The Journal of Organic Chemistry

Article

Asymmetric Intramolecular Rauhut-Currier Reaction and Its Desymmetric Version via Double Thiol/Phase-Transfer Catalysis

Ying Jiang, Yang Yang, Qing He, Wei Du, and Ying-Chun Chen

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01293 • Publication Date (Web): 31 Jul 2020 Downloaded from pubs.acs.org on August 3, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Asymmetric Intramolecular Rauhut–Currier Reaction and Its Desymmetric Version via Double Thiol/Phase-Transfer Catalysis

Ying Jiang,[†] Yang Yang,[†] Qing He,[†] Wei Du,^{*†} and Ying-Chun Chen^{*†,‡}

[†]Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

[‡]College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China

ABSTRACT

An asymmetric intramolecular Rauhut–Currier reaction of linear bis(enones) has been achieved via double activation catalysis of thiols and phase transfer substances, furnishing both enantioenriched cyclohexene and cyclopentene derivatives (up to 95% ee). Furthermore, the desymmetric version of pro-chiral substrates was developed under similar catalysis, producing the frameworks bearing an additional tertiary or even quaternary stereogenic center with moderate to excellent diastereo- and enantioselectivity (up to 95% ee, >19:1 dr).

Introduction

The intramolecular Rauhut–Currier (RC) reaction is an efficient protocol for the construction of cyclic compounds by forming a C–C bond between two electron deficient alkene groups.¹ It has gained much attention since the pioneering work reported simultaneously by Roush² and Krische.³ It also has important application in

the synthesis of many natural products.⁴ The catalytic asymmetric RC reaction of linear bis(enones) substrates has been investigated extensively, mainly relying on the catalysis of chiral Lewis basic phosphines (Scheme 1a).⁵ Besides, stoichiometric chiral *N*protected cysteine was applied with excellent enantiocontrol, and excess strong bases were required for good conversions (Scheme 1b).⁶ On the other hand, the Lu group designed a new kind of cyclohexadienone derivatives bearing a side enone motif, and realized an elegant intramolecular desymmetric RC reaction to construct fused frameworks under chiral phosphine catalysis (Scheme 1c).⁷ Such a desymmetric strategy further enriches the structural diversity and complexity of the chiral RC adducts.⁸

Very recently, our group uncovered a double activation system by combining 2mercaptobenzoic acid⁹ and suitable chiral Brønsted bases, which efficiently catalyzed the asymmetric intermolecular cross-RC reaction of 2-cyclopentenone and activated alkenes.^{9a} Considering the high efficiency of this novel catalytic system, we envisioned that it would be applicable to asymmetric intramolecular RC reaction of linear bis(enones) precursors.^{5,10} Moreover, as outlined in Scheme 1d, the reversible sulfuraddition of thiol catalysts to pro-chiral bis(enones) would lead to the different early desymmetric generation of the key ion pair intermediates **IV** in a potentially stereoenriched manner under chiral phase-transfer catalysis (PTC), thus the following cyclization would deliver the expected cyclic products diastereoselectively, finally furnishing a previously unreported desymmetric intramolecular RC reaction process for linear bis(enones).

Scheme 1. Asymmetric Intramolecular Rauhut–Currier Reactions of Diverse Bis(enones) Substrates

Results and Discussion

Based on the above considerations, initially, we investigated the asymmetric intramolecular RC reaction of simple bis(enones) **1a** to establish the suitability of the double activation catalytic system.⁵ It was pleasing that the combination of 2-mercaptobenzoic acid **T1** and chiral PTC **C1** derived from cinchonine could smoothly promote the conversion of substrate **1a** at 50 °C, and the expected RC product **2a** was isolated in a moderate yield albeit with low enantioselectivity (Table 1, entry 1). Interestingly, the reaction was significantly improved by using 2-mercaptophenol **T2** as the catalytic partner (entry 2). It is also notable that the *ortho*-hydroxyl group of thiol **T2** is crucial for the reaction probably because it could assist the release of the thiol catalyst,¹⁰ as no reaction occurred when 4-mercaptophenol **T3** was applied (entry 3). More PTCs in combination with thiol **T2** were tested (entries 4–7), and excellent

enantioselectivity with a good yield could be achieved by employing PTC **C5** having a bulky 3,5-di-*t*-butylbenzyl substitution (entry 7). Slightly improved data were obtained at room temperature (entry 8), but incomplete conversion was observed at 4 °C even by extending the reaction time (entry 9). Inferior results were attained in other solvents (entries 10 and 11). In addition, the loadings of catalysts and bases were further investigated (entries 12–15), and the optimal data were afforded with 20 mol % **C5**, 40 mol % **T2** and 60 mol % K₂CO₃ (entry 14).

