Glycosylidene Carbenes

Part 311)

Glycosylidene Diaziridines: Stereoselective Addition of Ammonia and Methylamine to Lactone Oxime Sulfonates

by Bruno Bernet, Sissi E. Mangholz, Karin Briner, and Andrea Vasella*

Laboratorium für Organische Chemie, ETH-Hönggerberg, CH-8093 Zürich

Dedicated to Professor Jack D. Dunitz on the occasion of his 80th birthday

The diastereoselectivity of the addition of NH_3 and $MeNH_2$ to glyconolactone oxime sulfonates and the structures of the resulting *N*-unsubstituted and *N*-methylated glycosylidene diaziridines were

The ¹⁵N-labelled glucono- and galactono-1,5-lactone oxime mesylates **1*** and **9*** add NH₃ mostly axially (> 3:1; *Scheme 4*), while the ¹⁵N-labelled mannono-1,5-lactone oxime sulfonate **19*** adds NH₃ mostly equatorially (9:1; *Scheme 7*). The ¹⁵N-labelled mannono-1,4-lactone oxime sulfonate **30*** adds NH₃ mostly from the *exo* side (>4:1; *Scheme 9*). The configuration of the *N*-methylated pyranosylidene diaziridines **17**, **18**, **28**, and **29** suggests that MeNH₂ adds to **1**, **9**, **19**, and **23** mostly to exclusively from the *equatorial* direction (>7:3; *Scheme 5*) and 8). The mannono-1,4-lactone oxime sulfonate **30** adds MeNH₂ mostly from the *exo* side (85:15; *Scheme 10*), while the *ribo* analogue **37** adds MeNH₂ mostly from the *edo* side (4:1; *Scheme 10*). Analysis of the preferred and of the reactive conformers of the tetrahedral intermediates suggests that the addition of the amine to lactone oxime sulfonates is kinetically controlled. The diastereoselectivity of the diaziridine formation is rationalized as the result of the competing influences of intramolecular H-bonding during addition of the amines, steric interactions (addition of MeNH₂), and the kinetic anomeric effect.

The diaziridines obtained from 2,3,5-tri-O-benzyl-D-ribono- and -D-arabinono-1,4-lactone oxime methanesulfonate (**42** and **48**; *Scheme 11*) decomposed readily to mixtures of 1,4-dihydro-1,2,4,5-tetrazines, pentono-1,4-lactones, and pentonamides.

The *N*-unsubstituted gluco- and galactopyranosylidene diaziridines **2**, **4**, **6**, **8**, and **10** are mixtures of two *trans*-substituted isomers (**S**/**R** *ca.* 19:1, *Scheme* 2). The main, (*S*,*S*)-configured isomers **S** are stabilised by a weak intramolecular H-bond from the pseudoaxial NH to RO-C(2). The diaziridines **12**, derived from GlcNAc, cannot form such a H-bond; the (*R*,*R*)-isomer dominates (**R**/**S** 85:15; *Scheme* 3). The 2,3-di-*O*-benzyl-D-mannopyranosylidene diaziridines **20** and **22** adopt a ${}^{4}C_{1}$ conformation, which does not allow an intramolecular H-bond; they are nearly 1:1 mixtures of **R** and **S** diastereoisomers, whereas the ${}^{O}H_{5}$ conformation of the 2,3:5,6-di-*O*-isopropylidene-D-mannopyranosylidene diaziridines **24** is compatible with a weak H-bond from the equatorial NH to O-C(2); the (*R*,*R*)-isomer is favoured (**R**/**S** \geq 7:3; *Scheme* 6). The mannofuranosylidene diaziridine **31** completely prefers the (*R*,*R*)-configuration (*Scheme* 9).

Introduction. – Glycosylidene carbenes (**VI** in *Scheme 1*) are glycosylating agents. They are particularly useful for the glycosylation of tertiary, sterically hindered, and poorly nucleophilic hydroxy compounds and for the detection of intramolecular H-bonds in partially protected monosaccharides (see [2-6] and refs. cit. therein). These carbenes are generated by thermolysis or photolysis of glycosylidene diazirines **V**. The diazirines were prepared from partially protected aldose oximes **I** by oxidation (\rightarrow **II**),

¹⁾ Part 30: [1]

sulfonylation (\rightarrow III), treatment with NH₃ in MeOH, and oxidation of the diaziridines IV with I₂ (*Scheme 1*). These diaziridines are, as a rule, mixtures of *trans*-configured diastereoisomers.

The transformation of glyconolactone oxime sulfonates to spirodiaziridines is initiated by the addition of NH_3 to the C=N bond, but the structure of the resulting diastereoisomeric *trans* diaziridines does not betray the equatorial or axial direction of this attack. We report on the configuration of the diaziridines and on the direction of the addition of NH_3 and of $MeNH_2$.

Results and Discussion. – 1. D-*Gluco- and* D-*Galactopyranosylidene Diaziridines.* The transformation of the *gluco-* and the *galacto-*configured sulfonates **1** [7], **3** [5], **5** [8], **7** [5], and **9** [7] (*Scheme 2*) into the corresponding diaziridines has already been described. According to the ¹H-NMR spectra of CDCl₃ solutions, the diaziridines are *ca.* 19:1 mixtures of two *trans*-configured diastereoisomers **2S/2R**²), **4S/4R**, **6S/6R**, **8S/8R**, and **10S/10R** as evidenced by the vicinal $J(NH_e, NH_a)$ values of 9.4 Hz.

We started our investigation by repeating the addition of NH₃ to the benzylated **1** and **9**, and found that benzene solutions of the diaziridines **2S/2R** and **10S/10R** are more-stable than the previously described CHCl₃ solutions, so that solutions in C_6D_6 were used for the more-recent NMR investigations. In either solvent, **2** and **10** were 19:1 mixtures of the **S** and **R** diastereoisomers.

¹H-NMR Analysis showed that the (*S*,*S*)-diastereoisomers of the *C*(2)-alkoxy- and *C*(2)-acyloxy-diaziridines **2**, **4**, **6**, **8**, and **10** dominate in solution. In contradistinction, the major diastereoisomers of the *C*(2)-acetamido-diaziridines **12** and **14** possess the (*R*,*R*)-configuration. This difference appears to be mostly due to an intramolecular $N-H_a\cdots OC(2)$ H-bond that is possible only for the C(2)-OR diaziridines.

The vicinal coupling constants J(2,3), J(3,4), and J(4,5) evidence a ${}^{4}C_{1}$ conformation for **2S**, **4S**, **4R**, **8S**, **8R**, and **10S**. The configuration of the N-atoms of the tetra-*O*-benzylated diaziridines **2S** and **10S** was analysed on the basis of nuclear *Overhauser* effects (NOEs; *Fig. 1*). NOEs of 2.2–3.3% were observed between the NH of **2S**

²) Throughout the paper, **S** denotes the (*S*,*S*)- and **R** the (*R*,*R*)-configuration at the N-atoms.

resonating at lower field (H_a; 2.68 ppm in C₆D₆) and H-C(3). A weaker NOE (1.3%) was detected between NH_a and H-C(5), but there was no NOE between NH_a and H-C(2). No NOE's were detected for the NH of 25 resonating at higher field (NH_e). These observations evidence the (S,S) configuration of the major diastereoisomer of 2 in solution; the same configuration was established for 2 in the solid state [1]. Similarly, we observed a NOE of ca. 2% between the low field NH_a of 10S and H-C(3). A remarkable chemical-shift difference ($\Delta\delta$) between H_a and H_e of **2S** was observed for solutions in C₆D₆ ($\Delta\delta$ = 0.42 ppm) and CDCl₃ ($\Delta\delta$ = 0.30 ppm; Table 2 in Exper. Part). The corresponding $\Delta \delta$ values for **10S** are even larger by 0.1 ppm. A similar, large $\Delta \delta$ value of 0.52 ppm for the 4,6-O-benzylidenated analogue **8S** allows us to unambiguously assign the NH groups and the configuration. However, only small $\Delta\delta$ values were observed for the major isomers **S** of the pivaloate 4 ($\Delta \delta = 0.03$ ppm) and of the acetate 6 ($\Delta \delta = 0.07$ ppm), probably mainly due to the anisotropy effect of the C(2)OC=O (and C(6)OC=O?) groups. We tentatively assume that H_a is still more deshielded. The assignment of the NH of the minor isomers 4R and 8R is based on a comparison with the data of the N-Me analogues (see below). For the minor isomers (\mathbf{R} series), the proximity of the lone pair of the pseudoaxial Natom and H-C(3) leads to a downfield shift for H-C(3) ($\Delta\delta$ = 0.2-0.3 ppm for 4S/4R and 8S/8R). For the major isomers (S series), the corresponding lone pair is close to H–C(5), which is deshielded ($\Delta \delta = 0.74$ ppm for 4S/4R and *ca*. 0.1 ppm for 8S/8R). The large shift difference for H-C(5) of the pivaloate 4S/4R correlates with a different orientation of the (pivaloyloxy) methyl side chain of 4S in C_6D_6 as indicated by an inversion of the ratio of the J(5,6) and J(5,6') values.

The plausibility of the assumed $N-H_a \cdots OC(2)$ H-bond was checked by AMPAC calculations (AM1, gas phase [9]) of 6-deoxy-2,3,4-tri-*O*-methyl-D-glucopyrano-sylidene diaziridines. According to these calculations, the **S** isomer is by 3.5 kcal/mol more stable than the **R** isomer, and H_a of the **S** isomer may form a stronger intramolecular H-bond to MeO-C(2) (d($H_a \cdots O$) = 2.49 Å, \neq ($N-H_a \cdots O$) = 103°) than H_e of the **R** isomer (d($H_e \cdots O$) = 2.56 Å, \neq ($N-H_e \cdots O$) = 100°). This result is in

Fig. 1. NOEs between NH and glycosylidene H-atoms of the diaziridines 2S and 10S in C_6D_6 solution

accordance with the fact that intramolecular H-bonds between axial and equatorial OH groups are stronger than intramolecular H-bonds between two equatorial OH groups [10-12].

Analogues of the above diaziridines possessing an equatorial C(2)–NHAc instead of a C(2)–OR group cannot form a H-bond equivalent to the one postulated for the C(2)–OR diaziridines of the **S** series. AM1 Calculations, indeed, predict the absence of an intramolecular H-bond in 2-acetamido-2,6-dideoxy-3,4-di-*O*-methyl-D-glucopyranosylidene diaziridines both in the **S** isomer $(d(H_a \cdots N) = 2.81 \text{ Å})$ and in the **R** isomer $(d(H_e \cdots N) = 2.68 \text{ Å})$. The **R** isomer is favoured by only 0.2 kcal/mol.

The preparation of the GlcNAc- and AllNAc-derived diaziridines 12S/12R [5] and 14S/14R [13] (Scheme 3) has already been described. In both cases, a 85:15 mixture of diastereoisomers was obtained. A closer analysis of the ¹H-NMR data of these diaziridines (cf. Table 2 in Exper. Part) allowed determination of the configuration in the absence of NOE data. The determination is based on the relative chemical shifts of H-C(5) of the S/R diastereoisomers. The major isomers possess the (R,R)configuration, as indicated by the downfield shift for H-C(5) of the minor isomer $(\Delta \delta = 0.49 \text{ (12S/12R)})$ and 0.14 ppm (14S/14R)), evidencing the proximity to the lone pair of the pseudoaxial NH group. However, despite the proximity to the N lone pair, H-C(3) of **12R** (3.62 ppm) is more-shielded than H-C(3) of **12S** (3.87 ppm), probably due to a different orientation of the AcNH group, as evidenced by the J(2,HN) values of 9.4 Hz for **12R** and of 8.2 Hz for **12S** (steric repulsion between H_a-N and H-NAc?), and by the $\Delta\delta$ values for H-C(2), as compared to those of 4S/ **4R** and **8S/8R** (opposite relative shifts). The signals for H_a and H_e of **12S** and **12R** were assigned by comparing the δ (NH) values with those for 2S/2R ($\Delta\delta$ < 0.04 ppm, except for $\Delta \delta = 0.19$ ppm for NH_a of the **R** isomer). The small shift difference between NH_a and NH_e of 14S and 14R ($\Delta \delta \leq 0.11$ ppm) prevents an assignment. The isomers 12R, 14S, and 14R adopt a ${}^{4}C_{1}$ conformation, whereas 12S exists as mixture of the ${}^{4}C_{1}$ chair and (presumably) a boat conformer (J(2,3) = 7.6, J(3,4) = 5.5 Hz, J(4,5) not assigned). The preference for the (R,R)-configuration of the 2-acetamido diaziridines 12 and 14 evidences the effect of the intramolecular H-bond between H_a and RO-C(2) of the (S,S)-configured gluco and galacto diaziridines; the origin for the preference of 12R and **14R** is not clear (interaction between H_a -N and H-NAc?).

To assess the diasteroselectivity in the transformation of 1 to 2, one needs to selectively label one N-atom of 2. It appeared convenient to introduce a ¹⁵N label in the

Fig. 2. Mechanism of the diaziridine formation: pseudoaxial vs. pseudoequatorial attack of NH_3 at the anomeric centre of 1^*

oximes **I** (*Scheme 1*) using solid ¹⁵NH₂OH·HCl. A preferred labelling of the pseudoequatorial N-atom of the resulting diaziridines upon addition of NH₃ (*Fig. 2*) may evidence an axial attack on the C=¹⁵N bond of **1***³)⁴), as postulated by the rules of *Deslongchamps* [14][15]. To yield the diaziridine with pseudoequatorial ¹⁵N, this attack must lead, irreversibly or reversibly, to the equatorial mesyloxy amine **T2**. If **T2** is formed reversibly, ring closure from **T2** must be faster than from the axial diastereoisomer **T4**. Conversely, labelling of the axial N-atom of **2** upon addition of NH₃ would evidence cyclisation of the axial mesyloxy amine **T4**. Assuming the validity of *Deslongchamps*'s rules, this would mean that **T2** is formed reversibly, and that **T4** cyclises more rapidly than **T2**.

The reaction of the unlabelled oximes 1 and 9 with NH_3 proceeded in good yields, speaking against fast equilibrium between T2 and T4 *via* 1*, and a slow ring closure of T2 and T4. The initially formed zwitterions T1 and T3 must be transformed into T2 and T4 before cyclising to the diaziridines. Breakdown of T2 and T4 by elimination of the

³) The asterisk denotes ¹⁵N-labelled compounds.

⁴) Under the basic conditions, protonation of the ring O-atom, followed by the intermediate opening of the pyranosylidene ring and (partial) epimerisation at C(1), appears improbable.

better leaving group (MsONH₂) is expected to lead to glycosylidene imines, wellknown intermediates of the *Fischer-Kiliani* cyanhydrin synthesis that are rapidly hydrolysed or transformed into amides [16].

Oxime formation was optimised for the reaction of 2,3,4,6-tetra-*O*-benzyl-Dglucopyranose with ¹⁵NH₂OH · HCl. Reducing the amount of NH₂OH · HCl from 8 [17] to 1.3 equiv. still afforded a nearly quantitative yield of the corresponding crude (*E/Z*)oximes. Oxidation of the crude ¹⁵N-labelled hydroxy oximes derived from 2,3,4,6-tetra-*O*-benzyl-D-gluco- and -galactopyranose with MnO₂ gave a 61–62% yield of the lactone oximes **15*** and **16*** (*Scheme 4*). Mesylation of **15*** and **16*** (MsCl, Et₃N) and crystallisation from Et₂O gave **1*** and **9*** in 56 and 87% yield, respectively. Treatment of **1*** with a saturated solution of NH₃ in MeOH, followed by crystallisation at -15° , gave the isotopomers **2Se*** and **2Sa***⁵) in a 25:75 ratio. Repetition of the reaction led to **2Se***/**2Sa*** 22:78. Similar transformations of **9*** gave the isotopomers **10Se*** and **10Sa*** in ratios of 15:85 and 25:75. These results are compatible with either an irreversible pseudoaxial attack of NH₃ to **1*** and **9***, or with a preferred ring closure of the equatorial mesyloxy amine.

In the ¹⁵N-NMR spectra of the gluconolactone oximes **15*** and **1***, a br. d (J=1.7-2.2 Hz) is found at -65.80 and -60.67 ppm, and, in those of the galactonolactone oximes **16*** and **9***, one finds a dd (J=1.2-1.3 and 0.2 Hz) at -77.91 and -80.36 ppm, respectively. The incorporation of ¹⁵N into **15***, **1***, **16***, and **9*** leads to an additional splitting of the signals for H-C(2) (${}^{3}J({}^{15}N,H) = 1.2-1.6$ Hz), H-C(3) (only of **15*** and **1***: ${}^{4}J({}^{15}N,H) = 1.0-1.6$ Hz), OH (of **15*** and **16***: ${}^{2}J({}^{15}N,H) \le 0.8$ Hz), C(1) (only of **16*** and **9***: ${}^{1}J({}^{15}N,C) = 0.8-1.2$ Hz), C(2) (${}^{2}J({}^{15}N,C) = 9.5-11.4$ Hz), and C(3) (${}^{3}J({}^{15}N,C) = 1.7-2.6$ Hz).

In the ¹H-NMR spectra, the ¹⁵N label of the *N*-unsubstituted diaziridines **2Se***/**2Sa*** and **10Se***/**10Sa*** is evidenced by additional splitting of only the NH signals, characterized by ¹J(¹⁵N,H) of 56.8-57.3 Hz⁶) and ²J(¹⁵N,H) of 2.8-3.7 Hz (*cf. Table 2* in *Exper. Part*). The *dd* for the NH groups of the (*R*,*R*)-configured diastereoisomers (*ca.* 5% expected) are probably hidden by noise. The ¹³C-NMR spectra of **2Se***/**2Sa*** and **10Se***/**10Sa*** show a single set of signals; the chemical-shift values are identical to those of the unlabelled **2S** and **10S** (*cf. Table 3* in *Expert. Part*). C(1) and C(2) of **2Se***/**2Sa*** and **10Se***/**10Sa*** show couplings of 5.1-6.1 and

⁵) The letters **a** and **e** denote the pseudo**a**xial and the pseudo**e**quatorial position of the NR group stemming from the amine.

⁶⁾ Compare with 56.3-60.7 Hz for ¹⁵N-labelled bis(trifluoromethyl)-diaziridines [18].

 \leq 3.9 Hz with ¹⁵N, respectively. The ¹⁵N-NMR spectra of **2Se***/**2Sa*** and **10Se***/**10Sa*** in CDCl₃ and C₆D₆ reflect the same product ratios as in the ¹H-NMR spectra (*cf. Table 4* in *Exper. Part*). The ¹⁵N signals appear as *dd*'s showing a large ¹J(¹⁵N,H) of 56.5–58.0 ppm and a small ²J(¹⁵N,H) of 2.7–3.6 Hz. The weaker signal for the pseudoaxial ¹⁵N-atom resonates at higher field ($\Delta \delta = 8.4-10.4$ ppm).

To evaluate the scope of the diaziridine formation, we cursorily examined the addition of MeNH₂, Me₂CHNH₂, Me₃CNH₂, and aniline in MeOH to **9**; of these amines, only MeNH₂ reacted to a discernible extent. Treatment of **1** with a 7 μ solution of MeNH₂ in dry MeOH for 2.5 h at room temperature and purification of the product by filtration through *LiChroPrep*-NH₂ gave 97% of a 72:28 mixture of **17Se** and **17Ra** containing traces (*ca.* 5%) of an unassigned epimer. Similarly, treatment of **9** led to a 85:15 mixture of the *galacto*-configured **18Se** and **18Ra**. MeNH₂ was also added to the ¹⁵N-labelled sulfonates **1*** and **9*** to facilitate the measurement of ¹⁵N-NMR spectra. The mixture **18Se/18Ra** solidified upon standing. Crystallisation from MeOH afforded pure **18Se**, and recrystallisation in AcOEt/hexane gave crystals suitable for X-ray analysis.

The solid-state structure of **18Se** reveals a pseudoequatorial MeN group, the (*S,S*)configuration of the N-atoms, a ${}^{4}C_{1}$ conformation of the pyranosylidene ring, and a *tg* conformation for the BnOCH₂ side chain (*Fig. 3*)⁷). The structure closely resembles that of the *N*-unsubstituted **2S** [1] (*Table 1*). Even a (weak) intramolecular H-bond from N_a-H to BnO-(2) is found in both structures, in keeping with the results of the AM1 calculations. This H-bond is slightly weaker in **18Se** than in **2S** as evidenced by larger N_a...O(2) ($\Delta d = 0.05 - 0.07$ Å) and H_a...O(2) distances.

Table 1. Selected Bond Lengths [A] and Bond Angles [°] for the Diaziridines 18Se	and 2 S
---	----------------

	18Se	2S [1]		18Se	2S [1]
C(5) - O(5)	1.448(3)	1.451(3)	$O(5) - C(1) - N_a$	115.8(2)	115.5(2)
O(5) - C(1)	1.388(3)	1.385(4)	$O(5) - C(1) - N_e$	117.8(2)	117.7(3)
$C(1)-N_a$	1.445(3)	1.436(4)	$C(1)-N_a-N_e$	56.6(1)	57.17(19)
$C(1)-N_e$	1.422(3)	1.426(4)	$C(1)-N_e-N_a$	58.1(1)	57.8(2)
N _a -N _e	1.547(3)	1.539(4)	$N_a - C(1) - N_e$	65.3(1)	65.0(2)
N _a -H _a	0.94(2)	0.90(3)	$C(1)-N_a-H$	109(2)	109(2)
$N_a \cdots O(2)$	2.906(3)	2.840(3)	$N_e - N_a - H$	103(2)	106.2(19)
$H_a \cdots O(2)$	2.43(3)	2.38(3)	$N_a - H \cdots O(2)$	111(2)	112(2)
$N_e - H_e$	-	0.92(4)	$N_a - N_e - H$	_	104(2)
N _e -CH ₃	1.448(3)	-	$N_a - N_e - CH_3$	109.4(2)	-

The configurations of the N-atoms of **17Se**, **17Ra**, **18Se**, and **18Ra** in solution were revealed by NOE experiments (*Fig. 4*). NOEs of 2.8-2.9% were observed for H-C(3) of the major isomers **17Se** and **18Se** upon irradiating the NH signal at 3.02 and 3.08 ppm, respectively. This evidences a pseudoaxial NH group and the (*S*,*S*)-configuration of the major isomers. Irradiation of the NMe group of the minor isomers **17Ra** and **18Ra** leads to a NOE for H-C(5) of 2.0-3.3%. In addition, a NOE (3.1%) between NH and H-C(2) of **17Ra** was observed. Thus, the minor isomers possess a pseudoaxial NMe group and the (*R*,*R*) configuration. The

⁷) The crystallographic data have been deposited with the *Cambridge Crystallographic Data Centre* as deposition No. CCDC-197608. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44(1223)336033; e-mail: deposit@ccdc.cam.a-c.uk).

