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Abstract—We report the stereoselective synthesis of an optically pure spiroketal via an intramolecular tandem hydrogen
abstraction reaction promoted by an alkoxy radical. Expanding the use of alkene radical cation under non-oxidizing conditions
in the synthetic scenario. © 2003 Elsevier Science Ltd. All rights reserved.

The generation of radical cations from �-(phos-
phatoxy)alkyl and �-(acetoxy)alkyl radicals under non-
oxidizing conditions has been widely studied.1 The
importance of this finding not only has enormous
implications on the understanding of the DNA degra-
dation by anti-cancer agents such as bleomycin and
enedyine agents,2 but, on the synthesis of various hete-
rocycles.3 In this regard, Crich et al., have developed
new access for the construction of tetrahydrofuran,3a,b

pyrrolizidine,3c indolizidine3d,e and spiroacetal nucleus.3f

Although, spiroacetal nucleus3f were synthesized for
mechanistic purposes, yields were very low after purifi-
cation. Thus, we decided to apply this methodology for
the construction of a spiroketal nucleus. These nucleus
are present in many molecular structures, and some
exhibit pheromonal activity (Scheme 1).4

Our strategy was based on the tandem hydrogen
abstraction cyclization sequence, promoted by an
alkoxy radical (A).3a Radical (A) abstracted the hydro-
gen atom at C�4 position, and the alkyl radical formed
(B) rapidly expelled the phosphate group affording (C).
Then, the enol ether radical cation (C) was trapped by
the hydroxy group, and finally, the reduction reaction
afforded the expected spiroketal 3 (Scheme 2).

A convenient alkoxy radical precursor was the N-
alkoxyphthalimide 4. So, the synthesis of compound 4,
was started with a ‘one pot’ hydrolysis–oxidation and
Wittig olefination of the 1:2,5:6-di-O-isopropylidene-�-
D-glucose 5a to give the corresponding �,�-unsaturated
ester 6a followed by a reduction reaction to afford 7.
The reduction of the double bond and carbonyl group
of 6a was performed first, with H2/Pd(OH)2, then with

Scheme 1. 2-Ethyl-1,6-dioxaspiro[4,4]nonane (1 and 2). Prin-
cipal aggregation pheromone of Pityogenes chalcographus.

Scheme 2. Tandem hydrogen abstraction cyclization
sequence.
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LiAlH4.5 Diol 7 was converted regioselectively to the
primary N-alkoxyphthalimide 8 in good yield using the
Mitsunobu protocol.6 Finally, 8 was phosphorylated
with diethylchlorophosphate in the presence of DMAP
yielding the alkoxy radical precursor 4 (see Scheme 3).

The accessibility of the sequential hydrolysis–oxidation
and Wittig olefination transformation of 5a to the
corresponding �,�-unsaturated ester 6a in one pot
prompted us to test this protocol to other 1:2,5:6-di-O-
isopropylidene-�-D-glucose derivatives 5b–d.7 The selec-
tivity of the double bond formation was modest and
low, as previously some authors have reported when
stabilized ylides and protected or unprotected �-
alkoxyaldehydes are used8 (see Table 1).

Scheme 4. AlCl3-catalyzed spiroisomerization of 3.

Figure 2. Intermediate ion pair model for the nucleophilic
addition of the alkoxy radical A to the radical cation.

Scheme 3. Reagents and conditions : (a) i. 1.3 equiv. H5IO6/
AcOEt; ii. 2.3 equiv. Ph3P�CHCOOMe/THF (one pot) (86%);
(b) i. H2/Pd(OH)2/AcOEt; ii. LiAlH4/THF/rt (one pot) (88%);
(c) N-hydroxyphthalimide/Ph3P/DEAD/THF/rt/15 h (76%);
(d) EtO2POCl/DMAP/CH2Cl2/rt/24 h (72%).

Tin hydride-mediated cleavage of the N-alkoxyphthal-
imide 4 was carried out using the Kim’s3a,9 protocol.
Compound 4 was refluxed in benzene. Then, a solution
of Ph3SnH, and a catalytic amount of AIBN in benzene
were added dropwise. The analysis of the reaction
mixture by 1H NMR showed the presence of only two
products in a ratio 10:1 (based on the anomeric hydro-
gen), 13C NMR spectrum showed only one ketalic
carbon at 115.6 ppm. The major product corresponded
to the expected spiroketal 310 (in a 75% yield).

The stereochemistry of the spiroketal 3 was deducted
by 2D NOESY experiments. The main cross-peak inter-
actions are shown in Figure 1.

Unfortunately, after several attempts, we could not
isolate the minor product. Nevertheless, we looked
forward to prove that the minor product was not the
diastereoisomeric spiroketal 3�. So, we prepared 3�
adding a catalytic amount of AlCl3 into the NMR tube
containing spiroketal 3 in CDCl3. The mixture was
analyzed by 13C NMR, and the 13C NMR spectrum
showed two ketalic carbons at 115.6 and 116.1 ppm
(Scheme 4).

Thus, the regioselectivity and stereoselectivity outcome
depend on two important factors. First, the remarkable
favored [1,5] hydrogen abstraction over [1,6] hydrogen
abstraction, due to the well-known entropic factors.
Second, the contact ion pair and memory effects
recently introduced by Crich and Ranganathan (see
Fig. 2).3e

In conclusion, a novel protocol for dehomologation
and transformation of 1:2,5:6-di-O-isopropylidene-�-D-
glucose and some derivatives to the corresponding �,�-
unsaturated esters (in one pot) was described. Besides,
the introduction of a new way of generation of C�4
�-(phosphatoxy)alkyl radical was discussed. Finally, a
novel method for the synthesis of spiroketals is
described. In this regard, the applications of this
methodology for the synthesis of optically pure spiroke-
tals with pheromonal activity are currently underway
and will be reported in due course.

Table 1. Sequential hydrolysis–oxidation–Wittig olefination
(SHOWO)a

Entry Compound R Product E/Z Yield

5a H- 6a1b 4/1.0c 86
5b Me-2 6b 1/1.4 83

Bn- 815c3 1/1.56c
5d 804 1/3.06dMsO-

a Yields were obtained after purification in column chromatographic
and E/Z ratios were determined by 1H NMR.

b 2.5 equivalents of ylide were added.
c Z olefin was obtained as an �,�-lactone.

Figure 1. Representative NOESY interactions observed for
the spiroketal 3.
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