Table 1. Screening Conditions of Intramolecular RC Reactions of Bis(enones) 1a^a

		COPh COPh $COPh$ 1a Ph $HO^{(1)}$ $HO^{(2)}$	C (20 mol %) T (40 mol %) x_2CO_3 (80 mol %) solvent, 50 °C OMe N SH OH HO T	Ph Ph 2a Ph C3 R C4 R C4 R C5 R SH 3	O Ph = H = CF ₃ = <i>t</i> Bu	
entry	С	Т	solvent	<i>t</i> (h)	yield $(\%)^b$	ee (%) ^c
1	C1	T1	toluene	72	57	-9
2	C1	T2	toluene	24	79	-32
3	C1	Т3	toluene	72	NR	/
4	C2	T2	toluene	24	83	-59
5	C3	T2	toluene	24	83	77
6	C4	T2	toluene	24	78	90
7	C5	T2	toluene	24	86	89
8^d	C5	T2	toluene	48	91	91
9 ^e	C5	T2	toluene	72	53	97
10^d	C5	T2	EtOAc	48	95	83
11^{d}	C5	T2	CHCl ₃	48	89	84

The Journal of Organic Chemistry

$12^{d,f}$	C5	T2	toluene	72	60	93
13 ^{<i>d</i>,g}	C5	T2	toluene	48	91	87
$14^{d,h}$	C5	T2	toluene	48	92	91
$15^{d,i}$	C5	T2	toluene	48	80	89

^{*a*}Unless noted otherwise, reactions were performed with **1a** (0.05 mmol), phase transfer catalysts **C** (20 mol %), thiol **T** (40 mol %) and K₂CO₃ (80 mol %) in solvent (1 mL) at 50 °C. ^{*b*}Yield of the isolated product. ^{*c*}Determined by chiral HPLC analysis on a chiral stationary phase. ^{*d*}At room temperature. ^{*e*}At 4 °C. ^{*f*}With **C5** (10 mol %). ^{*g*}With **T2** (20 mol %). ^{*h*}With K₂CO₃ (60 mol %). ^{*i*}With K₂CO₃ (40 mol %). NR = No reaction.

Consequently, we briefly investigated the substrate scope of this known reaction. As summarized in Table 2, bis(enones) **1** with different aryl and heteroaryl groups underwent the RC reaction smoothly to give the corresponding six-membered RC products **2a–i** in good to excellent results (Table 2, entries 1–9), even on a larger scale (entry 1, data in parentheses), whereas **C4** was employed instead of **C5** in some cases for better enantiocontrol. In addition, an unsymmetric bis(enones) bearing both an electron-withdrawing group and an electron-donating group afforded the corresponding **2j** as a single product with excellent regio- and stereocontrol, which is superior to that under phosphine catalysis (entry 10).⁵ Moreover, an aromatic/aliphatic hybrid bis(enones) also proceeded smoothly to give product **2k** exclusively, albeit with lower enantioselectivity (entry 11).

1^d	Ph	Ph	CH_2	1	48	2a , 91 (73)	91 (91) ^e
2	$4-CH_3C_6H_4$	$4-CH_3C_6H_4$	CH_2	1	48	2b , 88	95
3	3-CH ₃ OC ₆ H ₄	$3-CH_3OC_6H_4$	CH_2	1	48	2c , 83	92
4 ^f	$4\text{-}BrC_6H_4,$	$4\text{-}BrC_6H_4,$	CH_2	1	24	2d , 91	84
5 ^f	$3-BrC_6H_4$	$3-BrC_6H_4$	CH_2	1	24	2e , 72	79
6	2-naphthyl	2-naphthyl	CH_2	1	48	2f , 68	81
7	2-thienyl	2-thienyl	CH_2	1	48	2g , 81	82
8	Ph	Ph	$C(CH_3)_2$	1	48	2h , 65	83
91	Ph	Ph	0	1	48	2i , 73	78
10	$4-NO_2C_6H_4$	$4-CH_3C_6H_4$	CH_2	1	48	2j , 92	93
11	Ph	CH ₃	CH_2	1	48	2k , 73	80