Fig. 3. X-Ray structure of 18Se. The H-atoms of the Me and the Bn groups are omitted for clarity.

Fig. 4. NOEs between NH or NMe, and glycosylidene H-atoms of the diaziridines 17Se, 17Ra, 18Se, and 18Ra in C_6D_6 solution

configuration of the diaziridine ring has no influence on the pyranose ring conformation. The same J(2,3), J(3,4), and J(4,5) (*cf. Table 2* in *Exper. Part*) were observed for the major and the minor isomers, and they evidence a ${}^{4}C_{1}$ conformation of **17Se**, **17Ra**, **18Se**, and **18Ra**. As expected, the (*S*,*S*)-configuration of the major isomers correlates with a downfield shift for H–C(5) of the **S** isomers ($\Delta \delta \approx 0.3$ ppm), and the (*R*,*R*)-configuration of the minor isomers correlates with a downfield shift for H–C(3) of the **R** isomers ($\Delta \delta = 0.4$ ppm).

The incorporation of ¹⁵N in **175e***/**17Ra*** and **185e***/**18Ra*** leads to additional splitting of the signals for NH (${}^{1}J({}^{15}N,H) = 57.4 - 58.3 \text{ Hz}$) and NMe (${}^{3}J({}^{15}N,H) = 2.7 - 2.9 \text{ Hz}$). The same couplings are also visible in the ¹⁵N-NMR spectra of **175e***/**17Ra*** 72 :28 and **185e***/**18Ra*** 85 :15 where *dqs* appear at - 297.3 to - 299.6 ppm (*cf. Table 4* in *Exper. Part*). In the ¹³C-NMR spectra, the signal for the NMe group of **175e**, **17Ra**, **18Se**, and **18Ra** is split by coupling with ¹⁵N (${}^{2}J({}^{15}N,C) = 3.6 - 4.1 \text{ Hz}$). Only the pseudoaxial ¹⁵N-atom of the major isomers **175e*** and **18Se*** couples with C(1) (${}^{1}J({}^{15}N,C) = 4.1 - 4.3 \text{ Hz}$; *Table 3* in *Exper. Part*).

Out of the four possible *N*-Me-diaziridines only the two were detected that can form an intramolecular Hbond from N-H to BnO-C(2). The other isomers are also disfavoured by a 1,5-interaction between the NMe and BnO-C(2) groups.

The ratios of the isotopomeric gluco- and galacto-configured diaziridines (2Se*/ 2Sa* and 10Se*/10Sa* 22:78 and 25:75, resp.) and the ratios of the corresponding N-Me-diaziridines (17Se/17Ra and 18Se/18Ra 72:28 and 85:15, resp.) characterize a preferred ring closure from a tetrahedral intermediate with an axial NH₂ group (derived from added NH_3) and an equatorial MeNH group, respectively. This difference may be due to steric and/or electronic interactions operating either during the addition of NH_3 and $MeNH_2$ to the imino group or during ring closure of the intermediate mesyloxy amines (see Fig. 2)⁸). As mentioned above, the axial attack of the nucleophiles on the lactone oxime sulfonates is stereoelectronically favoured. The axial attack may also be favoured by an (initially intermolecular) H-bond between the attacking amine and C(2)-OR. The strength of such a H-bond should increase parallel to the C(1)-N bond-formation during which the amine is transformed into an ammonium substituent. That a cis-axial ammonium group may form a stronger H-bond to C(2)-OR than a *trans*-equatorial one is suggested by the stronger H-bond between the pseudoaxial NH and C(2)-OBn of the C(2)-alkoxylated N-unsubstituted diaziridines9).

To get better insight into the stereoselectivity of the ring-closing step, we modelled the reactive conformers of the diasteroisomeric 2-amino- and 2-(methylamino)-2-(mesyloxyamino)-tetrahydropyrans M1/M2 and M3/M4 (AM1 calculation; Fig. 5). In the reactive conformations, the lone pair of the amino group at C(1) is directed towards the (mesyloxy)amino substituent. This implies synperiplanar orientation of the H-N bonds of M1 and M2 and of the H-N and Me-N bonds of M3 and M4 with C(2)-C(3)and C(2) – O. The MsO group is oriented away from the amino group, and the N-lone pair of the MsONH group is antiperiplanar to the C(1) - O bond (*exo*-anomeric effect). Thus, the reactive conformers M11 and M21 of the epimeric intermediates M1 and M2 have to be compared, and, similarly, the two pairs M31/M32 and M41/M42 of the epimeric intermediates M3 and M4, respectively. The significantly greater stability of M11 over M21 shows that the orientation of the MsO group is the main energetic factor. Among the MeNH isomers, M31 is by far the most favoured (reactive) conformer. A comparison to M41 and M42 shows that this is due to the equatorial orientation of the MsONH substituent and to a coplanar arrangement of Me-N and O-C(2), avoiding the interaction with MeO-C(3) that destabilises M32. The

⁸⁾ The formation of an intermediate nitrene appears improbable, since hydroxylamine O-sulfonic acid does not form the corresponding nitrene under basic conditions [19].

⁹) The relative strength of these H-bonds derives from the ratio of the equilibrating *trans*-diaziridines. For the nonequilibrating *N*-Me-diaziridines, one finds the same relative N···O distances as for the unsubstituted analogues, suggesting the same relative strength of their N-H···O-C(2) H-bonds.

Fig. 5. Calculated (AM1) relative energies of the reactive intermediates M11, M12, M31, M32, M41, and M42 of the epimeric 2-aminotetrahydropyrans M1 and M2, and of the epimeric 2-(methylamino)tetrahydropyrans M3 and M4. Destabilizing 1,5-interaction indicated by double-headed arrows.

difference between the coplanar arrangements of Me–N and C(3)–C(2) vs. Me–N and O–C(2) amounts to only 0.3 kcal/mol (compare M41 and M42).

The relative stabilities of these reactive conformers imply a more-facile formation of the diaziridines derived from the tetrahedral intermediate resulting from an axial attack of NH₃ or MeNH₂. This is not in agreement with the configuration of the N-Mediaziridines 17 and 18, although the axial attack is favoured by the kinetic anomeric effect and by H-bonding of the attacking amine to the *cis*-oriented RO-C(2). Steric interactions in the addition step must then be responsible for the preferred addition of MeNH₂ from the equatorial side. To evaluate the steric interactions during the addition, we analysed the conformations A1 - A6 of the primary addition products resulting from an equatorial and an axial attack of MeNH₂ on 1 (Fig. 6). The conformers A1 and A4 cannot form an intramolecular H-bond and are disfavoured by a 1,5-interaction between the MeN and the BnO-C(2) groups. The conformers A2, A3, A5, and A6 can form an intramolecular H-bond, but conformers A2 and A5 are disfavoured by a 1,5-interaction between the MeN and the MsO group, and A6 is disfavoured by 1,5-interactions between MeN and both C(3) and C(5). Only A3 is not disfavoured by steric interactions. It results from an equatorial addition of $MeNH_2$ to 1. This means that the kinetic anomeric effect is overruled by the combined influence of H-bonding and steric interactions that favour the equatorial addition of MeNH₂, a conclusion that could not be drawn from the addition of NH₃, since, here, both the kinetic anomeric effect and H-bonding of the *cis*-axial ammonium group to BnO-C(2)favour the axial addition¹⁰).

¹⁰) For another case, where the interaction of the attacking nucleophile with C(2)-OR dominates over the stereoelectronic control, see [20].

Fig. 6. Intramolecular H-bonds (hashed lines) and destabilizing 1,5-interactions (double-headed arrows) in the intermediate zwitterionic addition products of MeNH₂ to **1** (A1-A6) and to **19** (A8 and A9).

The analysis of the tetrahedral intermediates formed upon equatorial and axial addition of MeNH₂ to the *manno*-configured analogue **19** of **1** showed that the epimeric **A8** and **A9** (*Fig. 6*) are the preferred conformers, differing essentially by the intramolecular H-bond of **A8**. The hypothesis of this dominant influence of the H-bond predicts a preferred equatorial addition of both NH₃ and MeNH₂ to **19**.

A thermodynamic control of the diastereoselective formation of the diaziridines was evaluated by calculating the relative energies of the ground-state of M1-M4(*Fig. 5*) and of the corresponding diastereoisomers with an axial MeO group. The gasphase calculations speak against thermodynamic control; they show higher stability of the equatorial amines M2 and M4 over M1 and M3 ($\Delta E = 1.0$ and 0.6 kcal/mol, resp.), and higher stability of the axial amine and methylamine of the diastereoisomers possessing an axial MeO group ($\Delta E = 2.8$ and 0.8 kcal/mol, resp.), corresponding to *manno*-configured derivatives.

2. D-Mannopyranosylidene-diaziridines. The preparation of lactone oxime sulfonates **19** [7], **21** [5], and **23** [21] has been described (*Scheme 6*). Reaction of these sulfonates with NH₃ in MeOH gave **20S/20R**, **22S/22R**, and **24S/24R** in ratios of *ca*. 1:1 [7], 48:52 [5], and 1:9 [21] (CDCl₃), respectively. Repetition of the reactions with NH₃ and analysis in C₆D₆ led to only slightly different ratios; *i.e.*, **20S/20R** 55:45, **22S/22R** 60:40, and **24S/24R** 3:7, indicating a slightly stronger solvent dependence of the product ratio in the *manno* than in the *gluco/galacto* series.

The assignment of the NH groups is based on NOE experiments for **20S**, **20R**, **24S**, and **24R** (*Fig.* 7). NOEs of 3.5-5.9% evidence the *cis*-arrangement of H_a of **20S** and H_e of **20R** with H-C(2). The unambiguous assignment of **20S** and **20R** is based on a NOE of 3.8% between H_a and H-C(3) of **20S**. The assignment is corroborated by the NOESY spectrum of **20S/20R** 55:45 in C₆D₆ showing strong cross-peaks between H_a and H-C(2) of **20S**, and between H_e and H-C(2) of **20S**, and between H_e and H-C(2) of **20S**.

Ň

Ha

24S

23

10 : 90 (CDCl₃) 30 : 70 (C₆D₆) Ν

24R

΄Η_a

Fig. 7. NOEs between NH and glycosylidene H-atoms of the mannopyranosylidene diaziridines 20S, 20R, 24S, and 24R in C_6D_6 solution

and a weak cross-peak between H_a and CH₂(6) of **20R**. Additional weak cross-peaks between H_a of **20S** and H–C(2) of **20R**, between H_e and H–C(2) of **20S**, and between H_e of **20R** and H–C(2) of **20S** evidence rapid interconversion of **20S** and **20R**. Saturation transfer between the NH groups and H₂O prevents quantitative analysis of the NOESY spectrum. The (*R*,*R*)-configuration of the major isomer **24R** is established by weak NOEs (1.4–1.8%) between H_e and H–C(2), and between H_a and H–C(5).

The ${}^{4}C_{1}$ configuration of **22S** and **22R** in CDCl₃ and C₆D₆, and of **20S** in C₆D₆ (the glycosylidene H of **20S**/ **20R** *ca.* 1:1 in CDCl₃ were not assigned) is evidenced by J(2,3) = 3.0 - 3.2 and J(3,4) = J(4,5) = 9.3 - 9.8 Hz (*cf. Table 5* in *Exper. Part*). This allows ready assignment of the isomers **22S** and **22R** according to the relative shifts of H–C(3) (downfield shift for H–C(3) of **22R** by 0.2–0.35 ppm) and H–C(5) (downfield shift for H–C(5) of **22S** by 0.2–0.55 ppm). The isomer **20R** does not completely prefer a ${}^{4}C_{1}$ conformation, as indicated by J(3,4) =7.1 and J(4,5) = 6.1 Hz. Similar values for J(3,4) and J(4,5) suggest a *ca.* 2:1 equilibrium between the ${}^{4}C_{1}$ conformer lacking an intramolecular H-bond and the ${}^{1}C_{4}$ conformer possessing an intramolecular N–H…OBn H-bond, rather than the participation of a twist-boat conformer (J(4,5) of *ca.* 10 and J(3,4) of *ca.* 5 Hz are expected for the most probable ${}^{4}S_{2}$ conformer).

The nearly 1:1 ratio of **20S/20R** and **22S/22R** is not surprising, since there are no intramolecular H-bonds in the ${}^{4}C_{1}$ conformers. AM1 Calculations for the **R** isomer of 6-deoxy-2,3,4-tri-*O*-methyl-D-mannopyranosylidene diaziridine show that H_e of the ${}^{4}C_{1}$ conformer does not form an intramolecular H-bond to BnO–C(2) (d(H_e···O)=3.16 Å, \neq (N – H_e···O)=83°). However, a weak corresponding H-bond is possible in the ${}^{1}C_{4}$ conformer (d(H···O)=2.61 Å, \neq (N–H···O)=101°). ${}^{4}C_{1}$ and the ${}^{4}S_{2}$ conformers (ΔE = 3.7 and 1.8 kcal/mol, resp.). AM1 Calculations predict an ${}^{O}H_{5}$ conformation for **24R** which agrees well with the observed J(2,3), J(3,4), and J(4,5) values (6.7–8.0, 6.0–7.8, and 10.3–10.4 Hz, resp.; *cf. Table 5* in *Exper. Part*). The intramolecular H-bond of H_e of **24R** to the OC(2) ($d(H_{e} \cdots O)$ =2.36 Å, \neq (N–H_{eb}···O) = 105°) is responsible for the strong preference of **24R**.

The ¹⁵N-labelled methanesulfonate **19*** (*Scheme 7*) was prepared from **25**, similarly as described above for the *gluco* and *galacto* isomers **1*** and **9***, respectively, and obtained in an overall yield of 74% from **25**. Treatment of **19*** with NH₃ in MeOH gave a 50:41:5:4 mixture of **20Se***, **20Re***, **20Sa***, and **20Ra***. The product ratio in C₆D₆ was unambiguously assigned by means of the ¹J(¹⁵N,H) and ²J(¹⁵N,H) couplings (*cf. Table 5* in *Exper. Part*). The ratio **20Se***/**20Sa*** to **20Re***/**20Ra*** 55:45 was exactly the same as for the unlabelled **20S** to **20R**.

The reaction of **19** with MeNH₂ in MeOH gave 98% of a 85:15 mixture of **28Se** and **28Re** (*Scheme 8*). Similarly, **23** was transformed into a 80:20 mixture of **29Se** and **29Re**.

The presence of ¹⁵N in **27**^{*} and **19**^{*} is evidenced by odd m/z values for $[M + H]^+$ in the high-resolution mass spectra (**27**^{*}: 555.2522, **19**^{*}: 633.2282). The ¹⁵N-label leads to additional splitting of the NMR signals for H–C(2) (³*J*(H,N) = 1.3 Hz), C(2) (²*J*(C,N) = 10.8 Hz), and C(3) (³*J*(C,N) \leq 2.6 Hz). The ¹⁵N-NMR spectra of **27**^{*} and **19**^{*} display a *s* at –76.4 and –76.6 ppm, resp.

The configuration of **28Se**, **28Re**, **29Se**, and **29Re** was established by NOE experiments and by the relative chemical shifts of H-C(3) and H-C(5). The *cis*-arrangement of H_a and H-C(2) of **28Se** and **29Se** is evidenced by NOEs of 3.6–8.1% (*Fig. 8*). Similarly, NOEs of 2.3–3.6% reveal the *cis*-arrangement of MeN and H-C(2) of **28Re** and **29Re**. The unambiguous assignment of the (*S,S*)-configuration to **28Se** and **29Se** is based on a NOE of 3.4% between H_a and H-C(3) of **28Se**, and on NOEs of 0.8–0.9% between MeM and both $CH_2(6)$ of **29Se**. The assignment of the (*R,R*) configuration of **28Re** and **29Re** is based on the downfield shift of H-C(5) of **28Re** and **29Re** ($\Delta \delta = 0.42$ for **28Se/28Re** and 0.49 ppm for **29Se/29Re**), and on the downfield shift of H-C(3) of **28Se** ($\Delta \delta = 0.42$ ppm; *cf. Table 5* in *Exper. Part*). Due to the ⁰ H_5 conformation of **29Se** and **29Re**, H-C(3) should be influenced only weakly by the configuration of the pseudoaxial N-atom; this is indeed observed ($\Delta \delta = 0.05$ ppm). The pseudoequatorial N-atoms of **28Se** and **28Re** are methylated, preventing any intramolecular H-bonds to BnO–C(2) also in the inverted ¹ C_4 conformers, and both diastereoisomers adopt completely the ⁴ C_1 conformation.

Fig. 8. NOEs between NH or NMe, and glycosylidene H-atoms of the N-methylated mannopyranosylidene diaziridines **28Se**, **28Re**, **29Se**, and **29Re** in C_6D_6 solution

In the mannopyranose series, a nearly exclusive ring closure of the mesyloxy amines obtained by equatorial addition of NH_3 (91%) and of $MeNH_2$ (>95%, limit of ¹H-NMR analysis) was observed. This result agrees with the hypothesis that the amine adding to to the C=N bond forms a H-bond to C(2)–OR even in MeOH solution. To further test the influence of this H-bond, we subjected the 2,3-O-isopropylidene-protected D-mannono- and D-ribono-1,4-lactone oxime sulfonates **30** and **37** (*Schemes 9* and *10*) to the action of NH_3 and $MeNH_2$, since formation of a H-bond to C(2)–OR is only possible if the amines add from the sterically disfavoured *endo* side.

3. D-Pentofuranosylidene-Diaziridines. Reaction of the mannono-1,4-lactone oxime methanesulfonate **30** (*Scheme 9*) with NH₃ in MeOH at ambient temperature, followed by crystallisation of the product at 4°, gave 70% of **31R**; no isomer was detected in the ¹H-NMR spectrum (CDCl₃) [7]. The reaction was repeated, and the product was analysed in C₆D₆; exclusively **31R** was detected. The ribono-1,4-lactone oxime methanesulfonate **37** (*Scheme 10*) did not react under these conditions (14 d at ambient temperature), but was completely consumed within 24 h when the reaction

was conducted in a closed vessel at a pressure of 5 atm and at ambient temperature. However, no diaziridine could be isolated; it probably decomposed prior to isolation [22]. A single diaziridine (δ (NH)=2.68 and 2.37 ppm, J(NH,NH)=8.0 Hz) was detected in the crude mixture obtained from the reaction of the corresponding 5-O-[(phenylamino)carbonyl]ribosylidene methanesulfonate with NH₃, but it decomposed during attempted purification [23].

The ¹⁵N-labelled hydroximo lactone (Z)-**34*** (*Scheme 9*) was prepared from **32** according to [24], but without adapting the reaction conditions to the reduced amount of ¹⁵NH₂OH·HCl. The hemiacetal **32** was transformed to the (*E*/*Z*)-oximes **33*** and then oxidised by MnO₂ to (*E*)-**34*** and (*Z*)-**34***. Separation of the diastereoisomers by flash chromatography and crystallisation yielded 35% of (*Z*)-**34*** and 5% of (*E*)-**34***. The minor (*E*)-**34*** completely isomerised to (*Z*)-**34*** upon standing at room temperature for 3 d. Mesylation of (*Z*)-**34*** gave **30***. It reacted with NH₃ in MeOH to a 8:2 mixture of the isotopomers **31Rx*** and **31Rn***¹¹) (57%); repeating the addition led to a 9:1 mixture of **31Rx***/**31Rn***.

The incorporation of ¹⁵N in (*Z*)-**34*** is evidenced by the peak for $[M+Na]^+$ at m/z 297.108 in the highresolution mass spectrum, the *s* at -91.1 ppm in the ¹⁵N-NMR spectrum, and by the additional splittings of the signals of C(1) (¹*J*(¹⁵N,C)=3.0 Hz) and C(2) (²*J*(¹⁵N,C)=8.7 Hz). H-C(2) of (*Z*)-**34*** does not show a ³*J*((¹⁵N,H) coupling, in contradistinction to the pyranose series.

The reaction of **30** with MeNH₂ in MeOH, followed by filtration of the crude through *LiChroprep*-NH₂, gave 92% of a mixture **35Rx/35Sn**, and two unknown secondary products¹²) (*Scheme 10*). Their ratio in C₆D₆ was 74:14:6:6. The analogous

¹¹) The letters **x** and **n** denote the *exo* and *endo* positions, respectively, of the NR group stemming from the amine.

¹²) The larger values of J(2,3) (8.1 and 7.6 vs. 5.7-5.8 Hz) indicate that the secondary products no longer possess a furanose ring. Four NMe signals at 2.34-2.44 ppm indicate that these minor products are N-methyl amides (cf. formation of 45 and 46; Scheme 11).

reaction of the *ribo* methanesulfonate **37** led to the formation of the four possible isomeric *N*-Me-diaziridines **38Rn**, **38Sn**, **38Rx**, and **38Sx**; their ratio in C_6D_6 was 76:4:12:8.

Remarkably, the *exo* addition is preferred (>4:1) in the reaction of NH₃ and MeNH₂ with the mannono-1,4-lactone oxime methanesulfonate **30**, and the *endo* addition (4:1) in the reaction of MeNH₂ with the ribono-1,4-lactone oxime methanesulfonate **37**; *i.e.*, both add *trans* to the substituent at C(4). The stereo-selectivity of the addition to ${}^{O}E$ conformers is as predicted by the stereoelectronic effect, favouring *exo* addition to the mannono-1,4-lactone and *endo* addition to the ribono-1,4-lactone derivative¹³). The sterically favoured *exo* addition to the ribono-1,4-lactone oxime methanesulfonate is disfavoured both by a pseudoequatorial trajectory and by an unfavourable interaction of the pseudoaxial (negatively charged) (mesyloxy)imido substituent with O-C(2). It is not clear to what extent the stereoselectivities are influenced by different H-bonding to O-C(2) in the *endo* addition to the manno-and ribofuranosylidene derivatives. However, stereoelectronic control, and not H-bonding, appears to be the decisive factor.

The strikingly different selectivities observed for the mannopyranosylidene and furanosylidene derivatives demonstrate the difficulty of predicting the direction of the addition, and justify a detailed discussion of the configuration of the furanose-derived diaziridines.

