying device and lighting systems most of solid 

thin films [36,56], the solid-state optical properties of PEG film containing TPE/12+DPP/2C8 gel  

was investigated. The PEG film containing TPE/12+DPP/2C8 gel (a concentration of 5% w/w) 

was coated onto the surface of a commercial UV-LED flashlight (λem = 365 nm) [40]. The coated 

film generated bright white light when the flashlight turned on (Fig. 6d, e, and Fig. S23). This film 

also showed excellent photostability and it could still emit bright white light one month later at 

ambient condition (Fig. S24). 

 

 

Fig. 6. Photographs of UV-LED flashlight before (a) and after (c) being illuminated under nature light condition. 

Photographs of UV-LED flashlight coated by the PEG film containing TPE/12+DPP/2C8 before (b) and after (d) 

being illuminated in darkness. (e) CIE chromaticity coordinates of the coated UV-LED flashlight: a (0.33, 0.30). 

 

3. Conclusion 

 

Therefore discotic TPE based mesogens were synthesized efficiently via click reaction. By 

elongation of the alkyl tails, a transition from the hexagonal columnar phase to the rarely observed 

micellar body centered cubic phase with mIm3  lattice was observed. The mIm3  micellar cubic 

1 
2 

3 

4 

5 

(a) (b) 

(a) (b) 
(e) 

(c) (d) 
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phase showed by such TPE mesogens would be of highly importance because it is the first 

example of spherical thermotropic LC aggregates of TPE based derivatives. These AIE-active 

TPE mesogens were polarized emitting and had dichroic ratio values up to 6.34 when mixed with 

nematic LC 5CB. Remarkably the emission color of both pure TPE and the doped gel formed by 

doping TPE with DPP dye were tunable by rising temperature or changing the ratio of the DPP 

respectively. Most interesting white emission gels were firstly achieved by doping such TPEs with 

DPP dye. Furthermore the doped gel exhibited stable white light emission in the PEG film. In one 

word, our study should provide a prospective pathway for white light emission materials based on 

AIE active TPE mesogens. 
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AIE active TPE mesogens can dispaly p6mm columnar and mIm3  cubic mesophases with white 

light emission property. 

Highlights 

 

Designed AIE-active TPE mesogens could form hexagonal columnar phase and mIm3  micellar 

cubic phase. 

White light emission organogel was obtained by doping such TPE mesogen with DPP dye. 

The WLE gel can generate stable white light emission in poly(ethylene glycol) film. 
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