^{*a*}Unless noted otherwise, reactions were performed with bis(enones) **1** (0.1 mmol, $X = CH_2$, $R^1 = R^2$), PTC **C5** (20 mol %), thiol **T2** (40 mol %) and K₂CO₃ (60 mol %) in toluene (1 mL) at room temperature. ^{*b*}Yield of the isolated product. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}Data in parentheses were obtained on a 1.0 mmol scale. ^{*e*}The absolute configuration of product **2a** was determined by comparing rotation data with literature reports.⁵ The other products were assigned by analogy. ^{*f*}With **C4** (20 mol %).

On the other hand, compared to bis(enones) **1** from glutaraldehyde-type precursors, succinaldehyde-derived ones **3** have been less investigated, and the related asymmetric RC reactions usually suffered from low reactivity and enantioselectivity.^{5a,c} In contrast, we pleasingly found that the intramolecular RC reaction of such a type of substrates **3** proceeded very well under the double activation of an axial chiral thiol **T4** derived from *R*-BINOL^{10a} and chiral PTC **C6**,¹¹ and a few five-membered ring products **4a–e** were efficiently constructed in moderate to excellent enantioselectivity (Scheme 2).

Scheme 2. Substrate Scope for Intramolecular RC Reactions of Bis(enones) 3^a

Inspired by the promising results based on the easily tunable thiol-PTC system, we intended to explore the more challenging desymmetric RC reaction with linear bis(enones) having a &substitution. Under the catalysis of thiol **T5** and PTC **C7**,¹¹ prochiral bis(enones) **5a** delivered the diastereomerically pure product **6a** with excellent enantioselectivity (Table 3, entry 1), whereas slightly lower diastereocontrol was observed on a larger scale (entry 2). For comparison, much lower catalytic efficacy was obtained by using a bifunctional phosphine **C8** (entry 3),^{5b} further showing the superiority of the current double activation system. As summarized in Table 3, an array of bis(enones) **5** bearing diverse substituents were investigated, and the corresponding desymmetric RC products **6b–m** were generally obtained with good to excellent stereoselectivity (entries 4–15), whereas inferior data were observed for the substrates with electron-withdrawing or heteroaryl groups, probably due to the electronic effects (entries 6, 7 and 9).

Table 3. Substrate Scope of Desymmetric Intramolecular RC Reaction of Bis(enones) 5^a

	$ \begin{array}{c} COR & COR & C7 (2) \\ F (2) \\ R^1 & F (2) \\ F (2) \\ $	20 mol %) 40 mol %) D ₃ (60 mol %) ene, rt Et N Br t OH C7 tBu		H N _{nC4H9}	
entry	R, R ¹	<i>t</i> (h)	yield $(\%)^b$	ee (%) ^c	$\mathrm{d}\mathbf{r}^d$
1	Ph, CH ₃	72	6a , 76	92	>19:1
2 ^e	Ph, CH ₃	72	6a , 78	90	14:1
3 ^f	Ph, CH ₃	96	6a , 34	97	>19:1
4	$4\text{-}CH_3C_6H_{4,}CH_3$	72	6b , 66	94	>19:1
5	$3\text{-}CH_3OC_6H_{4,}CH_3$	72	6c , 75	95	>19:1
6	$4\text{-}BrC_6H_{4,}CH_3$	48	6d , 66	79	13:1
7	$3\text{-}\mathrm{ClC}_6\mathrm{H}_{4,}\mathrm{CH}_3$	24	6e , 82	70	14:1
8	2-naphthyl, CH ₃	72	6f , 75	80	>19:1
9	2-thienyl, CH ₃	72	6g , 62	75	3:1
10	Ph, Ph	48	6h , 73	84	>19:1
11	Ph, 4-ClC ₆ H ₄	48	6i , 82	86	>19:1
12	Ph, CO ₂ Et	48	6j , 82	85	>19:1
13	Ph, OTBS	36	6k , 75	83	10:1
14	Ph, <i>i</i> Bu	36	61 , 85	84	>19:1
15 ^g	2-naphthyl, 4-ClC ₆ H ₄	48	6m , 70	81	>19:1