NOE measurements allowed unambiguous assignment of the configuration of the ribose derivatives **38Rn**, **38Sn**, **38Rx**, and **38Sx**, and proved helpful for the interpretation of the weak NOEs obtained from the mannofuranose derivatives **31R** and **35Rx**. NOEs of 3.4-3.7% were observed between H–N and H–C(2) of **38Rn**, evidencing the *cis*-arrangement of H_{exo}–N and H–C(2), and the (*R*,*R*)-configuration of the N-atoms (*Fig. 9*). Irradiation of NMe of both **38Rn** and **38Rx**, resonating at 2.79 and 2.81 ppm, respectively, led to signal enhancements of 1.05 and 0.4% for H–C(2) and H–C(3) only of **38Rx**. Considering the 76:12 ratio of **38Rn**/

¹³) For similar endo vs. exo selectivity in the radical transfer to 2,3-O-isopropylidene-D-mannofuranose and -D-ribofuranose derivatives, see [25].

38Rx and the fact that the NOE enhancement is related to the sum of the NMe integrals of **38Rn/38Rx**, one calculates NOEs of 7 and 2.8% for H-C(2) and H-C(3) of **38Rx**, evidencing the *cis*-arrangement of MeN, H-C(2), and H-C(3), and the (*R*,*R*)-configuration. This conclusion is corroborated by a NOE of 3.6% for NMe of **38Rx** upon irradiation of H-C(2). Irradiation of NMe of **38Sx** at 2.54 ppm led to signal enhancements of 1.0 and 0.7% for H-C(2) and H-C(3) of **38Rx**, respectively, evidencing isomerisation of **38Sx** into **38Rx**. This indicates the *cis*-arrangement of NMe, H-C(2), and H-C(3), and the (*S*,*S*)-configuration of **38Sx**. Not surprisingly, no NOE could be observed upon irradiation of NH and NMe of **38Sn**.

Fig. 9. NOEs between NH or NMe, and glycosylidene H-atoms of the furanosylidene diaziridines 38Rn, 38Sn, 38Rx, 38Sx, 31R, 35Rx, and 35Sn in C₆D₆ solution. The structures 31S, 35Sx, and 35Sn, diastereoisomers of 31R, 35Rx, and 35Sn, respectively, have been calculated.

In the mannofuranose series (*Fig. 9*), weak NOEs were observed upon irradiating the low-field NH of the *N*-unsubstituted diaziridine **31** at 2.41 ppm and the NH of the major *N*-Me-diaziridine (**35Rx**) at 2.85 ppm, whereas irradiations of the high-field NH of **31** at 2.01 ppm, and of the NMe of **35Rx** at 2.46 ppm did not lead to intensity enhancements for the corresponding H-C(2) signals. These NOE measurements evidence that H-C(2) is on the same side of the diaziridine ring as the low-field NH of **31**, and as NH of **35Rx**; the assignment of the structure **31A** to **31** and of **35Rx** to the major isomer of **35** was based on the NOE intensities and on the

H–N chemical-shift values¹⁴). The enhancements (1-1.6%) are distinctly smaller than the one observed for H–C(2) of **38Rn** (3.7%), suggesting a *trans*-arrangement (relative to the furanose ring) of H–N and H–C(2) of **31R** and **35Rx**, and thus the (*R*,*R*)-configuration at the N-atoms. This interpretation is confirmed by the small enhancement (1.8%) observed for H–C(2) of **24R** upon irradiating a similarly *trans*-oriented H–N (see *Fig.* 7). The configurational assignment of **31R** and **35Rx** is corroborated by the H–N chemical-shift values.

The N-Me group of the diaziridines leads to a downfield shift for the adjacent H-N. For pyranosylidene diaziridines, a downfield shift of 0.31 to 0.36 ppm is observed upon formal N-methylation of 2S to 17Se, 2R to 17Ra, 10S to 18Se, 10R to 18Ra, 20S to 28Se, 20R to 28Re, and 24S to 29Se, with one exception, viz, formal Nmethylation of the isopropylidene-protected 24R to 29Re, which leads only to a downfield shift of 0.15 ppm. The shift difference between H-N of **35Rx**, resonating at 2.85 ppm, and the high-field H-N of **31R**, resonating at 2.01 ppm, is 0.84 ppm, and thus too large to be due to the N-methylation. It evidences that H-N of 35Rxcorresponds to the low-field H-N of 31R, resonating at 2.41 ppm. The shift difference of 0.44 ppm is slightly larger than that observed in the pyranose series, perhaps indicating a larger downfield shift upon N-methylation of furanosylidene diaziridines. This value was used to calculate the δ (NH) values of the N-unsubstituted mannodiaziridines **31R** and **31S** from the δ (NH) values of the *ribo-N*-Me-diaziridines **38**. The calculated δ values for $H_{exo}-N$ and $H_{endo}-N$ of **31R** are 1.94 and 2.29 ppm, respectively, and those for $H_{exo}-N$ and $H_{endo}-N$ of **31S** 1.89 and 1.99 ppm, respectively. The experimental δ values of **31** (2.01 and 2.41 ppm) agree distinctly better with the calculated values for **31R**, evidencing the (*R*,*R*)-configuration of the N-atoms. δ (NH) and δ (NMe) of the major manno-N-Me-diaziridine 35Rx agree only with those of 38Sx, confirming the configurational assignment of 35Rx. The configuration of the minor N-Me-diaziridine 35Sn cannot be determined by such a comparison, since H-N and MeN of 38Rn, 38Sn, and 38Rx resonate in the narrow range of 2.33-2.43 and 2.74-2.81 ppm, respectively. The configurational assignment of 35Sn is based on the observation that 31 completely favours the (R,R) configuration and on the strong preference of 38Rn over 38Sn.

The strong preference for **31R** and **35Rx** in solution agrees with AM1 gas-phase calculations. Compounds **31R** and **35Rx** are favoured by 1.5-2.1 kcal/mol over **31S** and **35Sx**, respectively, due to a weak intramolecular H-bond N-H_{endo} \cdots OC(2) (d(H_{endo} \cdots O) = 2.63 Å; \neq (N-H_{endo} \cdots O) = 98°). According to the calculations, the conformation of the furanose ring is determined by the configuration of C(4) and the annulation of the 1,3-dioxolane ring; the configuration of the N-atoms is irrelevant. All the furanosylidene diaziridines mentioned above adopt a southern-type conformation close to a (flat) $^{\circ}E$.

The isopropylidene groups enhance the stability of the furanosylidene-diaziridines **31**, **35**, and **38** relative to the corresponding benzylated analogues derived from **42** and **48** (*Scheme 11*).

The *O*-benzylated ribono-1,4-lactone oxime methanesulfonate **42** was prepared in the usual way from 2,3,5-tri-*O*-benzyl-D-ribofuranose (**39**) [26] [27] by oxime formation to **40**, oxidation to **41**, and mesylation. The *arabino*-methanesulfonate **48** was obtained from the known hydroximo lactone **47** [28]. Treatment of **42** with NH₃ in MeOH gave the crystalline 1,4-dihydro-1,2,4,5-tetrazine **43** (21%), the ribonolactone **44** [29–31] (10%), and the hydroxyribonamide **45** (25%). The analogous reaction of **48** afforded the crystalline 1,4-dihydro-1,2,4,5-tetrazine **49** (21%), the arabinolactone **50** (23%), and a mixture that was not analysed (*ca.* 12%). Only the ribonolactone **44** (44%) and the *N*-Me-ribonamide **46** (17%) were isolated from the reaction of **42** with MeNH₂ in MeOH.

¹⁴) Signal overlap and the presence of two side products prevented NOE analysis of minor *N*-Me-diaziridine (35Sn).

OH

OBn

OH

OBn OH

0

A single set of ¹H- and ¹³C-NMR signals reveals the C_2 symmetry of **43** and **49**. Their 1,4-dihydrotetrazine structure¹⁵) was evidenced by the $[M + Na]^+$ and $[M + K]^+$ peaks at m/z 887 and 903, respectively, in the mass spectrum, and the N-H band at 3250-3260 cm⁻¹ in the IR spectrum (KBr). The OH groups of **43** and **49** resonate in CDCl₃ as ds at 2.73 and 2.51 ppm, respectively (*cf. Table 8* in *Exper. Part*). The relatively large J(H,OH) value of 5.7 and 7.2 Hz indicate intramolecular H-bonds. The H-N and Ph groups resonate at 7.21 – 7.34 ppm. The *s* for C(3) and C(6) of **43** and **49** appear at 148.3 and 149.5 ppm, respectively (*cf. Table 9* in *Exper. Part*), these are shift values typical of 1,4-dihydro-1,2,4,5-tetrazines [34-36]. The hydroxy-amide structure of **45** and **46** is revealed by the downfield shift of H-N (**45**: 5.49 and 6.65; **46**: 6.71 ppm) and C(1) (**45**: 173.9; **46**: 171.2 ppm) and by O-H, N-H, and C=O bands (**45**: 3510, 3400, and 1680; **46**: 3560, 3430, and 1660 cm⁻¹).

The 1,4-dihydro-1,2,4,5-tetrazines **43** and **49** derive from the intermediate furanosylidene diaziridines¹⁶). Ring opening of the diaziridines obtained by the reaction of **42** and **48** with NH₃ or MeNH₂ is assumed to lead to lactone hydrazones. These hydrazones, in part, dimerise (*via* azomethine imines?) to the 1,4-dihydro-1,2,4,5tetrazines **43** and **49**, and they also react with NH₃ or MeNH₂ to generate, *via* imino ethers, the lactones **44** and **50**, and the hydroxy amides **45** and **46**¹⁷).

We thank *Matthias Böhm*, *Lukas Frunz*, and *Patricia Nickut* for the preparation of the ¹⁵N-labelled mannose derivatives, Dr. A. Linden, University Zürich, for the X-ray analysis, and the *Swiss National Science Foundation* and *F. Hoffmann-La Roche AG*, Basel, for generous support.

¹⁵) The 1,4-dihydro-1,2,4,5-tetrazines adopt a flattened ^{3,6}B conformation with the 3- and 6-substituents in bowsprit position [32]. A 1,2-dihydro-1,2,4,5-tetrazine structure is excluded, since 1,2-dihydro-1,2,4,5-tetrazines rearrange readily to the more-stable 1,4-dihydro-1,2,4,5-tetrazines [33].

¹⁶) For the reaction of hexono-1,5-lactone hydrazone to a 4-amino-4*H*-1,2,4-triazole and a 1,2,4,5-tetrazine *via* a 1,2-dihydro-1,2,4,5-tetrazine, see [37].

¹⁷) We cannot exclude the direct transformation of **42** and **48** into imino ethers although lactone oxime sulfonates that yield stable diaziridines did not give rise to either lactones or open-chain amides.

Experimental Part

General. See [29]. Sat. solns. of NH₃ in MeOH were prepared by bubbling NH₃ through cooled (0°) MeOH. Normal workup means concentrating below 30° in a *Büchi* rotary evaporator, dissolving the residue in Et₂O, filtering through *LiChroprep*-NH₂, concentrating, and drying under high vacuum at a pressure below 0.1 mbar at 20°. NMR Spectra: chemical shifts δ in ppm relative to TMS (¹H- and ¹³C-NMR) or MeNO₂ (¹⁵N-NMR) as an internal standard, coupling constants *J* in Hz.

General Procedure for the Preparation of N-Methyldiaziridines. A soln. of the methansulfonate in 7.04M MeNH₂ in anh. MeOH was stirred at r.t. for the indicated period and evaporated. The residue was dissolved in Et_2O and filtered through *LiChroprep*-NH₂. Evaporation and drying for 5 h at r.t. gave a mixture of the diaziridines.

(1'S,2'S)- and (1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D-glucitol (**2S**/**2R**). According to [7]. ¹H-NMR (400 MHz, C_6D_6 , **2S**/**2R** 95:5): Table 2; additionally for **2S**, 7.30–7.06 (*m*, 20 arom. H); 4.88 (*d*, J = 11.0), 4.86 (*d*, J = 10.2), 4.77 (*d*, J = 10.8), 4.72 (*d*, J = 11.4), 4.62 (*d*, J = 11.4), 4.46 (*d*, J = 10.9), 4.38 (*d*, J = 12.0), 4.28 (*d*, J = 12.0) (8 PhCH). ¹³C-NMR (50.3 MHz, C_6D_6 , only signals of **2S** present): Table 3; additionally, 139.39, 139.15, 138.71, 138.48 (4s); 128.50–127.38 (several *d*); 75.61 (*t*, 2 PhCH₂); 75.02, 73.55 (2*t*, 2 PhCH₂).

(I'S,2'S)- and (I'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D-galactitol (**10S/10R**). According to [7]. ¹H-NMR (400 MHz, C₆D₆, **10S/10R** 95:5): *Table* 2; additionally for **10S**, 7.37 – 7.04 (*m*, 20 arom. H); 5.03 (*d*, J = 11.2), 4.74 (*d*, J = 10.8), 4.59 (*d*, J = 11.6), 4.54 (*d*, J = 11.9), 4.47 (*d*, J = 10.8), 4.40 (*d*, J = 11.9), 4.28 (*d*, J = 11.8), 4.21 (*d*, J = 11.8) (8 PhCH). ¹H-NMR (400 MHz, CDCl₃, **10S/10R** 9:1): *Table* 2 and [7]. ¹³C-NMR (50.3 MHz, C₆D₆, only signals of **10S** visible): *Table* 3; additionally, 138.84, 138.64, 138.28, 138.08 (4s); 128.12 – 127.12 (several *d*); 75.41, 74.90, 73.06, 72.82 (4t, 4 PhCH₂).

2,3,4,6-Tetra-O-benzyl-D-(¹⁵N)gluconhydroximo-1,5-lactone (15*). A soln. of EtONa in EtOH (33.55 ml; 1.15 g of Na dissolved in 250 ml of EtOH) was treated with a soln. of ¹⁵NH₂OH HCl (Cambridge Isotope Laboratories, >98% of ¹⁵N; 505 mg, 7.17 mmol) in dry MeOH (35 ml), stirred for 5 min, treated with 2,3,4,6tetra-O-benzyl-D-glucopyranose (3 g, 5.56 mmol), and stirred at reflux for 35 h. The soln. was cooled to r.t., diluted with H_2O (100 ml), and extracted with CH_2Cl_2 (3 × 75 ml). Drying the combined org. layers (MgSO₄) and evaporation gave crude (E/Z)-2,3,4,6-tetra-O-benzyl-D-(15N)glucose oxime (3 g, 97%), which was dissolved in dry MeOH (24 ml), treated with MnO₂ (prepared according to [38]; 1.33 g, 16.3 mmol), and stirred at reflux for 6 h. After filtration through Celite (washing the residue with warm MeOH), evaporation and FC (hexane/ AcOEt 7:3) gave crystalline 15* (1.83 g, 61%), which was recrystallized in AcOEt/hexane 3:4 (7 ml). $R_{\rm f}$ (hexane/AcOEt 3:2) 0.4. $[\alpha]_{D}^{25} = +44.1$ (c = 1.0, CHCl₃). M.p. 87°. IR (CHCl₃): 3580m, 3450w, 3360w (br.), 3090w. 3060w. 3030w (sh.), 3000m, 2920m, 2860m, 1970w (sh.), 1950w, 1875w, 1810w, 1780w (br.), 1655m (sh.), 1645m, 1635m (sh.), 1620w, 1605w (sh.), 1585w, 1575w (sh.), 1490w, 1450m, 1360m, 1280m, 1260m, 1080s (sh.), 1070s, 1025s, 995m (sh.), 910s, 850w. 1H-NMR (400 MHz, CDCl₃): 7.37-7.23 (m, 18 arom. H); 7.18-7.15 (m, 2 arom. H); 7.05 (*d*, ²*J*(H,N) = 0.8, exchange with D₂O, OH); 4.73 (*d*, *J* = 11.9, PhCH); 4.65 (*d*, *J* = 12.2, PhCH); 4.60-4.59 (m, 2 PhCH); 4.59 (ddd, J = 10.1, 4.2, 2.0, H-C(5)); 4.55 (d, J = 11.7), 4.49 (d, J = 12.1), 4.47 (d, J = 10.1); 4.47 (d, JH-C(3); 3.85 (dd, J = 11.3, 2.1, H-C(6)); 3.82 (dd, J = 10.1, 4.3, H-C(4)); 3.78 (dd, J = 11.4, 4.2, H'-C(6)). ¹³C-NMR (50.3 MHz, CDCl₃): 151.21 (*s*, C(1)); 137.90, 137.62, 137.13, 137.05 (4*s*); 128.55 – 127.49 (several *d*); 81.28 $(dd, {}^{3}J(C,N) = 1.9, C(3));$ 77.46 (d, C(4)); 75.97 (d, C(5)); 73.43 $(t, PhCH_{2});$ 73.09 $(dd, {}^{2}J(C,N) = 10.7,$ C(2)); 72.89, 71.54, 70.48 (3t, 3 PhCH₂); 68.10 (t, C(6)). ¹⁵N-NMR (40.6 MHz, CDCl₃): -65.80 (br. d, J = 2.2). Anal. calc. for C34H35¹⁵NO6 (554.66): C 73.63, H 6.36, N 2.70; found: C 73.48, H 6.46, N 2.54.

[2,3,4,6-Tetra-O-benzyl-D-(^{15}N)glucopyranosylidene Jamino Methanesulfonate (1*). A soln. of **15*** (1 g, 1.8 mmol) in dry CH₂Cl₂ (20 ml) was treated dropwise at 0° with Et₃N (0.6 ml, 4.3 mmol) and then slowly with MsCl (0.15 ml, 1.96 mmol). The clear soln. was stirred for 30 min, washed with 1M NaHCO₃ soln. (2 × 15 ml) and H₂O (3 × 30 ml), dried (MgSO₄), and evaporated. Recrystallizion in Et₂O gave **1*** (638 mg, 56%). M.p. 63°. $R_{\rm f}$ (hexane/AcOEt 3 :2) 0.55. [a]₂₅²⁶ + 38.8 (c = 1.1, CHCl₃). IR (CHCl₃): 3090w, 3060w, 3030w (sh.), 3010w, 2920w (br.), 2870w, 1970w, 1950w, 1870w, 1810w, 1755w, 1635m, 1620w (sh.), 1605w (sh.), 1585w (sh.), 1555w, 1490w, 1450m, 1370s, 1325m, 1290m, 1260m, 1175m, 1095s (sh.), 1070s, 1025m, 1005m (sh.), 1000m (sh.), 965s, 955w, 910w, 835s, 825s (sh.). ¹H-NMR (400 MHz, CDCl₃): 7.40 - 7.26 (m, 18 arom. H); 7.23 - 7.16 (m, 2 arom. H); 4.74 (d, J = 12.0, PhCH); 4.65 (d, J = 12.4, PhCH); 4.67 - 4.62 (m, H - C(5)); 4.59 (d, J = 12.3), 4.55 (d, J = 12.0), 4.53 (d, J = 11.8), 4.49 (d, J = 11.7), 4.48 (d, J = 11.9), 4.35 (d, J = 11.8) (6 PhCH); 4.16 (t, $J \approx ^{3}J$ (H,N) \approx 1.6, H-C(2)); 3.95 (ddd, J = 4.1, 2.0, ^{4}J (H,N) = 1.0, H-C(3)); 3.86 (dd, J = 10.2, 3.9, H-C(4)); 3.83 (dd, J = 11.6, 2.1, H-C(6)); 3.12 (s, MsO). ¹³C-NMR (50.3 MHz, CDCl₃): 7.740 (d, C(4)); 137.74, 137.33, 136.76, 136.29 (4s); 128.66-127.68 (several d); 80.41 (dd, ^{3}J (C,N) = 1.7, C(3)); 77.40 (d, C(4));

Table 2. S	Selected ¹ H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Gluco-, Galacto-, and Allopyranosylidene Diaziridines 2, 4, 6, 8,
	10.12.14.17 and 19
	10 , 12 , 14 , 17 , <i>una</i> 18