^{*a*}Unless noted otherwise, reactions were performed with bis(enones) **5** (0.1 mmol), PTC **C7** (20 mol %), thiol **T5** (40 mol %) and K₂CO₃ (60 mol %) in toluene (1 mL) at room temperature. ^{*b*}Yield of the isolated product. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}Determined by ¹H NMR analysis. ^{*e*}With **5a** (0.5 mmol). ^{*f*}With phosphine **C8**. ^{*g*}In CHCl₃; the absolute configuration of product **6m** was determined by X-ray analysis after conversion to product **15** (see Scheme 4).¹² The other products were assigned by analogy.

In addition, a bis(enones) 7 having a δ , δ -disubstituted pattern underwent the desymmetric RC reaction smoothly under the double catalysis of PTC C6 and thiol

T4,¹¹ producing product **8** bearing a quaternary stereogenic center in a good yield with moderate stereocontrol (Scheme 3). Even the highly challenging desymmetric RC reaction of substrate **9** (as an inseparable *cis/trans* mixture) could be realized, and the bridged product **10** was obtained with good stereoselectivity under the catalysis of PTC **C5** and thiol **T2**, albeit in a fair yield, probably because the *trans*-precursor could not undergo the cyclization.¹³ Interestingly, the substrate **11** could undergo intramolecular RC reaction followed by a cascade aldol process under similar catalytic conditions, and a bicyclic framework **11** was furnished in a fair yield with moderate enantioselectivity.¹⁴ Finally, our thiol-based double activation strategy was applicable to the asymmetric RC reaction of substrates **12**;¹⁵ in this case, a bifunctional thioureatertiary amine **C9** was found to be a more reliable choice,¹¹ and the desired products **13a** and **13b** were constructed in good yields with high ee values.

Scheme 3. More Exploration on Intramolecular RC Reactions of Diversely Structured Substrates

ACS Paragon Plus Environment

As illustrated in Scheme 4, the multifunctional RC adduct 2c could undergo Nazarov cyclization to afford the fused hexahydro-9*H*-fluoren-9-one architecture 14 in a moderate yield with exclusive diastereocontrol promoted by FeCl₃·6H₂O.¹⁶ Besides, product **6m** was similarly transformed to framework 15, albeit in a fair yield.

Scheme 4. Transformation of RC Products 2c and 6m

In conclusion, we have further developed the double activation system combining thiols and phase transfer catalysts, which was successfully applied to the asymmetric intramolecular Rauhut–Currier reaction of linear bis(enones) substrates, including the previously unreported desymmetric version for the unsaturated substrates with prochiral centers. This easily tunable catalytic system is highly efficient under mild conditions, and enables straightforward access to a broad spectrum of six- and fivemembered frameworks with structural diversity in moderate to high yields with fair to excellent stereoselectivity. We believe that this catalytic strategy could be applicable to more challenging asymmetric reactions. The results will be reported in due course.

EXPERIMENTAL SECTION

General Method. Unless otherwise noted, all reactions were carried out under ambient atmosphere; when the reactions required heating, the heat source was oil bath. ¹H NMR and ¹³C NMR spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. High resolution mass spectra (HRMS) was recorded on a Waters SYNAPT G2 or Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using an electrospray (ESI) ionization source. X-ray diffraction experiments were carried out on an Agilent Gemini and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric ratio was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with the authentic racemate, using a Daicel Chiralpak AD-H Column (250×4.6 mm), Chiralpak IC Column (250 × 4.6 mm), Chiralpak ID Column (250 × 4.6 mm), Chiralpak IH Column $(250 \times 4.6 \text{ mm})$, Chiralpak OD-H Column $(250 \times 4.6 \text{ mm})$; UV detection was monitored at 254 nm. Optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting point was obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200-300 mesh) eluting with EtOAc and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I2, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and EtOAc were distilled. THF was freshly distilled from sodium/benzophenone before use. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet.

The bis(enones) **1** and **3** were synthesized according to the literature procedures.^{5b,c,17} The axial chiral mercaptophenol **T4** was synthesized following the literature procedures.^{10a} The substituted mercaptophenol **T5**, **T14** and **T15** were synthesized according to the literature procedures.¹⁸ The bis(enones) **9** was synthesized according to the literature procedures.¹⁹ The absolute configuration of chiral **2a**, **4a** and **13b** was assigned by comparison with the experimental data in the literatures.^{5b,5c,6,15}

General Procedure for preparation of bis(enones) 5 and 7. General procedure *A*: A solution of 3-substituted glutaric acid (10 mmol) in anhydrous THF (20 mL) was added dropwise to a cooled suspension of LiAlH₄ (20 mmol, 2.0 equiv) in anhydrous THF (20 mL) at 0 °C. The mixture was heated to 60 °C and monitored by TLC. After completion, the mixture was cooled to 0 °C, and quenched by NaOH (1 M). The precipitate was filtered, and the filtrate was extracted with EtOAc. The combined organic layers were washed with brine, dried and evaporated to provide the diol without further purification.

Oxalyl chloride (30 mmol, 3.0 equiv) was added dropwise to a solution of DMSO (50 mmol, 5.0 equiv) in DCM (30 mL) at -78 °C. The mixture was stirred at -78 °C for 15 min, and a solution of the obtained diol (10 mmol) in DCM (20 mL) was added dropwise. The mixture was stirred at -78 °C for 30 min and then triethylamine (70

mmol, 7.0 equiv) was added. The mixture was allowed to warm to room temperature for 30 min, and sodium bicarbonate solution was added. The mixture was extracted with DCM. The combined organic layers were washed with brine, dried and evaporated to provide 3-substituted glutaric dialdehyde without further purification.

A solution of 3-substituted glutaric dialdehyde in THF (20 mL) was added to a solution of the ylide reagent (25 mmol, 2.5 equiv) in THF (20 mL). Then magnesium sulfate (40 mmol, 4.0 equiv) was added. The mixture was stirred under reflux and monitored by TLC. After removing the precipitate and solvent, the residue was purified by column chromatography (petroleum ether/EtOAc = 15/1) to afford the 5-substituted bis(enones) **5**.

General procedure B: The 4-substituted 1,6-heptadiene (5 mmol) was dissolved in *t*BuOH/H₂O (1:1, 50 mL), and K₂OsO₄·2H₂O (0.025 mmol, 0.005 equiv) and NaIO₄ (25 mmol, 5.0 equiv) were added. The mixture was stirred at room temperature overnight. The reaction was quenched with saturated NaS₂O₃, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and evaporated to provide 3-substituted glutaric dialdehyde without further purification. Subsequently, the 5-substituted bis(enones) **5** was similarly prepared with the ylide reagent.

Bis(enones) **5a**–**i**, **5m** were obtained according to the general procedure A, and bis(enones) **5j**, **5k** and **7** were obtained according to the general procedure B.

(2E,7E)-5-Methyl-1,9-diphenylnona-2,7-diene-1,9-dione (5a). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 5a: 670 mg, 42% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96– 7.87 (m, 4H), 7.58–7.52 (m, 2H), 7.50–7.41 (m, 4H), 7.10–6.99 (m, 2H), 6.96–6.86 (d, J = 14.8 Hz, 2H), 2.43–2.34 (m, 2H), 2.29–2.20 (m, 2H), 2.04–1.89 (m, 1H), 1.02 (d, J = 6.7 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 190.5, 147.5, 137.8, 132.8, 128.59, 128.55, 127.6, 39.8, 32.5, 19.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₂O₂Na 341.1512; found 341.1518.