	2S/2R [7]		2S/2R		2Se*/2	Sa*	2Se*/2Sa*		4S/4R [5]		6S [8]	8S/8R ^a) [5]]
Ratio	95 :	5	95 :	5	25 :	75	22 :	78	97:	3	>97%	94 :	6
Solvent	CDCl ₃		C_6D_6		CDCl	3	C_6D_6		C_6D_6		CDCl ₃	CDCl ₃	
H-C(2)	4.11	^b)	3.93	^b)	4.11		3.93		5.87	5.61	5.68-5.63	4.11	3.92
H-C(3)	3.68	^b)	3.59	^b)	3.69		3.60		5.49	5.69	5.31-5.26	3.83-3.78	4.13
H-C(4)	3.91	^b)	3.94	^b)	3.92		3.95		5.47	5.48	5.31-5.26	3.83 - 3.78	3.85
H-C(5)	3.82-3.78	; ^b)	3.88	^b)	3.82-	3.78	3.89		3.89	3.15	4.06	3.83-3.78	3.78 - 3.74
H-C(6)	3.78	^b)	3.66	^D)	3.78		3.67		4.18	4.075	4.28	4.33	4.30
H'-C(6)	3.68	^D)	3.56	^D)	3.68		3.57		4.07	3.97	4.11	3.74	3.73
$H_a N^c$)	2.66	1.95	2.68	1.79	2.67 (57.9/3.0)	2.69 (57.0/2	2.9)	2.13 ^d)	1.74	2.47 ^d)	2.84	2.04
$H_e N^c$)	2.36	2.32 b)	2.26	2.53	2.37 (3.7/57.7)	2.26 (3.7/57	(.4)	2.10°)	2.22	2.40°)	2.32	2.34
J(2,3)	9.4	-) b)	9.4	-) b)	9.5		9.4		9.3	9.3	-) b)	8.1 b)	9.0
J(3,4)	9.1	b)	9.1	b)	9.1		9.1		9.5	9.5	b)	-) b)	9.0
J(4,5) I(5.6)	9.9	ы	9.9	Ы	9.8		2.4		9.9	9.8	41	10	9.0
J(5,0) I(5,6')	2.0	ы	17	b	2.0		17		1.6	1.0	+.1 2.2	4.0	4. 4 0.8
I(6.6')	10.7	ы	11.0	b)	2.8		11.7		12.6	12.5	12.2	10.6	10.6
$J(H_{1},H_{2})$	9.4	9.4	9.4	9.5	9.4/9.4		9.4/9.4		9.4	9.4	9.4	9.4	9.4
• (a)e)	10S/10R [7	1	10S/10R		10Se*	/105a*	10Se*/10Sa	*	12S/12R ^a) ^f) [5]	14S/14R ^d)	[13]	
Ratio	05 ·	5	05.	5	15.	85	25.	75	15.	85	15.	85	
Solvent	CDCl ₃	5	C_6D_6	5	CDCI	3	C_6D_6	15	CDCl ₃	05	CDCl ₃	05	
H-C(2)	4.50	^b)	4.59	^b)	4.50		4.59		4.39	4.68	4.83	4.70	
H-C(3)	3.64	b)	3.39	^b)	3.64		3.39		3.87	3.62	4.19	4.22	
H-C(4)	4.07	^b)	3.92	^b)	4.08		3.92		3.93	3.93	3.88	3.91	
H-C(5)	3.96	^b)	4.03	^b)	3.97		4.04		4.11	3.62	4.47	4.33	
H-C(6)	3.58	^b)	3.76	^b)	3.58		3.76		3.82	3.74	4.38	4.38	
H' - C(6)	3.54	^b)	3.61	^b)	3.54		3.62		3.62-3.66	3.665	3.77	3.81	
H_aN	2.68	1.91	2.75	1.77	2.68 (56.9/2.9)	2.76 (56.8/2	2.8)	2.62	2.14	2.18 ^d)	2.08 ^e)	
H _e N	2.25	2.41	2.24	2.60	2.24 (3.7/57.6)	2.27 (3.6/57	7.3)	2.36	2.36	2.07 ^d)	2.15 ^e)	
J(2,3)	9.9	⁰)	9.8	⁰)	9.9		9.8		7.6	9.4	2.8	3.2	
J(3,4)	2.7	^b)	2.9	b)	2.8		2.9		5.5 b	9.5	2.0	2.2	
J(4,5)	1.1	b)	1.2) b)	1.2		1.2) 15	9.8	9.3	9.3	
J(5,6)	7.6 5.0	-) b)	7.8 5.6	-) b)	/.6		1.8		4.5 b)	3.9	5.0	5.2	
J(3,0)	0.2	Ь	5.0	b	0.1		3.0 0.0		10.4	< 1.0	9.8	9.8	
J(0,0) J(H H)	9.2	94	9.0	94	9.1		9.0		93	91	8.8	93	
• (a)e)	17Se/17Ra		17Se*/17Ra	*	18Se/1	8Ra ^a) ^g)	18Se*/18Rs	*					
Ratio	72 .	28	72 .	28	85.	15	85.	. 15					
Solvent	C ₆ D ₆	20	C ₆ D ₆	20	C ₆ D ₆	10	C_6D_6	10					
H C(2)	3.85	3 73	3.85	3 73	1 40	4.41	4 51	1 11					
H = C(2) H = C(3)	3.60	4.01	3.60	4.01	3 38	3.78	3 30	3.81					
H-C(4)	3.95	3.94	3.95	3.94	3.93	3.93	3.93	3.93					
H - C(5)	3.89	3.64-3.59	3.89	3.64-3.59	4.03	3.75 - 3.72	2 4.03	3.74	-3.70				
H-C(6)	3.69	3.66	3.69	3.66	3.79	3.75 - 3.72	2 3.80	3.74	-3.70				
H' - C(6)	3.62	3.64-3.59	3.62	3.64-3.59	3.65	3.75-3.72	3.65	3.74	-3.70				
$H_a N^c)$	3.02	-	3.02 (57.5)	-	3.08	-	3.09 (57.4)	_					
$H_e N^c$	-	2.84	-	2.84 (58.2)) —	2.92	-	2.91	(58.3)				
MeN ^c)	2.75	2.65	2.75 (2.7)	2.65 (2.9)	2.75	2.68	2.74 (2.7)	2.68	(2.7)				
J(2,3)	9.4	9.4	9.4	9.4	9.9	9.8	9.8	9.8					
J(3,4)	9.0	9.0	9.0	9.0	3.0	3.0	2.9	3.0					
J(4,5)	10.0	9.9	10.0	9.9	1.0	1.0	1.0	1.0					
J(5,6)	3.6	4.0	3.6	4.0	7.7	r)	7.8	j)					
J(5,6')	1.7	°)	1.7	°)	5.7	5)	5./	5)					
J(6,6')	11.0	10.5	11.0	10.5	9.0)	9.0	-)					

^{a)} Assignment based on a ¹H,¹³C-COSY spectrum. ^b) Not assigned. ^c) In parentheses, $J(H,^{15}N)$ or $J(Me,^{15}N)$. ^d) ^e) Tentative assignment, may be interchanged. ^f) Signals for AcNH: **12S**: 6.37 (d, J = 8.2), 1.83 (s); **12R**: 5.53 (d, J = 9.4), 1.81 (s); **14S**: 5.53 (d, J = 9.4), 1.79 (s). ^g) Assignment based on a ¹H,¹⁴COSY spectrum.

Solvent	2S [7] CDCl ₃	2S C ₆ D ₆	2Se*/2Sa* CDCl ₃	2Se*/2Sa* C ₆ D ₆	10S ^a) [7] CDCl ₃	10S C ₆ D ₆	10Se*/10Sa* CDCl ₃	10Se*/10Sa* C ₆ D ₆
C(1)	82.97	83.46	82.97 (5.1)	83.44 (5.9)	83.28	83.46	83.30 (5.5)	83.91 (6.1)
C(2)	76.53	77.15	76.62 (br.)	77.15 (3.5)	74.14	74.44	74.18 (3.9)	74.93 (br.)
C(3)	84.29	84.68	84.32	84.70	81.55	81.63	81.60	82.10
C(4)	76.53	77.15	76.56	77.18	74.17	74.77	74.23	75.30
C(5)	77.00	77.64	77.00	77.66	75.42	75.33	75.46	75.42
C(6)	67.77	68.72	67.84	68.75	67.79	68.14	67.83	68.66
	17Se	17Se*	17Ra	17Ra*	18Se ^a)	18Se*	18Ra ^a)	18Ra*
Solvent	C_6D_6	C_6D_6	C_6D_6	C_6D_6	C_6D_6	C_6D_6	C_6D_6	C_6D_6
C(1)	85.90	85.94 (4.1)	86.08	86.14	86.37	86.36 (4.3)	86.49	86.45
C(2)	77.51 ^b)	77.59 ^b)	77.36 ^d)	77.52 ^b)	75.25	75.27	74.78	74.89
C(3)	84.71	84.79	85.47	85.55	82.20	82.25	83.07	83.06
C(4)	77.29 ^b)	77.37 ^b)	76.80 ^d)	76.90 ^b)	75.25	75.33	75.25	75.17
C(5)	77.74 ^b)	77.80 ^b)	78.28 ^d)	78.38 ^b)	75.99	76.02	75.66	75.71
C(6)	68.49	68.57	68.79	68.86	68.57	68.61	69.05	69.08
MeN	39.11	39.14 (3.7)	38.32	38.33 (3.9)	39.03	38.99 (3.6)	38.52	38.52 (4.1)

Table 3. Selected ¹³C-NMR Chemical Shifts [ppm] of the Gluco- and Galactopyranosylidene-diaziridines 2, 10, 17, and 18 ($J(C_1^{15}N)$ in parentheses)

^a) Assignment based upon a ¹H,¹³C-HMQC spectrum. ^b) Assignments may be interchanged.

76.87 (*d*, C(5)); 73.33, 72.98 (2*t*, 2 PhCH₂); 72.31 (*dd*, ²*J*(C,N) = 11.4, C(2)); 71.63, 71.07 (2*t*, 2 PhCH₂); 67.35 (*t*, C(6)); 36.07 (*q*, MsO). ¹⁵N-NMR (40.6 MHz, CDCl₃): -60.67 (br. *d*, *J* = 1.7). Anal. calc. for C₃₅H₃₇¹⁵NO₈S (632.75): C 66.44, H 5.89, N 2.37, S 5.07; found: C 66.44, H 6.10, N 2.30, S 4.89.

(1R,1'S,2'S)- and (1S,1'S,2'S)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D-(15N)glucitol (2Se*/2Sa*). After dissolution of 1* (400 mg, 0.632 mmol) in a sat. soln. of NH₃ in MeOH (7.2 ml) and stirring for 30 h at r.t., the soln. was half-concentrated and then cooled at -15° overnight. The crystals were filtered off and dried under high vacuum to give 2Se*/2Sa* (271 mg, 77%). Evaporation of the mother liquor, filtration through LiChroprep-NH₂ (Et₂O), evaporation, and crystallisation from MeOH gave an additional crop of 2Se*/2Sa* (ca. 7%). $R_{\rm f}$ (hexane/AcOEt 1:1) 0.49. M.p. 50–51°. $[\alpha]_{\rm D}^{25} = +44.1$ (c = 1.1, CHCl₃). IR (CHCl₃): 3270w, 3090w, 3060w, 3030w (sh.), 3000w, 2960w, 2910m, 2870m, 1955w, 1875w, 1810w, 1605w, 1495w, 1455m, 1400w, 1360m, 1320w, 1285m (sh.), 1260m, 1145m, 1125s, 1085s (br.), 1035s, 1025s, 1015m, 1005m, 950w, 910w, 885w, 860w. ¹H-NMR (600 MHz, C₆D₆, **2Sa*/2Se*** 78:22): *Table 2*; additionally, 7.30-7.06 (*m*, 20 arom. H); 4.89 (*d*, *J* = 11.3), 4.86 (d, J = 11.4), 4.77 (d, J = 10.8), 4.73 (d, J = 11.3), 4.63 (d, J = 11.3), 4.48 (d, J = 10.9), 4.39 (d, J = 10.8), 4.30 (d, J =12.0), 4.29 (d, J = 12.0) (8 PhCH). ¹H-NMR (400 MHz, CDCl₃, **2Sa***/**2Se*** 75:25): Table 2; additionally, 7.37-7.26 (m, 18 arom. H); 7.19–7.13 (m, 2 arom. H); 4.92 (d, J = 10.9), 4.87 (d, J = 10.7), 4.86 (d, J = 10.8), 4.81 (d, J = 10.8) $(d, J = 10.9), 4.68 \ (d, J = 10.7), 4.64 \ (d, J = 12.1), 4.55 \ (d, J = 10.6), 4.48 \ (d, J = 12.1) \ (8 \ PhCH).$ ¹³C-NMR (150.9 MHz, C₆D₆, only one set of signals for 2Se*/2Sa*): Table 3; additionally, 139.39, 139.15, 138.71, 138.44 (4s); 128.59 - 127.63 (several d); 75.62, 75.09, 75.03, 73.57 (4t, 4 PhCH₂). ¹³C-NMR (100.6 MHz, CDCl₃, only one set of signals for 2Se*/2Sa*): Table 3; additionally, 138.39, 138.02, 137.70, 137.64 (4s); 128.36 - 127.63 (several d); 75.69, 75.52, 75.06, 73.52 (4t, 4 PhCH₂). ¹⁵N-NMR (60.8 MHz, C₆D₆, **2Sa*/2Se*** 75:25): *Table 4.* ¹⁵N-NMR (40.6 MHz, CDCl₃, 2Sa*/2Se* 75:25): Table 4.

2,3,4,6-Tetra-O-benzyl-D-(^{15}N)galactonhydroximo-1,5-lactone (**16***). A soln. of EtONa in EtOH (33.55 ml; 1.15 g of Na dissolved in 250 ml of EtOH) was treated with a soln. of $^{15}NH_2OH \cdot HCl$ (505 mg, 7.17 mmol) in dry MeOH (35 ml), stirred for 5 min, treated with 2,3,4,6-tetra-O-benzyl-D-galactopyranose [26][39] (3 g, 5.56 mmol), and stirred at reflux for 35 h. The soln. was cooled to r.t., diluted with H₂O (100 ml), and extracted with CH₂Cl₂ (3 × 75 ml). Drying the combined org. layers (MgSO₄) and evaporation gave crude (*E*/ *Z*)-2,3,4,6-tetra-O-benzyl-D-galactose (^{15}N)oxime (3 g, 97%), which was dissolved in dry MeOH (24 ml), treated with MnO₂ (1.33 g, 16.3 mmol), and stirred at reflux for 6 h. After filtration through *Celite* (washing the residue with warm MeOH), evaporation and FC (hexane/AcOEt 7:3) gave crude **16*** (2.5 g, 81%) as a pale yellow oil. An additional FC (hexane/AcOEt 85:15) afforded **16*** (1.85 g, 62%) as a colourless oil. IR (CHCl₃):

1510

Table 4. ¹⁵	N-NMR	(40.6 MHz)	Chemical S	Shifts []	ppm] <i>oj</i>	f the ¹⁵ 1	V-Lab	elled	Diaziridines	2*, 10)*, 17*,	, and	18*,	and of the	2
			Unl	labelled	l Diazir	idines 2	20, 28,	, 29,	and 38						

	2Se*/2Sa*		2Se*/2S	a*	10Se*/1	0Sa*	10Se*/1	0Sa*	17Se*/1'	7Ra*	18Se*/1	8Ra*
Ratio Solvent	25 : CDCl ₃	75	25 : C ₆ D ₆	75	15 : CDCl ₃	85	17: C ₆ D ₆	83	72 : C ₆ D ₆	28	85 : C ₆ D ₆	15
$\frac{\delta(N)}{^{1}J(N,H)}$ $\frac{J(N,H)}{^{3}J(N,Me)}$	- 317.0 ^a) 58.0 3.6 -	- 306.9 ^a) 57.8 3.0 -	- 312.8 57.1 3.6 -	- 304.4 57.5 2.7 -	- 314.4 57.7 2.9 -	- 304.0 57.7 2.9 -	- 313.4 56.5 3.0 -	- 304.2 57.2 3.0 -	- 297.3 57.5 - 2.9	- 297.5 58.4 - 3.0	- 298.1 57.2 - 2.6	- 299.6 58.2 - 2.8
	20S/20R		28Se/28	Re	29Se/29	Re	38Rn/38	3Rx				
Ratio Solvent	55 : CDCl ₃	45	85 : C ₆ D ₆	15	$\overline{\begin{array}{c}80:\\C_6D_6\end{array}}$	20	85 : C ₆ D ₆	15				
$\delta(\mathrm{HN})$ $^{1}J(\mathrm{N,H})$ $\delta(\mathrm{HN})$ $^{1}J(\mathrm{N,Me})$	- 292.0 to b) -	- 290.5 b) -	- 294.2 57.1 - 293.8 °)	- 294.2 57.1 -296.7 °)	- 291.7 59.1 - 296.2 °)	- 275.9 58.0 - 297.9 °)	- 284.7 54.7 - 300.4 °)	- 275.3 59.6 - 301.9 °)				

^a) This spectrum was recorded at SF parameter differing by 0.001 MHz, leading to a shift difference of 24.7 ppm. The original δ values were corrected by this value. Since also a different SR parameter was used, the corrected shift values may still not be accurate. ^b) Not assigned. ^c) Only line broadening.

3580*m*, 3350*m*, 3050*m*, 2870*s*, 1960*w*, 1845*w*, 1805*w*, 1645*m*, 1605*m*, 1445*m*, 1350*s*, 1260–1200*s*, 1150–1000*s*, 950–900*s*, 850*m*. ¹H-NMR (400 MHz, CDCl₃): 7.66 (br. *s*, NOH); 7.36–7.25 (*m*, 20 arom. H); 4.78 (*d*, *J* = 11.6), 4.76 (*d*, *J* = 11.6), 4.67 (*d*, *J* = 12.0), 4.57 (*d*, *J* = 12.0), 4.56 (*d*, *J* = 11.6) (5 PhCH); 4.56–4.45 (*m*, 3 PhCH, H–C(5)); 4.30 (*dd*, *J* = 5.2, ³*J*(H,N) = 1.2, H–C(2)); 4.19 (*t*, *J* = 3.3, H–C(4)); 3.89 (*dd*, *J* = 5.2, 3.0, H–C(3)); 3.83 (*dd*, *J* = 10.4, 7.2, H–C(6)); 3.77 (*dd*, *J* = 10.4, 5.2, H'–C(6)). ¹³C-NMR (100.6 MHz, CDCl₃): 151.51 (*d*, ¹*J*(C,N) = 0.8, C(1)); 137.81, 137.68 (2 C), 137.40 (3s); 128.47–127.54 (several *d*); 78.33 (*d*, C(4)); 78.23 (*dd*, ³*J*(C,N) = 2.1, C(3)); 74.16 (*dd*, ²*J*(C,N) = 9.5, C(2)); 73.47, 73.31 (2*t*, 2 PhCH₂); 72.49 (*d*, C(5)); 72.46, 71.72 (2*t*, 2 PhCH₂); 68.53 (*t*, C(6)). ¹⁵N-NMR (40.6 MHz, CDCl₃): -77.91 (*dd*, *J* = 1.2, 0.2).

[2,3,4,6-*Tetra*-O-*benzy*]-D-(¹⁵*N*)*galactopyranosylidene Jamino Methanesulfonte* (9*). At 0°, a soln. of **16*** (1 g, 1.8 mmol) in dry CH₂Cl₂ (20 ml) was treated dropwise with Et₃N (0.6 ml, 4.3 mmol) and then with MsCl (150 µl, 1.96 mmol). The clear soln. was stirred for 30 min, washed with 1M NaHCO₃ soln. (2 × 15 ml) and H₂O (3 × 30 ml). Drying (MgSO₄), evaporation, and recrystallisation in Et₂O gave **9*** (991 mg, 87%). M.p. 76°. R_f (hexane/AcOEt 3 :2) 0.55. [*a*]_D²⁵ = + 11.7 (*c* = 1.0, CHCl₃). IR (CHCl₃): 3000w, 2950m, 2930m, 2870m, 1720w, 1615m, 1495w, 1450w, 1360m, 1325m, 1170m, 1100 – 1000s, 970s, 820s. ¹H-NMR (400 MHz, CDCl₃): 7.38–7.21 (*m*, 20 arom. H); 4.86 (*d*, *J* = 11.3), 4.85 (*d*, *J* = 11.5), 4.64 (*d*, *J* = 12.0), 4.59 (*d*, *J* = 11.4), 4.56 (*d*, *J* = 12.0), 4.54 (*d*, *J* = 11.3), H–C(2)); 4.14 (*dd*, *J* = 3.2, 1.8, H–C(4)); 3.88 (*dd*, *J* = 5.0, 3.2, H–C(3)); 3.73 (*AB*, 2 H–C(6)); 3.00 (*s*, MsO). ¹³C-NMR (100.6 MHz, CDCl₃): 158.70 (*d*, ¹*J*(C,N) = 1.2, C(1)); 137.66, 137.43, 137.35, 136.85 (4s); 128.52 – 127.59 (several d); 80.15 (*dd*, ³*J*(C,N) = 2.6, C(3)); 78.67 (*d*, C(4)); 74.65 (*dd*, ³*J*(C,N) = 10.0, C(2)); 74.40, 73.58, 72.25, 72.16 (*dt*, 4 PhCH₂); 71.93 (*d*, C(5)); 67.48 (*t*, C(6)); 35.93 (*q*, MsO). ¹⁵N-NMR (40.6 MHz, CDCl₃): - 80.36 (*dd*, *J* = 1.3, 0.2). Anal. calc. for C₃₅H₃₇¹⁵NO₈ (632.75): C 66.44, H 5.89, N 2.37, S 5.07; found: C 66.70, H 6.15, N 2.62, S 4.89.

(IR,I'S,2'S)- and (IS,I'S,2'S)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D- (^{15}N) galactitol (**108e***/ **10Sa***). After dissolution of **9*** (1.00 g, 1.58 mmol) in a sat. soln. of NH₃ in MeOH (40 ml) and stirring for 5 h, the soln. was half-concentrated and then cooled at -15° overnight. The crystals were filtered off and dried under high vacuum to give **10Se***/**10Sa*** (718 mg, 82%) as white long needles. Evaporation of the mother liquor, filtration through *LiChroprep*-NH₂ (Et₂O), evaporation, and crystallisation from MeOH gave an additional crop of **10Se***/**10Sa*** (*ca.* 10%). $R_{\rm f}$ (hexane/AcOEt 1:1) 0.47. M.p. 90–91°. $[a]_{\rm D}^{25}$ = +19.5 (*c* = 1.1, CHCl₃). IR (CHCl₃): 3250w, 3050w, 3000w, 2905w, 2860m, 1495w, 1450w, 1350w, 1250–1200w, 1090s, 945w, 910w. ¹H-NMR (600 MHz, C₆D₆, **10Sa***/**10Se*** 3:1): *Table 2*; additionally, 7.37–7.06 (*m*, 20 arom. H); 5.03 (*d*, *J* = 11.1), 4.74 (*d*, *J* = 10.8), 4.59 (*d*, *J* = 12.3), 4.55 (*d*, *J* = 11.9), 4.47 (*d*, *J* = 10.8), 4.41 (*d*, *J* = 11.8), 4.28 (*d*, *J* = 11.8), 4.22 (*d*, *J* = 11.8) (8 PhCH). ¹H-NMR (400 MHz, CDCl₃, **10Sa***/**10Se*** 85:15): *Table 2*; additionally, 7.39–7.26 (*m*, 20 arom. H); 5.00 (d, J = 11.3), 4.84 (d, J = 10.8), 4.78 (d, J = 11.7), 4.77 - 4.74 (m), 4.73 (d, J = 11.7), 4.64 (d, J = 11.3), 4.46 (d, J = 11.9), 4.42 (d, J = 11.9) (8 PhCH). ¹³C-NMR (150.9 MHz, C₆D₆, only one set of signals for **10Se***/**10Sa***): *Table 3*; additionally, 139.32, 139.13, 138.74, 138.56 (4s); 128.60 - 127.59 (several d); 75.92, 75.85, 73.58, 72.36 (4t, 4 PhCH₂). ¹³C-NMR (100.6 MHz, CDCl₃, only one set of signals for **10Se***/**10Sa***): *Table 3*; additionally, 138.30, 138.17, 137.92, 137.64 (4s); 128.71 - 127.43 (several d); 75.78 (J(C,N) = 0.8), 74.97, 73.42, 73.18 (J(C,N) = 0.8) (4t, 4 PhCH₂). ¹⁵N-NMR (60.8 MHz, C₆D₆, **10Sa***/**10Se*** 83:17): *Table 4*. ¹⁵N-NMR (40.6 MHz, CDCl₃, **10Sa***/**10Se*** 3 : 1): *Table 4*. Anal. calc. for C₃₄H₃₆¹⁴N¹⁵NO₅ (553.68): C 66.44, H 5.89, N 2.37; found: C 66.70, H 6.15, N 2.62.