(2E, 7E)-5-*Methyl*-1,9-*di*-*p*-tolylnona-2,7-*diene*-1,9-*dione* (**5b**). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave **5b**: 504 mg, 29% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 7.9 Hz, 4H), 7.28–7.23 (d, J = 7.9 Hz, 4H), 7.08–6.98 (m, 2H), 6.91 (d, J = 15.4Hz, 2H), 2.41 (s, 6H), 2.39–2.34 (m, 2H), 2.28–2.18 (m, 2H), 2.02–1.89 (m, 1H), 1.02 (d, J = 6.7 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 189.0, 146.9, 143.6, 135.3, 129.3, 128.7, 127.5, 39.7, 32.5, 21.6, 19.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₆O₂Na 369.1825; found 369.1818.

(2E, 7E)-1,9-Bis(3-methoxyphenyl)-5-methylnona-2,7-diene-1,9-dione (5c). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave **5c**: 336 mg, 18% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53–7.44 (m, 4H), 7.37 (t, J = 7.9 Hz, 2H), 7.14–7.08 (m, 2H), 7.08–6.99 (m, 2H), 6.94–6.86 (m, 2H), 3.86 (s, 6H), 2.46–2.33 (m, 2H), 2.30–2.18 (m, 2H), 2.03–1.92 (m, 1H), 1.03 (d, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 190.2, 159.9, 147.5, 139.2, 129.5, 127.6, 121.1, 119.3, 112.8, 55.5, 39.8, 32.5, 19.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₄H₂₆O₄Na 401.1723; found 401.1717.

$$(2E, 7E)$$
-1,9-Bis(4-bromophenyl)-5-methylnona-2,7-diene-1,9-dione (5d).

Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/25) gave **5d**: 150 mg, 32% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84–7.75 (m, 4H), 7.67–7.55 (m, 4H), 7.12–7.00 (m, 2H), 6.87 (d, *J* = 15.3 Hz, 2H), 2.46–2.34 (m, 2H), 2.31–2.21 (m, 2H), 2.04–1.93 (m, 1H), 1.03 (d, *J* = 6.7 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 189.2, 147.9, 136.5, 131.9, 130.0, 127.9, 127.1, 39.8, 32.5, 19.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₀Br⁷⁹Br⁸¹O₂Na 498.9702; found 498.9695; calcd for C₂₂H₂₀Br⁷⁹₂O₂Na 496.9722; found 496.9721; calcd for C₂₂H₂₀Br⁸¹₂O₂Na 500.9681; found 500.9691.

(2E, 7E)-1, 9-Bis(3-chlorophenyl)-5-methylnona-2, 7-diene-1, 9-dionePurification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/30)
gave **5e**: 297 mg, 16% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (t, J = 1.9 Hz, 2H), 7.80 (dt, J = 7.8, 1.3 Hz, 2H), 7.58–7.50 (m, 2H), 7.42
(t, J = 7.7 Hz, 2H), 7.14–7.02 (m, 2H), 6.92–6.84 (m, 2H), 2.45–2.35 (m, 2H), 2.32–
2.22 (m, 2H), 2.05–1.93 (m, 1H), 1.05 (d, J = 6.7 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 189.0, 148.4, 139.4, 134.9, 132.7, 129.9, 128.6, 127.1, 126.6, 39.9,
32.5, 19.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₂₀Cl³⁵₂O₂Na 409.0733;
found 409.0721; calcd for C₂₂H₂₀Cl³⁵Cl³⁷O₂Na 411.0703; found 411.0705.

(2E, 7E)-5-Methyl-1,9-di(naphthalen-2-yl)nona-2,7-diene-1,9-dione (5f). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 5f: 444 mg, 19% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.44 (d, J = 1.7 Hz, 2H), 8.03 (dd, J = 8.6, 1.8 Hz, 2H), 7.98–7.73 (m, 6H), 7.65–7.55 (m, 2H), 7.55–7.45 (m, 2H), 7.22–7.00 (m, 4H), 2.52–2.40 (m, 2H), 2.37– 2.26 (m, 2H), 2.10–1.97 (m, 1H), 1.08 (d, J = 6.7 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 190.2, 147.4, 135.5, 135.1, 132.5, 130.0, 129.5, 128.5, 128.4, 127.8, 127.5, 126.8, 124.5, 39.8, 32.6, 19.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₀H₂₆O₂Na 441.1825; found 441.1826.