(18,1'S,2'S)- and (1R,1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(1-methylhydrazi)-D-glucitol (17Se/ 17Ra). The reaction of powdered 1 (500 mg, 0.79 mmol) in 7.04M MeNH₂ in dry MeOH (20 ml; 2.5 h) gave 17Se/17Ra 5 : 2 (436 mg, 97%). Colourless oil. R_i (hexane/AcOEt 1 : 1) 0.58. $[\alpha]_D^{25} = +35.3$ (c = 0.56, MeOH). IR (CHCl₃): 3250w, 3050w, 2990w, 2980w, 2920w, 2860m, 1650w (br.), 1495w, 1450m, 1410w (sh.), 1355m, 1305w, 1240w (br.), 1195w (sh.), 1175m (sh.), 1145m (sh.), 1110s (sh.), 1085s, 1060s, 1025m, 995m, 910w. ¹H-NMR (600 MHz, C₆D₆; 17Se/17Ra 5 : 2, ca. 95% pure, assignment based on a ¹H,¹H-COSY spectrum): Table 2; additionally for 17Se/17Ra, 7.30–7.01 (m, 20 arom. H); additionally for 17Se : 4.90 (d, J = 11.3), 4.87 (d, J =11.5), 4.86 (d, J = 10.9), 4.73 (d, J = 11.5), 4.63 (d, J = 11.3), 4.50 (d, J = 10.9), 4.39 (d, J = 12.1), 4.31 (d, J = 12.1) (8 PhCH); additionally for 17Ra, 4.89 (d, $J \approx 11.2$, PhCH); 4.79 (s, PhCH₂); 4.74 (d, $J \approx 11.8$), 4.62 (d, J = 11.1), 4.45 (d, J = 12.1), 4.33 (d, J = 12.2), 4.21 (d, J = 11.8) (5 PhCH). ¹³C-NMR (50.3 MHz, C₆D₆, 17Se/17Ra 5 : 2): Table 3; additionally for 17Se/Ra, 128.73 – 127.53 (several d); additionally for 17Se, 139.88, 139.10, 138.75, 138.61 (4s); 75.70, 75.57, 74.95, 73.36 (4t, 4 PhCH₂); additionally for 17Ra, 139.05, 138.86, 138.69, 138.29 (4s); 75.31, 75.19, 75.07, 73.59 (4t, 4 PhCH₂). CI-MS (NH₃): 568 (28), 567 (79, [M + 1]⁺), 478 (13), 477 (44), 459 (19), 448 (38), 447 (100), 445 (10), 444 (37), 436 (20), 431 (11), 430 (34). Anal. calc. for C₃₅H₃₈N₂O₅·0.5 H₂O (575.69): C 73.02, H 6.82, N 4.89; found: C 73.21, H 6.68, N 5.11.

 $\begin{array}{l} (1R,1'S,2'S)- \ and \ (1S,1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(1-methylhydrazi)-D-(2'-^{15}N)glucitol \\ \textbf{(17Se*/17Ra*)}. \ The reaction of \textbf{1*} (112 mg, 0.18 mmol) in 7.04 MeNH_2 in dry MeOH (8 ml; 2.5 h) gave \\ \textbf{17Se*/17Ra*} 5:2 (101 mg, 98%). \ R_f (hexane/AcOEt 1:1) 0.58. ^{1}H-NMR (600 MHz, C_6D_6, \textbf{17Se*/17Ra*} 5:2): \\ Table 2. ^{13}C-NMR (150.9 MHz, C_6D_6, \textbf{17Se*/17Ra*} 5:2) \ Table 2. ^{13}C-NMR (150.9 MHz, C_6D_6, \textbf{17Se*/17Ra*} 5:2): \\ \text{(several s), 128.80-127.60 (several d); additionally for \textbf{17Se*}, 75.75, 75.63, 74.99, 73.44 (4t, 4 PhCH_2); \\ \text{additionally for } \textbf{17Ra*}, 75.35, 75.25, 75.12, 73.69 (4t, 4 PhCH_2). ^{15}N-NMR (60.8 MHz, C_6D_6): \\ \text{Table 4.} \end{array}$

(*I*\$,*I*'\$,2'\$)- and (*I*R,*I*'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(1-methylhydrazi)-D-galactitol (**185e**/ **18Ra**). The reaction of **9** (500 mg, 0.79 mmol) in 7.04M MeNH₂ in dry MeOH (20 ml; 45 min) gave **18Se/18Ra** 85:15 (427 mg, 95%). Crystallization from dry MeOH afforded **18Se** (306 mg, 68%) as colourless crystals.

Data of **18Se**: $R_{\rm f}$ (hexane/AcOEt 1:1) 0.57. M.p. 79–81°. $[a]_{\rm D}^{25} = +41.8$ (c = 0.58, MeOH). IR (KBr): 3230w, 3040w, 3020w, 2950w, 2910m, 2860m, 1600w, 1490m, 1465w, 1445m, 1405w, 1395w, 1365m, 1340m, 1300m, 1270w, 1260w, 1250w, 1225m, 1210m, 1150m, 1135m, 1105s, 1070m, 1055m, 1040m, 1020m, 1005m, 980m, 955m, 920w, 905w. ¹H-NMR (400 MHz, C₆D₆): *Table 2*; additionally, 7.37–7.06 (m, 20 arom. H); 5.04 (d, J = 11.2), 4.84 (d, J = 10.8), 4.59 (d, J = 11.2), 4.55 (d, J = 11.9), 4.49 (d, J = 11.0), 4.41 (d, J = 11.9), 4.31 (d, J = 11.8), 4.24 (d, J = 11.8) (8 PhCH). CI-MS (NH₃): 567 (100, [M + 1]⁺), 108 (14), 91 (6).

Data of **18Se/18Ra** 85 : 15: R_t (hexane/AcOEt 1:1) 0.57. ¹H-NMR (600 MHz, C_6D_6): *Table 2*; additionally for **18Ra**, 4.99 (*d*, *J* = 11.3), 4.79 (*d*, *J* = 11.7), 4.59 (*d*, *J* = 11.2), 4.46 (*d*, *J* = 11.8), 4.42 (*d*, *J* = 11.7), 4.32 (*d*, *J* = 11.8), 4.24 (*d*, *J* = 11.8), 4.19 (*d*, *J* = 11.8) (8 PhCH). ¹³C-NMR (150.9 MHz, C_6D_6 , assignment based on a ¹H, ¹³C-COSY spectrum): *Table 3*; additionally for **18Se/18Ra**, 139.32–138.35 (several *s*); 128.68–127.60 (several *d*); additionally for **18Se**, 76.02, 75.47, 73.55, 73.36 (4*t*, 4 PhCH₂); additionally for **18Ra**, 75.28, 75.20, 73.69, 72.81 (4*t*, 4 PhCH₂).

(1R,1'S,2'S)- and (1S,1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(1-methylhydrazi)-D-(2'-¹⁵N)galactitol (18Se*/18Ra*). The reaction of 9* (100 mg, 0.16 mmol) in 7.04M MeNH₂ in dry MeOH (8 ml; 2 h) gave 18Se*/18Ra* 85:15 (85 mg, 93%). Crystallization from dry MeOH afforded 18Se* (60 mg, 63%) as colourless crystals.

Data of **18Se***: ¹H-NMR (600 MHz, C_6D_6): *Table 2*; additionally, 7.42 – 7.02 (*m*, 20 arom. H); 5.04 (*d*, *J* = 11.2), 4.84 (*d*, *J* = 10.8), 4.60 (*d*, *J* = 11.2), 4.56 (*d*, *J* = 11.8), 4.50 (*d*, *J* = 11.1), 4.42 (*d*, *J* = 11.8), 4.32 (*d*, *J* = 11.8), 4.24 (*d*, *J* = 11.8) (8 PhCH). ¹³C-NMR (150.9 MHz, C_6D_6): *Table 3*; additionally, 139.34, 139.20, 138.98, 138.65 (4s); 128.75 – 127.48 (several *d*); 76.01, 75.46, 73.57, 73.41 (4*t*, 4 PhCH₂).

Data of **18Ra***: ¹H-NMR (600 MHz, C₆D₆, **18Se***/**18Ra*** 85:15): *Table 2*. ¹³C-NMR (150.9 MHz, C₆D₆, **18Se***/**18Ra*** 85:15): *Table 3*. ¹⁵N-NMR (60.8 MHz, C₆D₆): *Table 4*.

X-Ray Analysis of **18Se**⁷). Recrystallization of **18Se** in AcOEt/hexane gave crystals suitable for X-ray analysis: $C_{35}H_{38}N_2O_5$ (566.70); monoclinic P_{2_1} ; a = 11.851 (3), b = 7.836 (1), c = 16.652 (3), $\beta = 104.18$ (1)°; $D_{calc.} = 1.255$ Mg/m³; Z = 2. From a crystal of size $0.08 \times 0.22 \times 0.38$ mm 5634 reflections were measured on an

Rigaku AFC5R diffractometer with MoK_a radiation (graphite monochromator, $\lambda = 0.71073$ Å) and a 12-kW rotating anode generator at 173 K. R = 0.0358, $R_w = 0.0350$. The unit-cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 25 reflections in the range $48^{\circ} < 2\theta < 52^{\circ}$. The $\omega/2\theta$ scan mode was employed for data collection, where the ω scan width was $(1.30 + 0.35 \tan \theta)^{\circ}$ and the ω scan speed was $8^{\circ} \min^{-1}$. The structure was solved by direct methods with SHELXS86, which revealed the positions of all non-H-atoms, which were refined anisotropically. The amine H-atom was placed in the position indicated by a difference-electron-density map, and its position was allowed to refine together with an isotropic displacement parameter. All remaining H-atoms were fixed in geometrically calculated positions (d(C-H) = 0.95 Å). The structure shows no unusual features. The only H-bonding interaction is a very weak intramolecular interaction between the amine H-atom and the neighbouring O-atom O-C(2).

(1'S,2'S)- and (1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D-mannitol (**20S/20R**). According to [7]. The crude product was dissolved in Et₂O and filtered through *LiChroprep*-NH₂. Evaporation and drying gave **20S/20R** as a clear oil. ¹H-NMR (600 MHz, C₆D₆; **20S/20R** 55:45; assignment based on a ¹H,¹H-COSY spectrum): *Table 5*; additionally for **20S/20R**, 7.48–7.42 (*m*, 2 arom. H); 7.31–7.04 (*m*, 18 arom. H); 4.96–4.26 (*m*, 8 PhCH). ¹³C-NMR (50.3 MHz, C₆D₆; **20S/20R** 55:45): *Table 6*; additionally for **20S/20R**, 139.34, 138.99, 138.96, 138.86, 138.71 (5s); 128.65–127.35 (several d), 73.55 (*t*, PhCH₂); additionally for **20S**, 75.22, 73.39, 71.61 (3*t*, 3 PhCH₂); additionally for **20R**, 73.99, 72.61, 71.85 (3*t*, 3 PhCH₂). ¹⁵N-NMR (60.8 MHz, C₆D₆): *Table 4*.

(1'S,2'S)- and (1'R,2'R)-1,5-Anhydro-2,3:4,6-di-O-isopropylidene-1-hydrazi-D-mannitol (**24**S/**24**R). According to [21]. Filtration of the crude product through *LiChroprep*-NH₂ gave **24**S/**24**R (95%) as a colourless foam. Solutions of **24S**/**24R** slowly isomerized and partially decomposed. $R_{\rm f}$ (hexane/AcOEt 1:1) 0.18. $[a]_{\rm D}^{25} = +22.1 (c = 0.43, \text{MeOH})$. ¹H-NMR (600 MHz, C₆D₆; **24S**/**24R** 3:7): *Table* 5; additionally for **24S**, 1.50, 1.28, 1.14, 0.95 (4s, 4 Me); additionally for **24R**, 1.40, 1.35, 1.20, 1.08 (4s, 4 Me). ¹³C-NMR (50.3 MHz, C₆D₆; **24S**/**24R** 2:3): *Table* 6; additionally for **24S**, 112.25, 99.23 (2s, 2 Me₂C); 28.23, 26.77, 26.42, 18.02 (4q, 2 Me₂C); additionally for **24R**, 110.10, 99.44 (2s, 2 Me₂C); 28.68, 27.08, 25.13, 18.19 (4q, 2 Me₂C). ¹³C-NMR (50.3 MHz, CDCl₃; **24S**/**24R** 2:3): *Table* 6; additionally for **24S**, 111.20, 99.82 (2s, 2 Me₂C); 28.82, 27.06, 25.01, 18.82 (4q, 2 Me₂C); additionally for **24R**, 110.98, 99.87 (2s, 2 Me₂C); 28.69, 27.51, 25.49, 18.75 (4q, 2 Me₂C).

(E/Z)-2,3,4,6-Tetra-O-benzyl-D-mannose (^{15}N)Oxime (**26***). A soln. of 0.52N MeONa in MeOH (0.46 ml, 0.24 mmol) was diluted with MeOH (1.5 ml), treated with $^{15}NH_2OH \cdot HCl$ (32.4 mg, 0.45 mmol), warmed to 55°, treated dropwise with a soln. of **25** (111 mg, 0.21 mmol) in MeOH (1.5 ml), and stirred at 55° for 20 h. After evaporation, a soln. of the residue in AcOEt was washed with H₂O (2 ×) and brine, dried (MgSO₄), evaporated, and dried *i.v.* to affording crude **26*** (112 mg, 98%). Yellowish oil. R_f (hexane/1,2-Dimethoxyethane 1:1) 0.21.

(Z)-2,3,4,6-Tetra-O-benzyl-D-(¹⁵N)mannonhydroximolactone (**27***). A soln. of **26*** (112 mg, 0.2 mmol) and AcONa (63 mg, 0.76 mmol) in EtOH (7 ml) was warmed to 75°, treated dropwise within 1 h with a soln of NaIO₄ (198 mg, 0.95 mmol) in 3 ml H₂O (3 ml), and stirred for 2 h. After evaporation, a soln. of the residue in AcOEt was washed with H₂O, sat. NaHCO₃ soln., H₂O, and brine, dried (MgSO₄), and evaporated. FC (hexane/AcOEt 2.1) gave **27*** (85 mg, 76%). Slightly yellowish oil. $R_{\rm f}$ (hexane/AcOEt 1:1) 0.42. IR (CHCl₃): 3380w, 3324w (br.), 3066w, 2910m, 2870m, 1641m, 1612w, 1497m, 1454s, 1364m, 1285m, 1105s, 1071s, 1027s, 945w, 913m, 877w, 846w. ¹H-NMR (300 MHz, CDCl₃): 7.42 – 7.17 (*m*, 20 arom. H, OH); 4.88 (*d*, *J* = 10.8), 4.72 (*d*, *J* = 12.4), 4.62 (*d*, *J* = 12.1) (3 PhCH); 4.53 (*d*, *J* ≈ 11.8, 2 PhCH); 4.51 (*d*, *J* ≈ 12.5), 4.46 (*d*, *J* = 12.1), 4.45 (*d*, *J* = 12.1) (3 PhCH); 4.30 (*t*, *J* = 9.0, H–C(4)); 4.19 (*dd*, *J* = 3.1, ³*J*(H,¹⁵N) = 1.3, H–C(2)); 4.00 (*dt*, *J* = 9.0, 3.6, H–C(5)); 3.79 (*d*, *J* = 3.7, 2 H–C(6)); 3.71 (*dd*, *J* = 9.0, 3.0, H–C(3)). ¹³C-NMR (100.6 MHz, CDCl₃): 151.80 (*s*, C(1)); 137.79, 137.88, 137.64, 137.26 (4s); 128.42–127.72 (several *d*); 80.80 (*d*, C(4)); 70.55 (*dd*, ³*J*(C,N) = 2.6, C(3)); 74.95 (*t*, ChCl₃); ¹⁵N-NMR (40.6 MHz, CDCl₃): – 76.41 (*s*). HR-MALDI-MS: 593.2068 (5, [*M* + K]⁺), 577.2340 (100, [*M* + Na]⁺; C₃₄H₃₅¹⁵NNaO₆⁺; calc. 577.2332), 555.2522 (39, [*M* + H]⁺; C₃₄H₃₆¹⁵NO₆⁺; calc. 555.2513), 539.2581 (9).

(Z)-[2,3,4,6-Tetra-O-benzyl-D-(^{15}N)mannopyranosylidene]amino Methanesulfonate (**19***). A suspension of **27*** (40 mg, 0.072 mmol) and 4-Å molecular sieves (10 mg) in CH₂Cl₂ (0.7 ml) was cooled to 0°, treated with Et₃N (13 µl, 0.093 mmol), stirred for 5 min, treated with a soln. of MsCl (5.6 µl, 0.072 mmol) in CH₂Cl₂ (0.3 ml), and stirred for 10 min. The mixture was diluted with cold AcOEt (10 ml), washed with cold sat. Na₂CO₃ soln., ice/H₂O, and cold brine, and dried (Na₂SO₄). Evaporation at 25° gave **19*** (45 mg, 99%). Colourless oil. *R*_f (hexane/AcOEt 3 : 2) 0.57. IR (CHCl₃): 3089w, 3066w, 2928w, 2870m, 1627m, 1497m, 1451m, 1371s, 1326m, 1295m, 1103s, 1065s, 1027s, 968s, 911w. ¹H-NMR (300 MHz, C₆D₆): 7.37 (br. *d*, *J* = 6.5, 2 arom. H); 7.24–7.04 (*m*, 18 arom. H); 4.70 (*d*, *J* = 12.1), 4.69 (*d*, *J* = 11.5) (2 PhCH); 4.46 (*t*, *J* = 8.5, H–C(4)); 4.41 (*d*, *J* = 12.7), 4.36 (*d*, *J* = 11.5), (4.34 (*d*, *J* = 12.1), 4.26 (*d*, *J* = 11.8) (4 PhCH); 4.205 (*dd*, *J* = 3.1, ³*J*(H,N) = 1.3, H–C(2)); 4.17

Table 5. Selected ¹ H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Mannopyranosylidene	
and -juranosylidene-diaziridines 20, 22, 24, 28, 29, 31, and 35	

	20S/2	20 R ^a)	22S/22R		22S/22R [5]	24S/24R	[21]	24S/24	4 R ^a)
Ratio Solvent	55 : C ₆ D ₆	45	48 : CDCl ₃	52	60 : C ₆ D ₆	40	10: CDCl ₃	90	30: C ₆ D ₆	70
H-C(2)	3.28	3.81	3.54	3.53	3.24	3.40	^b)	4.35	4.24	3.99
H-C(3)	3.53	3.94	3.81	4.02	3.56	3.91	^b)	4.33	4.03	4.16
H-C(4)	4.46	4.19	4.40	4.42	4.45	4.42	^b)	3.96	3.72	4.05
H-C(5)	3.97	3.90	3.81	3.60	3.81	3.25	^b)	3.55	3.19	3.27
H-C(6)	3.76	3.87	4.31	4.30	4.11	4.04	^b)	3.86	3.67	3.77
H'-C(6)	3.64	3.87	3.88	3.93	3.52	3.52	^b)	3.73	3.39	3.64
H _a N	1.19	1.96	1.68	1.67	1.18	1.77	2.12	2.10	1.81	1.93
H _e N	2.47	2.33	2.53	2.09	2.35	1.82	2.28	2.55	2.23	2.51
J(2,3)	3.0	3.0	3.2	3.2	3.2	3.2	^b)	8.0	7.4	6.7
J(3,4)	9.3	7.1	9.8	9.9	9.8	9.8	^b)	6.0	6.5	7.8
J(4,5)	9.8	6.1	9.4	9.4	9.4	9.4	^b)	10.4	10.4	10.3
J(5,6)	4.6	^b)	5.0	5.0	4.9	4.9	^b)	5.6	5.7	5.6
J(5,6')	1.5	^b)	10.1	10.2	10.2	10.0	^b)	10.5	10.1	10.5
J(6,6')	11.2	^b)	10.4	10.4	10.2	10.3	^b)	11.0	11.0	10.9
$J(\mathrm{H_a},\mathrm{H_e})$	9.1	9.4	9.1	9.2	9.2	9.2	9.3	9.3	9.4	9.5
	20S/2	OR [7]	20Se*/20R	.e*/20Sa*/2	0Ra*					
Ratio	<i>ca</i> . 1	: 1	50:	41:	5:	4	-			
Solvent	CDC	'l ₃	C_6D_6							
H _a N ^c)	1.45	1.90	1.16 (56.9)	1.94 (57.4)) 1.16 (2.8)	1.94 (3.5)				
H _e N ^c)	2.49	2.04	2.46 (3.8)	2.36 (3.2)	2.46 (58.2) 2.36 (57.2))			
$J(H_a, H_e)$	8.7	8.7	9.2	9.4	9.1	9.4				
	28Se/	/28Re	29Se/29Re	^a)	31R [7]	31R	31Rx*/31	Rn*	35Rx/	35Sn ^a
Ratio	85 :	15	80:	20	100%	100%	4:	1	85 :	15
			CD		CDCh	CD	C.D.		C/D/	
Solvent	C_6D_6	i.	C_6D_6		02013	$C_6 D_6$	$C_6 D_6$		C020	
Solvent H-C(2)	C ₆ D ₆	3.915	3.65	4.08	4.76	4.34	4.34		4.34	^b)
Solvent H-C(2) H-C(3)	C ₆ D ₆ 3.24 3.53	3.915 3.925	3.65 4.14	4.08 4.19	4.76 4.96	4.34 4.37	4.34 4.37		4.34 4.39	^b) ^b)
Solvent H-C(2) H-C(3) H-C(4)	C ₆ D ₆ 3.24 3.53 4.44	3.915 3.925 4.44	3.65 4.14 3.99	4.08 4.19 3.93	4.76 4.96 4.08	4.34 4.37 3.65	4.34 4.37 3.64		4.34 4.39 3.58	^b) ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5)	C ₆ D ₆ 3.24 3.53 4.44 3.97	3.915 3.925 4.44 3.45	3.65 4.14 3.99 3.55	4.08 4.19 3.93 3.06	4.76 4.96 4.08 4.45	4.34 4.37 3.65 4.46	4.34 4.37 3.64 4.46		4.34 4.39 3.58 4.51	^b) ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6)	C ₆ D ₆ 3.24 3.53 4.44 3.97 3.79	3.915 3.925 4.44 3.45 3.73	3.65 4.14 3.99 3.55 3.85	4.08 4.19 3.93 3.06 3.69	4.76 4.96 4.08 4.45 4.10	4.34 4.37 3.65 4.46 4.01	4.34 4.37 3.64 4.46 4.01		4.34 4.39 3.58 4.51 4.06	^b) ^b) ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6) H'-C(6)	C ₆ D ₆ 3.24 3.53 4.44 3.97 3.79 3.69	3.915 3.925 4.44 3.45 3.73 3.61	3.65 4.14 3.99 3.55 3.85 3.59	4.08 4.19 3.93 3.06 3.69 3.61	4.76 4.96 4.08 4.45 4.10 4.01	4.34 4.37 3.65 4.46 4.01 3.97	4.34 4.37 3.64 4.46 4.01 3.97		4.34 4.39 3.58 4.51 4.06 4.00	^b) ^b) ^b) ^b) ^b)
$\begin{tabular}{c} Solvent \\ \hline H-C(2) \\ H-C(3) \\ H-C(4) \\ H-C(5) \\ H-C(6) \\ H'-C(6) \\ H'-C(6) \\ H_{evo}-N^c) \end{tabular}$	C ₆ D ₆ 3.24 3.53 4.44 3.97 3.79 3.69 1.52	3.915 3.925 4.44 3.45 3.73 3.61 2.32	3.65 4.14 3.99 3.55 3.85 3.59 2.15	4.08 4.19 3.93 3.06 3.69 3.61 2.08	4.76 4.96 4.08 4.45 4.10 4.01 2.21	4.34 4.37 3.65 4.46 4.01 3.97 2.01	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca.	3.0/57.2)	4.34 4.39 3.58 4.51 4.06 4.00 -	^b) ^b) ^b) ^b) ^b) 2.52
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6) H'-C(6) H'-C(6) $H_{ex0} - N^{c})$ $H_{ex0} or H_{ex0} - N^{c})$	C ₆ D ₆ 3.24 3.53 4.44 3.97 3.79 3.69 1.52	3.915 3.925 4.44 3.45 3.73 3.61 2.32	3.65 4.14 3.99 3.55 3.85 3.59 2.15	4.08 4.19 3.93 3.06 3.69 3.61 2.08	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57.	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85	^b) ^b) ^b) ^b) ^b) 2.52
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H'-C(6) H'-C(6) $H_{a}N \text{ or } H_{exo}-N^{c})$ $H_{e}N \text{ or } H_{endo}-N^{c})$ MeN	$\begin{array}{c} C_6 D_6 \\ 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.79 \\ 3.69 \\ 1.52 \\ 1 - \\ 2.70 \end{array}$	3.915 3.925 4.44 3.45 3.73 3.61 2.32 - 2.43	$\begin{array}{c} 3.65 \\ 4.14 \\ 3.99 \\ 3.55 \\ 3.85 \\ 3.59 \\ 2.15 \\ - \\ 2.57 \end{array}$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 -	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 -	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57.	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85 2.46	^b) ^b) ^b) ^b) ^b) ^b) 2.52 - 2.70
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H'-C(6) H'-C(6) $H_aN \text{ or } H_{exo}-N^c$ $M_eN \text{ or } H_{endo}-N^c$ MeN J(2,3)	$\begin{array}{c} C_6 D_6 \\ 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.79 \\ 3.69 \\ 1.52 \\ 1 - \\ 2.70 \\ 2.9 \end{array}$	3.915 3.925 4.44 3.45 3.73 3.61 2.32 - 2.43 <1	$\begin{array}{c} \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \\ \hline$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8	$ \begin{array}{r} 4.34 \\ 4.37 \\ 3.65 \\ 4.46 \\ 4.01 \\ 3.97 \\ 2.01 \\ 2.41 \\ - \\ 5.7 \\ 5.7 $	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57. - 5.7	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85 2.46 5.7	^b) ^b) ^b) ^b) ^b) ^b) ^{2.52} - 2.70 ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H'-C(6) H'-C(6) H'-C(6) $H_{a}N \text{ or } H_{exo}-N^{c})$ $H_{e}N \text{ or } H_{endo}-N^{c})$ MeN J(2,3) J(3,4)	$\begin{array}{c} C_6 D_6 \\ 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.79 \\ 3.69 \\ 1.52 \\ 0 \\ - \\ 2.70 \\ 2.9 \\ 9.3 \end{array}$	+ 3.915 3.925 4.44 3.45 3.73 3.61 2.32 - 2.43 <1 °)	$\begin{array}{c} \hline C_6 D_6 \\ \hline 3.65 \\ \hline 4.14 \\ 3.99 \\ 3.55 \\ 3.85 \\ 3.59 \\ 2.15 \\ - \\ 2.57 \\ 6.3 \\ 7.2 \\ \end{array}$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5 7.9	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8 3.3	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 - 5.7 3.1	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57. - 5.7 3.1	3.0/57.2) 8/ca. 3.0)	$\begin{array}{r} 4.34 \\ 4.39 \\ 3.58 \\ 4.51 \\ 4.06 \\ 4.00 \\ - \\ 2.85 \\ 2.46 \\ 5.7 \\ 3.1 \end{array}$	^b) ^b) ^b) ^b) ^b) 2.52 - 2.70 ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6) H'-C(6) $H_{a}N \text{ or } H_{exo}-N^{c})$ $H_{eNo} \text{ or } H_{endo}-N^{c})$ MeN J(2,3) J(3,4) J(4,5)	C ₆ D ₆ 3.24 3.53 4.44 3.97 3.79 3.69 1.52) - 2.70 2.9 9.3 9.9	 3.915 3.925 4.44 3.45 3.73 3.61 2.32 2.43 <1 °) 10.0 	$\begin{array}{c} \hline C_6 D_6 \\ \hline 3.65 \\ \hline 4.14 \\ 3.99 \\ 3.55 \\ 3.85 \\ 3.59 \\ 2.15 \\ - \\ 2.57 \\ 6.3 \\ 7.2 \\ 10.4 \end{array}$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5 7.9 10.1	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8 3.3 8.0	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 - 5.7 3.1 7.2	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57. - 5.7 3.1 7.3	3.0/57.2) 8/ca. 3.0)	$\begin{array}{c} 4.34 \\ 4.39 \\ 3.58 \\ 4.51 \\ 4.06 \\ 4.00 \\ - \\ 2.85 \\ 2.46 \\ 5.7 \\ 3.1 \\ 7.4 \end{array}$	^b) ^b) ^b) ^b) ^b) 2.52 - 2.70 ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(6) H'-C(6) H'-C(6) $H_{a}N \text{ or } H_{exo}-N^{c})$ $H_{eNo} \text{ or } H_{endo}-N^{c})$ MeN J(2,3) J(3,4) J(4,5) J(5,6)	$\begin{array}{c} C_6 D_6 \\ \hline 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.69 \\ 1.52 \\) - \\ 2.70 \\ 2.9 \\ 9.3 \\ 9.9 \\ 4.6 \end{array}$	 3.915 3.925 4.44 3.45 3.73 3.61 2.32 2.43 <1 c) 10.0 4.8 	$\begin{array}{c} \hline - & - \\ \hline - & 2.57 \\ \hline$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5 7.9 10.1 5.7	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8 3.3 8.0 5.9	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 - 5.7 3.1 7.2 5.5	4.34 4.37 3.64 4.46 4.01 3.97 2.02 (ca. 2.43 (57. - 5.7 3.1 7.3 5.3	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85 2.46 5.7 3.1 7.4 5.2	<pre>b) b) b) b) b) b) 2.52 - 2.70 b) b) b) b) b)</pre>
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6) H'-C(6) H'-C(6) H_{eN} or $H_{exo}-N^{e}$ MeN J(2,3) J(3,4) J(4,5) J(5,6) J(5,6')	$\begin{array}{c} C_6 D_6 \\ \hline 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.69 \\ 1.52 \\ 0 - \\ 2.70 \\ 2.9 \\ 9.3 \\ 9.9 \\ 4.6 \\ 1.6 \end{array}$	 3.915 3.925 4.44 3.45 3.73 3.61 2.32 2.43 <1° 10.0 4.8 1.6 	$\begin{array}{c} \hline C_6 D_6 \\ \hline 3.65 \\ \hline 4.14 \\ 3.99 \\ 3.55 \\ 3.85 \\ 3.59 \\ 2.15 \\ \hline \\ 2.57 \\ 6.3 \\ 7.2 \\ 10.4 \\ 5.2 \\ 10.4 \\ \end{array}$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5 7.9 10.1 5.7 10.1	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8 3.3 8.0 5.9 4.3	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 - 5.7 3.1 7.2 5.5 6.4	$\begin{array}{c} 4.34 \\ 4.37 \\ 3.64 \\ 4.01 \\ 3.97 \\ 2.02 \ (ca. \\ - \\ 5.7 \\ 3.1 \\ 7.3 \\ 5.3 \\ 6.5 \end{array}$	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85 2.46 5.7 3.1 7.4 5.2 6.4	^b) ^b) ^b) ^b) ^b) ^b) ^{2.52} - 2.70 ^b) ^b)
Solvent H-C(2) H-C(3) H-C(4) H-C(5) H-C(6) H'-C(6) H'-C(6) H_{eN} or $H_{exo}-N^{e}$ MeN J(2,3) J(3,4) J(4,5) J(5,6) J(5,6') J(5,6')	$\begin{array}{c} C_6 D_6 \\ \hline 3.24 \\ 3.53 \\ 4.44 \\ 3.97 \\ 3.79 \\ 3.69 \\ 1.52 \\) - \\ 2.70 \\ 2.9 \\ 9.3 \\ 9.9 \\ 4.6 \\ 1.6 \\ 11.2 \end{array}$	 3.915 3.925 4.44 3.45 3.73 3.61 2.32 2.43 <1 °) 10.0 4.8 1.6 11.3 	$\begin{array}{c} \hline C_6 D_6 \\ \hline 3.65 \\ \hline 4.14 \\ 3.99 \\ 3.55 \\ 3.85 \\ 3.59 \\ 2.15 \\ \hline \\ - \\ 2.57 \\ 6.3 \\ 7.2 \\ 10.4 \\ 5.2 \\ 10.4 \\ 10.4 \\ \end{array}$	4.08 4.19 3.93 3.06 3.69 3.61 2.08 - 2.61 5.5 7.9 10.1 5.7 10.1 10.3	4.76 4.96 4.08 4.45 4.10 4.01 2.21 2.51 - 5.8 3.3 8.0 5.9 4.3 9.0	4.34 4.37 3.65 4.46 4.01 3.97 2.01 2.41 - 5.7 3.1 7.2 5.5 6.4 8.8	$\begin{array}{c} 4.34 \\ 4.37 \\ 3.64 \\ 4.01 \\ 3.97 \\ 2.02 \ (ca. \\ 2.43 \ (57. \\ - \\ 5.7 \\ 3.1 \\ 7.3 \\ 5.3 \\ 6.5 \\ 8.7 \end{array}$	3.0/57.2) 8/ca. 3.0)	4.34 4.39 3.58 4.51 4.06 4.00 - 2.85 2.46 5.7 3.1 7.4 5.2 6.4 8.7	^b) ^b) ^b) ^b) ^b) ^b) ^{2.52} - 2.70 ^b) ^b)

	20S/20F	ł	228/22R [5]	24S/24R		24S/24R		
Ratio Solvent	$55: C_6 D_6$	45	<i>ca.</i> 1:1 CDCl ₃	1: CDCl ₃	9	55 : C ₆ D ₆	45	
C(1)	82.18	81.47	82.53, 82.24	a)	a)	80.96	81.22	
C(2)	78.20	77.66	78.62, 77.32	76.06 ^b)	76.15 ^b)	76.51 ^b)	76.41 ^b)	
C(3)	81.72	81.13	78.14, 78.09	73.67 ^b)	72.24 ^b)	71.71 ^b)	75.31 ^b)	
C(4)	74.53	74.53	78.19	71.66	72.03	70.10	71.86	
C(5)	76.40	76.01	69.83, 69.00	66.81	67.66	67.96	66.65	
C(6)	69.35	69.78	68.33	62.28	61.58	60.79	61.88	
	28Se/28	Re	29Se/29Re		31R	31R	35Rx/35S	n
Ratio	85 :	15	80:	20			4:	1
Solvent	C_6D_6		C_6D_6		CDCl ₃	C_6D_6	C_6D_6	
C(1)	84.08	a)	84.06	83.96	90.83	91.40	93.69	92.74
C(2)	78.50	78.59	77.11 ^b)	77.27 ^b)	80.25 ^b)	80.60 ^b)	80.24 ^b)	80.40 ^b)
C(2)			T c d ch	75 aa h	70.2ch)	70 (1 h)	70 66 b)	79.95 ^b
C(3)	82.04	84.08	76.16°)	/S.33°)	(9.30°)	/9.01°)	/9.00-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C(3) C(4)	82.04 74.87	84.08 74.30	76.16°) 67.70	75.33°) 66.94	79.36°) 80.95	79.61°) 81.42	82.58	80.74
C(2) C(3) C(4) C(5)	82.04 74.87 77.88	84.08 74.30 77.2	76.16°) 67.70 72.87	75.33°) 66.94 72.87	79.36°) 80.95 72.97	79.61°) 81.42 73.51	79.00°) 82.58 73.45	80.74 ^a)
C(2) C(3) C(4) C(5) C(6)	82.04 74.87 77.88 69.22	84.08 74.30 77.2 69.44	67.70 72.87 62.38	75.33°) 66.94 72.87 61.95	79.36°) 80.95 72.97 66.67	79.61°) 81.42 73.51 66.93	79.00°) 82.58 73.45 67.05	^a) 66.86

Table 6. Selected ¹³C-NMR Chemical Shifts [ppm] of the Mannopyranosylidene and -furanosylidene-diaziridines **20**, **22**, **24**, **28**, **29**, **31**, and **35**

 $\begin{array}{l} (d, J = 12.1, 2 \text{ PhC}H); \ 3.77 \ (dt, J = 8.4, \ 3.1, \ H - C(5)); \ 3.49 \ (d, J = 3.1, \ 2 \ H - C(6)); \ 3.43 \ (dd, J = 8.4, \ 2.8, \ H - C(3)); \ 2.51 \ (s, \ MSO). \ ^{13}C-NMR \ (75.6 \ MHz, \ CDCl_3): \ 157.74 \ (s, \ C(1)); \ 138.52, \ 138.40, \ 138.29, \ 137.49 \ (4s); \ 128.7 - 127.6 \ (several \ d); \ 82.17 \ (d, \ C(4)); \ 79.25 \ (br. \ d, \ C(3)); \ 74.84 \ (t, \ PhCH_2); \ 73.43 \ (d, \ C(5)); \ 73.31, \ 72.03, \ 71.52 \ (3t, \ 3 \ PhCH_2); \ 68.31 \ (t, \ C(6)); \ 35.73 \ (q, \ MSO), \ dd \ for \ C(2) \ hidden \ by \ the \ noise \ or \ other \ signals. \ ^{15}N-NMR \ (40.6 \ MHz, \ C_6D_6): \ -76.6 \ (s). \ HR-MALDI: \ 671.1820 \ (25, \ [M + K]^+, \ C_{35}H_{37}K^{15}NO_8S^+; \ calc. \ 671.1842), \ 655.2107 \ (100, \ [M + Na]^+; \ calc. \ for \ \ C_{35}H_{37}^{15}NO_8S^+ \ 653.2283), \ 561 \ (32), \ 559 \ (30), \ 539 \ (49), \ 470 \ (25), \ 469 \ (82), \ 425 \ (25), \ 181 \ (27). \end{array}$

(1R, 1'S, 2'S)-, (1R, 1'R, 2'R)-, (1S, 1'S, 2'S)-, and (1S, 1'R, 2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-hydrazi-D-(¹⁵N)mannitol (**20Se***/**20Re***/**20Sa***/**20Ra***). A sat. soln. of NH₃ in MeOH (NH₃ was dumped into MeOH at 0°, 2 ml) was cooled to 0°, treated with **19*** (10 mg, 15.8 µmol), and stirred for 23 h at 23°. After evaporation at 0°, the residue was dissolved in Et₂O and filtered through *Lichroprep*-NH₂ (2 ml). Evaporation of the filtrate at 25° gave a 50:41:5:4 mixture **20Se***/**20Re***/**20Sa***/**20Ra*** (7.5 mg, 86%). Colourless oil. *R_t* (hexane/AcOEt 1:1) 0.28. ¹H-NMR (300 MHz, C₆D₆; **20Se***/**20Re***/**20Sa***/**20Ra*** 50:41:5:4): *Table 5*; additionally, 7.49 (br. *d*, *J* = 6.8, 2 arom. H); 7.44-7.01 (*m*, 18 arom. H); additionally for **20Se***/**20Sa***, 4.62 (*d*, *J* = 11.8, PhCH); 4.52-4.23 (*m*, 7 PhCH, H-C(4)); 3.98 (*ddd*, *J* = 10.0, 4.4, 1.6, H-C(5)); 3.76 (*dd*, *J* = 11.2, 4.3, H-C(6)); 3.63 (*dd*, *J* = 11.2, 1.6, H'-C(6)); 3.50 (*d*, *J* = 9.3, 2.9, H-C(3)); 3.25 (*d*, *J* = 3.1, H-C(2)); additionally for **20Re***/**20Ra***, 4.95 (*d*, *J* = 11.3, PhCH); 4.92 (*d*, *J* = 10.6, PhCH); 4.56 (*d*, *J* = 11.5, PhCH); 4.52-4.23 (*m*, 5 PhCH); 4.19 (*t*, *J* ≈ 6.4, H-C(4)); 3.94 (*dd*, *J* = 6.8, 2.8, H-C(3)); 3.91-3.84 (*m*, H-C(5), 2 H-C(6)); 3.80 (*d*, *J* = 3.1, H-C(2)).

(18,1'S,2'S)- and (1S,1'R,2'R)-1,5-Anhydro-2,3,4,6-tetra-O-benzyl-1-(1-methylhydrazi)-D-mannitol (**28Se**/**28Re**). The reaction of **19** (515 mg, 0.81 mmol) in 7.04M MeNH₂ in dry MeOH (20 ml; 2 h) and drying for 3 h at 0° gave **28Se/28Re** 85 :15 (461 mg, 98%). R_f (hexane/AcOEt 1:1) 0.27. $[\alpha]_{D}^{25} = -10.2$ (c = 0.61, MeOH). IR (CHCl₃): 3250w, 3050w, 3020w (sh.), 2990m, 2930m, 2860m, 1665w, 1495m, 1450m, 1410w, 1380w, 1360m, 1325w, 1285m, 1110s (br.), 1085s (sh.), 1050s, 1025m, 910w, 840w (br.). ¹H-NMR (400 MHz, C₆D₆; **28Se/28Re** 85 :15): *Table* 5; additionally for **28Se/28Re**, 7.49 (d, J = 7.2, 2 arom. H); 7.36 - 7.05 (m, 18 arom. H); additionally for **28Se**, 4.96 (d, J = 11.3), 4.89 (d, J = 12.5), 4.73 (d, J = 12.4), 4.56 (d, J = 11.4), 4.49 (d, J = 12.1), 4.36 (d, J = 12.5)

12.1), 4.35 (*d*, J = 11.8), 4.28 (*d*, J = 11.7) (8 PhC*H*); additionally for **28Re**, 5.00 (*d*, J = 11.4), 4.55 (*d*, J = 12.0), 4.53 (*d*, J = 12.6), 4.38 (*d*, J = 12.7) (4 PhC*H*). ¹³C-NMR (50.3 MHz, C₆D₆, **28Se/28Re** 85:15): *Table* 6; additionally for **28Se/28Re**, 139.41 – 138.94 (several *s*); 128.62 – 127.59 (several *d*); additionally for **28Se**, 75.22, 73.43, 71.60, 71.55 (4*t*, 4 PhCH₂); additionally for **28Re**, 73.92, 73.73, 72.92, 71.55 (4*t*, 4 PhCH₂). ¹⁵N-NMR (60.8 MHz, C₆D₆): *Table* 4. ESI-MS : 589 (100, $[M + Na]^+$).

(1S,1'S,2'S)- and (1R,1'S,2'S)-1,5-Anhydro-2,3:4,6-di-O-isopropylidene-1-(1-methylhydrazi)-D-mannitol (29Se/29Re). The reaction of 23 (507 mg, 1.44 mmol) in 7.04M MeNH₂ in dry MeOH (20 ml; 1 h) gave 29Se/ 29Re 4:1 (368 mg, 83%) as a colourless foam. R_f (hexane/AcOEt 1:1) 0.26. IR (CHCl₃): 3260w, 2990m, 2930m, 1455w, 1440w, 1380s, 1370m, 1345w, 1295m, 1265m, 1240m, 1195m, 1160m, 1105s, 1090s, 1080s, 1030m, 995m, 970m, 940m, 850m. ¹H-NMR (600 MHz, C₆D₆; **29Se/29Re** 4:1, assignment based on a ¹H,¹H-COSY spectrum): *Table* 5; additionally for 29Se, 1.54, 1.43, 1.21, 1.19 (4s, 2 Me₂C); additionally for 29Re, 1.50, 1.42, 1.24, 1.11 (4s, 2 Me₂C). ¹³C-NMR (50.3 MHz, C₆D₆, **29Se/29Re** 4:1): *Table* 6; additionally for 29Se, 111.18, 99.63 (2s, 2 Me₂C); 29.15, 27.55, 26.41, 18.68 (4q, 2 Me₂C); additionally for 29Re, 110.45, 99.75 (2s, 2 Me₂C); 29.21, 28.38, 26.41, 18.68 (4q, 2 Me₂C). ¹⁵N-NMR (60.8 MHz, C₆D₆): *Table* 4. ESI-MS: 325 (92, [M + K]⁺), 309 (45, [M + Na]⁺), 287 (100, [M + 1]⁺). Anal. calc. for C₁₃H₂₂N₂O₅ (286.45): C 54.51, H 7.74, N 9.77; found: C 54.27, H 8.00, N 9.85.

(1'S,2'S)-1,4-Anhydro-2,3:5,6-di-O-isopropylidene-1-hydrazi-D-mannitol (**31R**). According to [7]. ¹H-NMR (400 MHz, C₆D₆): Table 5; additionally, 1.41, 1.32, 1.26, 1.08 (4s, 4 Me). ¹³C-NMR (50.3 MHz, C₆D₆): Table 6; additionally, 113.45, 109.16 (2s, 2 Me₂C); 27.02, 26.27, 25.59, 25.42 (4q, 2 Me₂C).

(E/Z)-2,3:5,6-Di-O-isopropylidene-D-mannofuranose (¹⁵N)Oxime ((E/Z)-**33***). A soln. of MeONa in MeOH (92 mg of Na, 4 mmol; 30 ml of MeOH) was diluted with. MeOH (20 ml), treated with ¹⁵NH₂OH · HCl (308 mg, 4.4 mmol), warmed to 50°, treated portionwise with **32** (0.75 g, 2.9 mmol), stirred for 9 h at 50°, 3 d at r.t., and 8 h at 50°, and evaporated. A soln. of the residue in AcOEt, was washed with H₂O (2×) and brine, dried (MgSO₄), and evaporated. FC (AcOEt/hexane 1:1) gave (*E/Z*)-**33*** (0.4 g, 50%). R_f (AcOEt/hexane 1:1) 0.47.

(*E*)- and (*Z*)-2,3:5,6-Di-O-isopropylidene-D-(^{15}N)mannonhydroximo-I,4-lactone ((*E*)- and (*Z*)-**34***). A soln. of (*E*/*Z*)-**33*** (0.4 g, 1.45 mmol) in MeOH (12 ml) was treated with MnO₂ (prepared according to [38]; 0.3 g, 3.42 mmol), stirred for 3 h, and filtered through *Celite*. Evaporation of the filtrate, FC (AcOEt/hexane 1:1) and crystallisation from CH₂Cl₂/hexane gave (*Z*)-**34*** (140 mg, 35%) und (*E*)-**34*** (20 mg, 5%).

Data of (Z)-**34***: R_t (AcOEt/hexane 3 :2) 0.48. M.p. 175°. ¹H-NMR (300 MHz, CDCl₃): 6.35 (br. s, OH); 5.15 (d, J = 5.6, H-C(2)); 4.88 (dd, J = 5.6, 3.7, H-C(3)); 4.50 (dt, J = 8.1, 5.0, H-C(5)); 4.30 (dd, J = 8.4, 3.7, H-C(4)); 4.15 (d, J = 4.7, 2 H-C(6)); 1.51, 1.47, 1.42, 1.40 (4s, 2 Me₂C). ¹H-NMR (500 MHz, C₆D₆): 6.75 (br. s, OH); 4.62 (d, J = 5.6, H-C(2)); 4.39 (ddd, J = 7.7, 6.3, 4.9, H-C(5)); 4.11 (dd, J = 5.6, 3.5, H-C(3)); 4.05 (dd, J = 8.9, 4.9, H-C(6)); 3.92 (dd, J = 8.9, 6.3, H'-C(6)); 3.65 (dd, J = 7.7, 3.5, H-C(4)); 1.38, 1.33, 1.22, 1.09 (4s, 2 Me₂C). ¹³C-NMR (125.8 MHz, C₆D₆): 156.58 (d, ¹J(C,N) = 3.0, C(1)); 113.66, 109.43 (2s, 2 Me₂C); 82.33 (d, C(4)); 77.89 (dd, ²J(C,N) = 8.7, C(2)); 77.71 (br. d, C(3)); 73.14 (d, C(5)); 66.76 (t, C(6)); 26.97, 26.90, 25.81, 25.36 (4q, 2 Me₂C). ¹⁵N-NMR (50.7 MHz, C₆D₆): -91.1 (s). HR-MALDI-MS: 298.111 (12), 297.108 (100, [M + Na]⁺; C₁₂H₁₈¹⁵NNaO₆⁺; calc. 297.108).

Data of (E)-34*: R_t (AcOEt/hexane 3:2) 0.75. M.p. 122°. (E)-34* isomerized to (Z)-34* upon storage at r.t.

(Z)-(2,3:5,6-Di-O-isopropylidene-D-(^{15}N)mannofuranosylidene)amino Methanesulfonate (**30***). At r.t. and under N₂, a soln. of (Z)-**34*** (120 mg, 0.43 mmol) in dry CH₂Cl₂ (10 ml) was treated with Et₃N (0.14 ml, 1 mmol) and dropwise with MsCl (0.05 ml, 0.65 mmol), stirred for 1 h, diluted with CH₂Cl₂, washed with sat. NaHCO₃ soln. and H₂O (2×), dried (MgSO₄), and evaporated. FC (AcOEt/hexane 1:1) gave crude **30*** (150 mg) as yellowish oil. Crystallisation from Et₂O/hexane gave **30*** (131 mg, 87%). Colourless crystals. R_f (AcOEt/hexane 1:1) 0.45. M.p. 100–101°.

(*I*R,*I*'S,*2*'S)- and (*I*S,*I*'S,*2*'S)-1,4-Anhydro-1-hydrazi-2,3:5,6-di-O-isopropylidene-D-(^{15}N)mannitol (**31Rx***/ **31Rn***). A soln. of **30*** (63 mg, 0.22 mmol) in a saturated soln. of NH₃ in dry MeOH (4 ml) was stirred for 5 h under N₂ and at r.t. and stored for 10 h at 4°. Filtration through *LiChroprep*-NH₂, evaporation, and drying gave a colourless resin (46 mg). FC (AcOEt/hexane 1:1, column cooled with acetone/dry ice) afforded **31Rx***/**31Rn*** 4:1 (28 mg, 57%). *R*_f (AcOEt/hexane 1:1) 0.24. ¹H-NMR (300 MHz, C₆D₆): *Table 5*; additionally, 1.42, 1.32, 1.26, 1.08 (4s, 2 Me₂C).

(1S,1'S,2'S)- and (1R,1'R,2'R)-1,4-Anhydro-2,3:5,6-di-O-isopropylidene-1-(1-methylhydrazi)-D-mannitol (**35Rx/35Sn**). The reaction of **30** (142 mg, 0.4 mmol) in 7.04M MeNH₂ in dry MeOH (8 ml; 1.5 h) and drying at 0° for 4 h gave a 74:14:6:6 mixture of **35Rx, 35Sn**, and two secondary products (107 mg, 92%). R_f (hexane/AcOEt 1:2) 0.32 and 0.16. IR (CHCl₃): 3260w, 2980m, 2950w, 2930m, 2880w, 1665m, 1530w, 1450w, 1415w, 1380m, 1370m, 1250m (br.), 1195m, 1155m, 1145m, 1110m, 1070s, 1045m, 995w, 970m, 950w, 935w (sh.), 885w,

840w. ¹H-NMR (400 MHz, C_6D_6 ; **35Rx**/**35Sn** 85:15, assignment based on a ¹H,¹H-COSY spectrum): *Table 5*; additionally for **35Rx**, 1.41, 1.33, 1.26, 1.11 (4*s*, 2 Me₂C); additionally for the secondary products, 4.65 (*d*, *J* = 8.1, H–C(2)); 4.23 (*d*, *J* = 7.6, H–C(2)); 2.44, 2.43, 2.36, 2.34 (4*s*, 2 MeN). ¹³C-NMR (50.3 MHz, C_6D_6 ; **35Rx**/**35Sn** 85:15): *Table 6*; additionally for **35Rx**, 113.36, 109.19 (2*s*, 2 Me₂C); 26.90, 26.22, 25.62, 25.38 (4*q*, 2 *Me*₂C); additionally for **35Sn**, 113.19, 109.34 (2*s*, 2 Me₂C). CI-MS (NH₃): 288 (12), 287 (100, [*M*+1]⁺).

(Z)-[2,3-O-Isopropylidene-5-O-(triphenylmethyl)-D-ribofuranosylidene]amino Methanesulfonate ((Z)-**37**). A soln. of (Z)-**36**¹⁸) [17] (4.44 g, 10 mmol) and Et₃N (3.0 ml, 21.5 mmol) in dry CH₂Cl₂ (100 ml) was treated dropwise with MsCl (0.85 ml, 10.9 mmol), and stirred for 1 h. Washing with sat. NaHCO₃ soln. and H₂O, drying (MgSO₄), evaporation, and FC (hexane/AcOEt 2:1) gave (Z)-**37** (4.46 mg, 85%). Colourless foam. $R_{\rm f}$ (hexane/AcOEt 1:1) 0.56. IR (CHCl₃): 3090w (sh.), 3060w (sh.), 3020w, 3000w (sh.), 2940w, 2880w, 1675m, 1600w, 1490m, 1450m, 1370s, 1325m, 1255m, 1180s, 1150m, 1095s, 1080s (sh.), 1000s, 970s, 960w, 935w, 900w, 870m. ¹H-NMR (400 MHz, CDCl₃): 7.39–7.16 (m, Ph₃C); 5.43 (d, J = 5.8, H–C(2)); 4.84 (t, $J \approx 1.9$, H–C(4)); 4.60 (dd, J = 5.9, 1.0, H–C(3)); 3.73 (dd, J = 10.9, 2.5, H–C(5)); 3.02 (dd, J = 10.9, 1.6, H′–C(5)); 3.12 (s, MsO); 1.50, 1.36 (2s, Me₂C). ¹³C-NMR (50.3 MHz, CDCl₃): 164.73 (s, C(1)); 142.82 (3s); 128.36–127.46 (several d); 114.01 (s, Me₂C); 88.23 (d, C(4)); 87.94 (s, Ph₃C); 80.16 (d, C(3)); 78.52 (d, C(2)); 63.31 (t, C(5)); 3.60.11 (q, MsO); 26.75, 25.52 (2q, Me₂C). CI-MS: 541 (7, [M + NH₄]⁺), 482 (3), 431 (29), 430 (100, [M – MsO + 2]⁺), 299 (27), 244 (14), 243 (82, Ph₃C⁺), 188 (13). Anal. calc. for C₂₈H₂₉NO₇S (523.59): C 64.23, H 5.58, N 2.67, S 6.12; found: C 63.98, H 5.67, N 2.52, S 6.30.

(IR, I'R, 2'R)-, (IR, I'S, 2'S)-, (IS, I'R, 2'R)-, and (IS, I'S, 2'S)-1,4-Anhydro-2,3-O-isopropylidene-1-(1-methylhydrazi)-5-O-(triphenylmethyl)-D-ribitol (**38Rn/38Sn/38Rx/38Sx**). The reaction of (*Z*)-**37** (510 mg, 0.97 mmol) in 7.04M MeNH₂ in dry MeOH (20 ml; 3.5 h) gave **38Rn/38Sn/38Rx/38Sx** 76:4:12:8 (418 mg, 94%). $R_{\rm f}$ (hexane/AcOEt 1:1) 0.25. M.p. 48–50°. $[\alpha]_{\rm D}^{2S} = -36.7$ (c = 0.53, MeOH). IR (KBr): 3240m, 3040w, 3010w, 2980m, 2920m, 2860w, 1650w (br.), 1595w, 1485m, 1445s, 1410w, 1370s, 1320m, 1250m, 1210s, 1175m, 1150m, 1115s, 1075s, 1040m (sh.), 1025m (sh.), 995m, 975m, 945w, 895w, 865m, 805w. ¹H-NMR (400 MHz, C₆D₆; **38Rn/38Sn/38Rx/38Sx** 76:4:12:8, assignment based on a ¹H,¹H-COSY spectrum): Table 7; additionally for **38Rn/38Sn/38Rx/38Sx**, 75.2–7.33 (m, 6 arom. H); 7.15–6.97 (m, 9 arom. H); additionally for **38Rn**, 1.54, 1.21 (2s, Me₂C); additionally for **38Sn**, 1.41, 1.15 (2s, Me₂C); additionally for **38Rn**, 1.44, 1.14 (2s, Me₂C); additionally for **38Rn**, 1.44, 1.13 (s); 129.42–127.03 (several d), 87.69 (s, Ph₃C); additionally for **38Rn**, 113.06 (s, Me₂C); 27.04, 26.02 (2q, Me₂C); additionally for **38Rx**, 26.86, 25.47 (2q, Me₂C). ¹⁵N-NMR (60.8 MHz, C₆D₆): Table 4. CI-MS (NH₃); 460 (25), 459 (100, [M + 1]⁺), 243 (27, Ph₃C⁺).

(E/Z)-2,3,5-Tri-O-benzyl-D-ribose Oxime (40) [40]. A soln. of NaOEt (0.92 g of Na, 40.0 mmol) in abs. EtOH (150 ml) was treated at 55° with NH₂OH · HCl (5.56 g, 80.0 mmol) and portionwise with 39 [26][27] (4.21 g, 10.0 mmol), stirred for 2.5 h at 55°, and evaporated. The residue was dissolved in CH_2Cl_2 , washed (2 × with $H_2O, 1 \times$ with brine), and dried (MgSO₄). Evaporation and drying gave (E)-40/(Z)-40 4:1 (4.50 g, quant.). Colourless oil. $R_{\rm f}$ (hexane/AcOEt 1:1) 0.42. $[\alpha]_{25}^{25} = +42.0$ (c = 1.06, CHCl₃). IR (CHCl₃): 3570*m*, 3340*m*, 3060*w*, 3020w (sh.), 2990m, 2910m, 2865m, 1495m, 1455m, 1390w, 1370m, 1350m, 1325m (br.), 1260w, 1090s (br.), 1070s (sh.), 1025m, 945m, 910m, 815w. 1H-NMR (400 MHz, CDCl₃, (E)-40/(Z)-40 4:1): 8.89 (br. s, exchange with $D_{2}O, NOH$; 7.52 (d, J = 8.4, 0.8 H), 6.98 (d, J = 6.3, 0.2 H) (H-C(1)); 7.38-7.21 (m, 15 arom. H); 5.15 (dd, J = 6.3, 0.2 H) (H-C(1)); 7.38-7.21 (m, 15 arom. H); 5.15 (m, 2.1, 6.3, 0.2 H), 4.47 (dd, J = 1.7, 8.3, 0.8 H) (H-C(2)); 4.88 (d, J = 11.4, 0.8 H), 4.76 (d, J = 11.4, 0.2 H), 4.76(d, J = 11.4, 0.2 H), 4.70 (d, J = 10.9, 0.2 H), 4.64 (d, J = 10.3, 0.2 H), 4.61 (d, J = 11.7, 0.8 H), 4.58 (d, J = 12.0, 0.2 H), 4.61 (d, J = 10.0, 0.2 H), 4.6 $(0.8 \text{ H}), 4.60 - 4.49 \ (m, 2 \text{ H}), 4.45 \ (d, J = 11.7, 0.8 \text{ H}) \ (6 \text{ PhCH}); 4.63 - 4.58 \ (br. s, exchange with D₂O, 0.8 \text{ H}),$ 4.42-4.37 (br. s, exchange with D₂O, 0.2 H) (OH); 3.93-3.88 (m, 0.2 H), 3.45 (br. dd, J = 7.0, 8.9, 0.8 H) (H-C(4)); 3.86 (dd, J=2.1, 8.9, 0.2 H), 3.78 (dd, J=2.1, 8.9, 0.8 H) (H-C(3)); 3.78-3.74 (m, 1.6 H), 3.67 (dd, J = 2.7, 9.6, 0.2 H), 3.62 (dd, J = 4.9, 9.7, 0.2 H) (2 H - C(5)). ¹³C-NMR (50.3 MHz, CDCl₃, (E)-40/(Z)-40 4:1): (E)-40: 149.03 (d, C(1)); 137.91, 137.83, 136.76 (3s); 128.42-127.21 (several d); 80.64 (d, C(3)); 78.21 (d, C(2); 74.13, 73.57, 72.87 (3t, 3 PhCH₂); 71.14 (t, C(5)); 68.79 (d, C(4)); (Z)-40: 151.70 (d, C(1)); 137.83, 136.04 (2s); 79.65 (d, C(3)); 74.06, 73.12, 72.47 (3t, 3 PhCH₂); 71.99 (d, C(2)); 71.23 (t, C(5)); 69.22 (d, C(4)). CI-MS (NH₃): 453 (8, $[M + NH_4]^+$), 437 (28), 436 (100, $[M + 1]^+$). Anal. calc. for $C_{26}H_{29}NO_5$ (435.52): C 71.71, H 6.71, N 3.22; found: C 71.44, H 6.46, N 3.24.

¹⁸) The preparation of **36** by oxidation with MnO₂ [24] instead of NaIO₄ [17] gave (*Z*)-**37**/(*E*)-**36** 4:1 and, hence, by mesylation, (*Z*)-**36**/(*E*)-**37** 4:1. ¹H-NMR data of (*Z*)-**37** (400 MHz, CDCl₃, (*Z*)-**37**/(*E*)-**37** 4:1): 5.58 (*d*, *J* = 5.8, H−C(2)); 4.78 (br. *t*, *J* ≈ 1.9, H−C(4)); 4.41 (*d*, *J* = 5.8, H−C(3)); 3.76 (*dd*, *J* = 10.9, 2.5, H−C(5)); 3.13 (*s*, MsO); 3.07 (*dd*, *J* = 10.9, 1.6, H′−C(5)); 1.48, 1.33 (2*s*, 2 Me₂C).

	38Rn/388	Sn/38Rx/38Sx ^a	a)			38Rn/38Sx	ζ.
Ratio Solvent	76 : C ₆ D ₆	4:	12:	8		85 : C ₆ D ₆	15
H-C(2)	4.41	4.91	4.80	5.40	C(1)	93.97	^b)
H-C(3)	4.49	4.47	4.65	4.14	C(2)	82.82°)	82.90°)
H-C(4)	4.34	4.40	4.34	4.25	C(3)	82.53°)	82.48°)
H-C(5)	3.37	3.30	3.20	3.32-3.28	C(4)	81.91°)	81.21°)
H'-C(5)	3.11	2.98	3.06	3.32-3.28	C(5)	64.84	64.73
$H_{exo} - N$	2.33	2.38	-	-	MeN	39.98	^b)
$H_{endo} - N$	-	-	2.43	2.73			
MeN	2.79	2.74	2.81	2.54			
J(2,3)	5.9	5.9	6.1	5.7			
J(3,4)	1.0	< 0.8	1.3	< 0.8			
J(4,5)	4.3	^b)	4.5	^b)			
J(4,5')	3.7	3.2	4.6	^b)			
J(5,5')	10.1	10.3	10.3	^b)			

Table 7. Selected ¹H- and ¹³C-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Ribofuranosylidene-diaziridines **38**

(Z)-2,3,5-Tri-O-benzyl-D-ribonhydroximo-1,4-lactone (**41**). A soln. of **40** (0.50 g, 1.2 mmol) in dry MeOH (10 ml) was treated with activated MnO₂ [38] (0.19 g, 2.2 mmol) and kept for 14 h at reflux. Filtration through *Celite*, evaporation, and FC (hexane/AcOEt 7:4 \rightarrow 2:1) gave **41** (0.46 g, 92%). Colourless oil. *R*_t (hexane/AcOEt 1:1) 0.56. [a]_D²⁵ = +112.6 (c = 0.48, CHCl₃). IR (KBr): 3580m, 3320w (br.), 3060w, 3020w (sh.), 3000m, 2930m, 2880m, 1730w, 1675m, 1495m, 1455m, 1365m, 1325w, 1280w, 1250m, 1195w, 1120s (br.), 1080s (sh.), 1025m, 960m, 930m, 860w. ¹H-NMR (300 MHz, CDCl₃): 7.39 – 7.19 (m, 15 arom. H); 7.02 (s, exchange with D₂O, OH); 4.81 (d, J = 12.1, PhCH); 4.68 (ddd, J = 2.4, 3.5, 7.7, H–C(4)); 4.56 (d, J = 12.0), 4.55 (d, J = 12.0, 2 H), 4.46 (d, J = 12.0), 4.39 (d, J = 11.8) (5 PhCH); 4.19 (d, J = 5.0, H–C(2)); 4.08 (dd, J = 5.0, 7.7, H–C(3)); 3.83 (dd, J = 2.3, 11.6, H–C(5)); 3.63 (dd, J = 3.6, 11.6, H′–C(5)). ¹H-NMR (400 MHz, C₆); Table 8; additionally, 7.36 (d, J = 7.1, 2 arom. H); 7.25 (br. s, exchange with D₂O, OH); 7.20–7.05 (m, 13 arom. H); 4.86 (d, J = 12.0), 4.32 (d, J = 11.5, 2 H), 4.20 (d, J = 12.1), 4.05 (d, J = 11.6) (6 PhCH). ¹³C-NMR (50.3 MHz, CDCl₃); Table 9; additionally, 137.38, 136.81, 136.73 (3s); 128.41–127.37 (several d); 7.305, 71.76, 70.29 (3t, 3 PhCH₂). CI-MS (NH₃); 436 (10), 435 (30), 434 (100, [M + 1]⁺). Anal. calc. for C₂₆H₂₇NO₅ (433.50): C 72.04, H 6.28, N 3.23; found: C 71.85, H 6.44, N 3.16.

(Z)-(2,3,5-*Tri*-O-*benzyl*-D-*ribofuranosylidene*)*amino Methanesulfonate* (**42**). At 30° under N₂, a soln. of **41** (2.29 g, 5.3 mmol) in dry CH₂Cl₂ (60 ml) was treated with Et₃N (2.2 ml, 15.9 mmol) and dropwise with MsCl (0.62 ml, 7.9 mmol)), stirred for 1 h at 30°, and poured in ice/H₂O. The org. layer was washed (2 × with sat. NaHCO₃ soln., 1 × with brine), and dried (Na₂SO₄). FC (hexane/AcOEt 3 :1) gave **42** (2.43 g, 90%). Yellowish oil. *R*₁ (hexane/AcOEt 2 :1) 0.55. $[a]_{12}^{25} = +82.9$ (*c* = 0.97, CHCl₃). IR (CHCl₃): 3050w, 3020w (br.), 2930w (br.), 2860w, 1675m, 1495w, 1450m, 1365s, 1320m, 1295w, 1250m, 1175s, 1115m (br.), 1020m, 990m, 965m, 910w, 825s. ¹H-NMR (300 MHz, CDCl₃): 7.32–7.16 (*m*, 15 arom. H); 4.80 (*d*, *J* = 12.0, PhCH); 4.69 (*td*, *J* ≈ 2.7, 6.4, H−C(4)); 4.52 (*d*, *J* ≈ 12.0, 2 H), 4.48 (*d*, *J* = 11.5), 4.465 (*d*, *J* = 12.2), 4.460 (*d*, *J* = 12.2) (5 PhCH); 4.31 (*d*, *J* = 5.1, H−C(2)); 4.09 (*dd*, *J* = 5.2, 6.7, H−C(3)); 3.74 (*dd*, *J* = 2.3, 11.8, H−C(5)); 3.55 (*dd*, *J* = 3.1, 11.8, H′−C(5)); 3.07 (*s*, MsO). ¹H-NMR (400 MHz, C₆D₆): *Table* 8; additionally, 7.31–7.29 (*m*, 2 arom. H); 7.20–7.05 (*m*, 13 arom. H); 4.76 (*d*, *J* = 11.9), 4.42 (*d*, *J* = 11.8), 4.29 (*d*, *J* = 11.7), 4.18 (*d*, *J* = 1.1), 4.10 (*d*, *J* = 11.7), 4.08 (*d*, *J* = 12.1) (6 PhC*H*); 2.50 (*s*, MsO). ¹³C-NMR (50.3 MHz, CDCl₃): *Table* 9; additionally, 137.11, 136.56, 136.33 (3s); 128.38–127.21 (several *d*); 73.16, 72.34, 71.48 (*3t*, 3 PhCH₂); 3.574 (*q*, MsO). CI-MS (NH₃): 347 (16), 346 (84), 237 (38), 216 (19), 205 (10), 204 (100). Anal. calc. for C₂₇H₂₉NO₇S (511.59): C 68.39, H 5.71, N 2.74, S 6.27; found: C 68.22, H 5.98, N 2.91, S 6.51.

Treatment of 42 with NH_3 . Compound 42 (500 mg, 0.98 mmol) was dissolved in a sat. soln. of NH_3 in MeOH (20 ml) and stirred for 24 h at r.t. Evaporation and FC (hexane/AcOEt 2:1) gave 43 (90 mg, 21%), 45 (95 mg, 25%), and 44 [29–31] (43 mg, 10%).

		,	and of the I	naoinese Berri				
Solvent	41 C ₆ D ₆	42 C ₆ D ₆	43 ^a) CDCl ₃	45 CDCl ₃	46 CDCl ₃	47 C ₆ D ₆	48 C ₆ D ₆	49 ^a) CDCl ₃
H-C(2)	4.15	4.15	4.51	4.35	4.34	4.40	4.32	4.47
H-C(3)	3.89	3.84	3.90	4.07	4.07	4.12	4.16	3.70
H-C(4)	4.70	4.51	3.78	4.01	3.99	4.56	4.36	3.99
H-C(5)	3.50	3.28	3.53	3.62	3.61	3.50	3.35	3.58
H-C(5')	3.34	3.13	3.50	3.62	3.61	3.46	3.27	3.58
HN	-	_	^b)	6.65/5.49	6.71	_	_	^b)
HO-C(4)	_	-	2.73	3.21	3.61 - 3.50	-	-	2.51
MeN	_	-	-	-	2.82	-	-	-
J(2,3)	4.9	5.0	3.0	1.9	1.9	2.5	3.3	2.7
J(3,4)	8.2	6.8	8.7	8.3	8.0	2.8	3.5	7.6
J(4,5)	2.2	2.3	3.3	3.9	4.2	6.4	6.1	4.1
J(4,5')	3.8	3.1	4.6	3.9	4.2	5.8	5.1	4.1
J(5,5')	11.7	11.8	9.7	^c)	^c)	10.2	10.6	^c)
<i>J</i> (4,OH)	-	-	5.7	6.3	c)	-	-	7.2

Table 8. ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the Ribose Derivatives **41**–**43**, **45**, and **46**, and of the Arabinose Derivatives **48** and **49**

^a) Arbitrary numbering, as for **41** and **47**. ^b) Hidden by the signal of the Ph groups at 7.34-7.21 ppm, exchanging with D₂O. ^c) Not assigned.

Table 9. ¹³C-NMR Chemical Shifts [ppm] of the Ribose Derivatives **41–43**, **45**, and **46**, and of the Arabinose Derivatives **47–49**

	41 CDCl ₃	42 CDCl ₃	43 ^a) CDCl ₃	45 CDCl ₃	46 CDCl ₃	47 CDCl ₃	48 CDCl ₃	49 ^a) CDCl ₃
C(1)	156.03	162.31	148.28	173.90	171.23	156.72	162.71	149.46
C(2)	72.15	73.68	77.27	79.59	79.90	78.42	79.19	75.43
C(3)	75.10	75.12	80.40	80.00	80.03	80.71	80.10	80.92
C(4)	82.87	85.79	69.96	69.57	69.79	84.65	86.59	69.56
C(5)	67.22	66.95	70.51	70.88	70.83	68.31	67.56	70.33
MeN	_	_	-	_	25.73	_	_	_

^a) Arbitrary numbering, as for 41 and 47.

Treatment of **42** *with* $MeNH_2$. Compound **42** (500 mg, 0.98 mmol) was dissolved in a 7.04M soln. of MeNH₂ in MeOH (20 ml) and stirred for 1 h at r.t. Evaporation and FC (hexane/AcOEt/Et₃N 5:10:0.1) gave **46** (76 mg, 17%) and **44** (181 mg, 44%).

1,4-Dihydro-3,6-bis[(1S)-1,2,4-tri-O-benzyl-D-erytritol-1-yl]-1,2,4,5-tetrazine (**43**). Colourless crystals. $R_{\rm f}$ (hexane/AcOEt 1:1) 0.27. M.p. 108–109°. $[a]_{15}^{25} = +73.5$ (c = 0.34, CHCl₃). IR (KBr): 3400m, 3260m, 3050w, 3020w, 2910w, 2900w (br.), 2860w, 1640w (br.), 1490w, 1450m, 1425m, 1390m (sh.), 1340w, 1300w, 1205w, 1120s (sh.), 1095s, 1070s, 1020m, 965w, 930m (br.), 800w (br.). ¹H-NMR (400 MHz, CDCl₃): Table 8; additionally, 7.34–7.21 (m, 15 arom. H); 4.80 (d, J = 11.1), 4.71 (d, J = 11.5), 4.50 (d, J = 10.5), 4.48 (d, J = 11.5), 4.46 (d, J = 12.0), 4.39 (d, J = 11.9) (6 PhCH). ¹³C-NMR (50.3 MHz, CDCl₃): Table 9; additionally, 137.77 (s, 2 C); 137.20 (s); 128.84–127.79 (several d); 75.01, 73.25, 71.83 (3t, 3 PhCH₂). ESI-MS : 903 (18, [M + K]⁺), 887 (100, [M + Na]⁺). Anal. calc. for C₅₂H₅₆N₄O₈ (865.02): C 72.20, H 6.53, N 6.48; found: C 72.50, H 6.45, N 6.48.

2,3,5-*Tri*-O-*benzyl*-D-*ribonamide* (**45**). $R_{\rm f}$ (hexane/AcOEt 1:1) 0.07. $[a]_{25}^{25} = +36.3$ (c = 0.59, CHCl₃). IR (CHCl₃): 3510m, 3400m, 3060w, 3020w (sh.), 2995m, 2910w, 2870m, 1680s, 1565m, 1495w, 1455m, 1380w (br.),

1360w (br.), 1240w (br.), 1080s (br.), 1070s, 1025s, 910w. ¹H-NMR (400 MHz, CDCl₃): *Table 8*; additionally, 7.36–7.16 (*m*, 15 arom. H); 6.65 (br. *s*, NH); 5.49 (br. *s*, NH); 4.72 (*d*, J = 11.4), 4.71 (*d*, J = 11.6), 4.64 (*d*, J = 11.6), 4.55 (*d*, J = 12.0), 4.51 (*d*, J = 11.5), 4.48 (*d*, J = 12.0) (6 PhCH). ¹³C-NMR (50.3 MHz, CDCl₃): *Table 9*; additionally, 137.81 (*s*, 2 C); 137.00 (*s*); 128.33–127.46 (several *d*); 73.23, 73.09, 73.05 (3*t*, 3 PhCH₂). CI-MS (NH₃): 437 (20), 436 (100, $[M + 1]^+$).

2,3,5-*Tri*-O-*benzyl*-N-*methyl*-D-*ribonamide* (46). $R_{\rm f}$ (hexane/AcOEt 1:2) 0.18. $[\alpha]_{\rm D}^{25} = +33.0$ (c = 0.56, CHCl₃). IR (CHCl₃): 3560w, 3430m, 3060w, 3020w (sh.), 2995m, 2920m, 2860m, 1660s, 1545m, 1535m, 1495w, 1455m, 1415w, 1355w (br.), 1240w, 1090s (br.), 1070s, 1025s, 910w. ¹H-NMR (400 MHz, CDCl₃): *Table* 8; additionally, 7.38 – 7.22 (m, 15 arom. H); 6.71 (br. q, J = 4.5, irrad. at 2.82 \rightarrow s, slow exchange with D₂O, NH); 4.71 (d, J = 11.7), 4.68 (d, J = 11.7), 4.58 (d, J = 11.6), 4.54 (d, J = 12.0), 4.52 (d, J = 11.5), 4.48 (d, J = 12.0) (6 PhC*H*); 2.82 (d, J = 5.0, irrad. at 6.71 \rightarrow s, MeN). ¹³C-NMR (50.3 MHz, CDCl₃): *Table* 9; additionally, 138.00, 137.93, 137.03 (3s); 128.46 – 127.53 (several d); 73.24 (t, 3 PhCH₂). CI-MS (NH₃): 451 (30), 450 (100, [M + 1]⁺).

(*Z*)-2,3,5-*Tri*-O-*benzyl*-D-*arabinonhydroximo*-1,4-*lactone* (**47**). At 50°, a soln. of (*E*/*Z*)-2,3,5-tri-O-benzyl-D-arabinose oximes [28] (4.00 g, 9.2 mmol) and Et₃N (1.6 ml, 11.5 mmol) in DMF (80 ml) was treated portionwise with dibromantine (2.63 g, 9.2 mmol), stirred for 20 min, and poured on ice/H₂O. After extraction with Et₂O (3 ×), the org. layer was washed 2 × with a soln. of Na₂S₂O₅ (0.37 g, 2.0 mmol) and Na₂CO₃ · 10 H₂O (1.00 g, 4.0 mmol) in H₂O (200 ml) and 1 × with brine, and dried (Na₂SO₄). Evaporation and FC (hexane/AcOEt 4:1) gave **47** (2.98 g, 75%). Colourless oil. *R*_f (hexane/AcOEt 1:1) 0.56. [*a*]₂₅^D = 25.7 (*c* = 1.11, CHCl₃). IR (CHCl₃): 3580*m*, 3060*w*, 3020*w* (sh.), 3000*w*, 2910*m*, 2860*m*, 1690*m*, 1495*m*, 1455*s*, 1365*m*, 1320*m*, 1240*m*, 1195*w*, 1090*s*, 1070*s* (sh.), 1025*s*, 940*m*, 910*m*, 855*w*. ¹H-NMR (300 MHz, CDCl₃): 7.34 – 7.18 (*m*, 15 arom. H); 6.86 (*s*, exchange with D₂O, OH); 4.77 (*d*, *J* = 11.8, PhCH); 4.59 (*d*, *J* ≈ 3.1, 5.9, H−C(4)); 4.53 – 4.43 (*m*, 3 PhCH); 4.50 (*s*, PhCH₂); 4.36 (*d*, *J* = 2.6, H−C(2)); 4.13 (*t*, *J* = 2.6, H−C(3)); 3.68 (*dd*, *J* = 5.6, 10.2, H−C(5)); 3.63 (*dd*, *J* = 6.4, 10.4, H'−C(5)). ¹H-NMR (400 MHz, C₆D₆): *Table* 8; additionally, 7.33 (br. *s*, exchange with D₂O, OH); 7.25 – 7.23 (*m*, 2 arom. H); 7.14 – 7.05 (*m*, 13 arom. H); 4.83 (*d*, *J* = 11.8), 4.48 (*d*, *J* = 11.7), 4.26 (*d*, *J* = 12.1), 4.23 (*d*, *J* = 11.8), 4.21 (*d*, *J* = 11.9), 4.20 (*d*, *J* = 11.9) (6 PhCH). ¹³C-NMR (50.3 MHz, CDCl₃): *Table* 9; additionally, 137.23, 136.77, 136.63 (3*s*); 127.95 – 127.31 (several *d*); 72.88, 71.18, 71.01 (3*t*, 3 PhCH₂). CI-MS (NH₃): 436 (17), 435 (28), 434 (100, [*M* + 1]⁺), 418 (10).

(Z)-(2,3,5-*Tri*-O-*benzyl*-D-*arabinofuranosylidene*)*amino Methanesulfonate* (**48**). At -20° under N₂, a soln. of **47** (3.00 g, 6.9 mmol) in abs. CH₂Cl₂ (60 ml) was treated with Et₃N (2.9 ml, 20.8 mmol) and dropwise with MsCl (0.80 ml, 10.4 mmol)), stirred for 1 h at 20°, and poured onto ice/H₂O. The org. layer was washed 2 × with sat. NaHCO₃ soln. and 1 × with brine, and dried (Na₂SO₄). Evaporation and FC (hexane/AcOEt 3 : 1) gave **48** (3.04 g, 86%), Yellowish oil. $R_{\rm f}$ (hexane/AcOEt 1: 1) 0.68. $[a]_{\rm D}^{25} = 23.8$ (c = 0.96, CHCl₃). IR (CHCl₃): 3050w (sh.), 3020m (br.), 2930w, 2860m, 1670m, 1490m, 1450m, 1410w, 1365s, 1325m, 1245m, 1175s, 1090s (br.), 1075m (sh.), 1040m, 1025m, 965m, 905w, 825s. ¹H-NMR (300 MHz, CDCl₃): 7.36–7.16 (*m*, 15 arom. H); 4.83 (*d*, J = 11.7, PhCH); 4.69 (*dt*, J = 3.4, 5.6, H–C(4)); 4.54 (*d*, J = 11.7, PhCH); 4.51 (*d*, J = 11.2, PhCH); 4.50 (*s*, PhCH₂); 4.48 (*d*, J = 3.0, H–C(2)); 4.46 (*d*, J = 11.2, PhCH); 4.20 (*t*, J = 3.3, H–C(3)); 3.64 (*d*, J = 5.6, 2 H–C(5)); 3.10 (*s*, MsO). ¹H-NMR (400 MHz, C₆D₆): *Table* 8; additionally, 7.25–7.21 (*m*, 2 arom. H); 7.15–7.03 (*m*, 13 arom. H); 4.77 (*d*, J = 11.7), 4.41 (*d*, J = 11.7), 4.20 (*d*, J = 12.0), 4.15 (*d*, J = 12.0) (4 PhCH); 4.13 (*s*, PhCH₂); 2.47 (*s*, MsO). ¹³C-NMR (50.3 MHz, CDCl₃): *Table* 9; additionally, 137.07, 136.35, 136.13 (3s); 128.09–127.26 (several *d*); 72.79, 71.69, 71.54 (3*t*, 3 PhCH₂); 3.5.44 (*q*, Ms). CI-MS (NH₃): 347 (22), 346 (87), 237 (28), 216 (18), 206 (10), 205 (19), 204 (100). Anal. calc. for C₂₇H₂₉NO₇S · 0.5 H₂O (520.60): C 62.29, H 5.81, N 2.69, S 6.16; found: C 62.42, H 6.11, N 3.10, S 6.03.

Treatment of **48** with NH_3 . Compound **48** (500 mg, 0.98 mmol) was dissolved in a sat. soln. of NH_3 in MeOH (20 ml) and stirred for 24 h at r.t. Evaporation and FC (hexane/AcOEt 2:1) gave an unassigned fraction (51 mg, *ca.* 12%), **49** (94 mg, 21%), and **50** [29][41][42] (93 mg, 23%).

1,4-Dihydro-3,6-bis[(IR)-1,2,4-tri-O-benzyl-D-erytritol-1-yl]-1,2,4,5-tetrazine (**49**). $R_{\rm f}$ (hexane/AcOEt 1 : 1) 0.07. M.p. 144–145°. $[a]_{\rm D}^{55} = -10.8$ (c = 0.17, CHCl₃). IR (KBr): 3470*m*, 3250*m*, 3050*w*, 3020*m*, 2920*m*, 2850*m*, 1650*w*, 1490*w*, 1450*m*, 1365*m*, 1365*m*, 1305*m*, 1250*w*, 1205*m*, 1130*m* (sh.), 1120*m* (sh.), 1085*s*, 1070*s*, 1020*m*, 1000*m*, 960*w*, 940*w*, 905*w*, 870*w*, 815*w*. ¹H-NMR (400 MHz, CDCl₃): *Table* 8; additionally, 7.34–7.24 (*m*, 15 arom. H); 4.70 (d, J = 10.7, PhC*H*); 4.68 (d, J = 11.4, PhC*H*); 4.46 (s, PhC*H*₂); 4.44 ($d, J \approx 11.0$, 2 PhC*H*). ¹³C-NMR (50.3 MHz, CDCl₃): *Table* 9; additionally, 137.62, 137.35, 136.70 (3*s*); 128.49–127.84 (several *d*); 74.27, 73.38, 72.29 (3*t*, 3 PhCH₂). ESI-MS: 903 (60, [M + K]⁺), 887 (100, [M + Na]⁺). Anal. calc. for C₅₂H₅₆N₄O₈ (865.02): C 72.20, H 6.53, N 6.48; found: C 72.33, H 6.36, N 6.76.

Helvetica Chimica Acta - Vol. 86 (2003)

REFERENCES

- [1] C. Blüchel, A. Linden, A. Vasella, Helv. Chim. Acta 2001, 84, 3495.
- [2] A. Vasella, B. Bernet, M. Weber, W. Wenger, in 'Oligosaccharides in Chemistry and Biology; A Comprehensive Handbook', Ed. B. Ernst, John Wiley & Sons, New York, 2000, p. 156.
- [3] A. Vasella, in 'Bioorganic Chemistry: Carbohydrates', Ed. S. M. Hecht, Oxford University Press, New York, 1999, p. 56.
- [4] A. Vasella, Pure Appl. Chem. 1993, 65, 731.
- [5] A. Vasella, C. Witzig, C. Waldraff, P. Uhlmann, K. Briner, B. Bernet, L. Panza, R. Husi, *Helv. Chim. Acta* 1993, 76, 2847.
- [6] A. Vasella, Pure Appl. Chem. 1991, 63, 507.
- [7] K. Briner, A. Vasella, Helv. Chim. Acta 1989, 72, 1371.
- [8] M. Weber, A. Vasella, M. Textor, N. D. Spencer, Helv. Chim. Acta 1998, 81, 1359.
- [9] Semichem, 'AMPAC 6.0', 7128 Summit, Shawnee, KS 66216, 1998.
- [10] H. Spedding, J. Chem. Soc. 1961, 3617; H. Hönig, H. Weidmann, Carbohydr. Res. 1979, 73, 260.
- [11] P. R. Muddasani, E. Bozo, B. Bernet, A. Vasella, Helv. Chim. Acta 1994, 77, 257.
- [12] B. Bernet, A. Vasella, Helv. Chim. Acta 2000, 83, 995.
- [13] A. Vasella, C. Witzig, R. Husi, Helv. Chim. Acta 1991, 74, 1362.
- [14] P. Deslongchamps, 'Stereoelectronic Effects in Organic Chemistry', Pergamon Press, Oxford, 1983.
- [15] P. Deslongchamps, Pure Appl. Chem. 1993, 65, 1161.
- [16] Z. Györgydeak, I. F. Pelyvas, 'Monosaccharide Sugars: Chemical Synthesis by Chain Elongation, Degradation and Epimerization', Academic Press, San Diego, 1998, p. 18-30.
- [17] B. M. Aebischer, H. W. Hanssen, A. T. Vasella, W. B. Schweizer, J. Chem. Soc., Perkin Trans. 1 1982, 2139.
- [18] G. V. Shustov, A. B. Zolotoi, N. L. Zaichenko, O. A. Dyachenko, L. O. Atovmyan, R. G. Kostyanovsky, *Tetrahedron* 1984, 40, 2151.
- [19] E. Schmitz, Angew. Chem. 1964, 76, 197.
- [20] R. Meuwly, A. Vasella, Helv. Chim. Acta 1986, 69, 25.
- [21] P. Uhlmann, E. Harth, A. B. Naughton, A. Vasella, Helv. Chim. Acta 1994, 77, 2335.
- [22] L. Panza, A. Vasella, unpublished results.
- [23] T. Rajamannar, A. Vasella, unpublished results.
- [24] D. Beer, A. Vasella, Helv. Chim. Acta 1985, 68, 2254.
- [25] F. Baumberger, A. Vasella, Helv. Chim. Acta 1983, 66, 2210.
- [26] P. W. Austin, F. E. Hardy, J. G. Buchanan, J. Baddiley, J. Chem. Soc. 1965, 1419.
- [27] R. Barker, H. G. Fletcher, J. Org. Chem. 1961, 26, 4605.
- [28] R. Julina, A. Vasella, Helv. Chim. Acta 1985, 68, 819.
- [29] S. E. Mangholz, A. Vasella, Helv. Chim. Acta 1995, 78, 1020.
- [30] R. M. Adlington, A. G. M. Barrett, J. Chem. Soc., Perkin Trans 1 1981, 2848.
- [31] W. Timpe, K. Dax, N. Wolf, H. Weidmann, Carbohydr. Res. 1975, 39, 53.
- [32] F. A. Neugebauer, C. Krieger, H. Fischer, R. Siegel, Chem. Ber. 1983, 116, 2261.
- [33] F. A. Neugebauer, R. Siegel, Chem. Ber. 1985, 118, 2157.
- [34] G. Maier, A. Schick, I. Bauer, R. Boese, M. Nussbaumer, Chem. Ber. 1992, 125, 2111.
- [35] C. M. Asselin, G. C. Fraser, H. K. Hall, W. E. Lindsell, A. B. Padias, P. N. Preston, J. Chem. Soc., Dalton Trans. 1997, 3765.
- [36] M. Girardot, R. Nomak, J. K. Snyder, J. Org. Chem. 1998, 63, 10063.
- [37] S. Fritschi, A. Vasella, Helv. Chim. Acta 1991, 74, 2024.
- [38] J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, T. Walker, J. Chem. Soc. 1952, 1094.
- [39] S. Koto, N. Morishima, Y. Miyata, S. Zen, Bull. Chem. Soc. Jpn. 1976, 49, 2639.
- [40] C. W. Holzapfel, R. Crous, Heterocycles 1998, 48, 1337.
- [41] Q. Meng, M. Hesse, Helv. Chim. Acta 1991, 74, 445.
- [42] Y. Rabinsohn, H. G. Fletcher Jr., J. Org. Chem. 1967, 32, 3452.

Received February 13, 2003