(2E, 7E)-5-Methyl-1,9-di(thiophen-2-yl)nona-2,7-diene-1,9-dione (5g). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 5g: 253 mg, 15% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76 (dd, J = 3.8, 1.1 Hz, 2H), 7.66 (dd, J = 4.9, 1.1 Hz, 2H), 7.18–7.13 (m, 2H), 7.13–7.05 (m, 2H), 6.87–6.80 (m, 2H), 2.44–2.34 (m, 2H), 2.30–2.20 (m, 2H), 2.04–1.93 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 182.0, 146.6, 145.1, 133.8, 131.9, 128.2, 127.1, 39.5, 32.5, 19.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₈H₁₈S₂O₂Na 353.0640; found 353.0645.

(2E, 7E)-1,5,9-Triphenylnona-2,7-diene-1,9-dione (**5h**). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) gave **5h**: 976 mg, 28% yield (for three steps), colorless oil; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.82–7.70 (m, 4H), 7.55–7.47 (m, 2H), 7.44–7.35 (m, 4H), 7.35–7.29 (m, 2H), 7.23–7.16 (m, 3H), 6.95–6.84 (m, 2H), 6.79 (d, J = 15.5 Hz, 2H), 3.09–2.97 (m, 1H), 2.76–2.62 (m, 4H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 190.6, 146.5, 142.8, 137.7, 132.7, 128.8, 128.6, 128.5, 128.0, 127.6, 126.9, 44.6, 39.4; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₄O₂Na 403.1669; found 403.1675.

(2E, 7E)-5-(4-Chlorophenyl)-1,9-diphenylnona-2,7-diene-1,9-dione (5i).

Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave **5i**: 564 mg, 28% yield (for three steps), as a white solid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83–7.77 (m, 4H), 7.57–7.51 (m, 2H), 7.47–7.40 (m, 4H), 7.33–7.28 (m, 2H), 7.17– 7.11 (m, 2H), 6.92–6.83 (m, 2H), 6.79 (d, *J* = 15.4 Hz, 2H), 3.08–2.98 (m, 1H), 2.78–2.58 (m, 4H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ (ppm) 190.4, 145.8, 141.2, 137.6, 132.8, 132.6, 128.9, 128.6, 128.51, 128.48, 128.1, 44.1, 39.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₃Cl³⁵O₂Na 437.1279; found 437.1284; calcd for C₂₇H₂₃Cl³⁷O₂Na 439.1249; found 439.1260.

(*E*)-*Ethyl* 6-oxo-2-((*E*)-4-oxo-4-phenylbut-2-en-1-yl)-6-phenyl hex-4-enoate (5j). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave 5j: 108 mg, 15% yield (in two steps), colorless oil; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.97–7.86 (m, 4H), 7.60–7.53 (m, 2H), 7.52–7.42 (m, 4H), 7.02–6.91 (m, 4H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.87–2.80 (m, 1H), 2.75–2.68 (m, 2H), 2.61–2.54 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃) δ 194.9, 178.3, 149.5, 142.3, 137.6, 133.33, 133.27, 132.8, 65.7, 48.3, 39.4, 19.0; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₄O₄Na 399.1567; found 399.1571.

(2E, 7E)-5-Isobutyl-1,9-diphenylnona-2,7-diene-1,9-dione (51). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 51: 560 mg, 31% yield (for three steps), white semisolid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96–7.90 (m, 4H), 7.59–7.52 (m, 2H), 7.50–7.42 (m, 4H), 7.12–7.01 (m, 2H), 6.93 (d, J = 15.3 Hz, 2H), 2.44–2.26 (m, 4H), 2.03–1.90 (m, 1H), 1.76–1.67 (m, 1H), 1.25 (t, J = 7.2 Hz, 2H), 0.91 (d, J = 6.6 Hz, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 190.3, 147.5, 137.8, 132.8, 128.6, 128.5, 127.6, 43.2, 37.1, 34.8, 25.2, 22.7; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₅H₂₈O₂Na 383.1982; found 383.1987.

(2E,7E)-5-(4-Chlorophenvl)-1,9-di(naphthalen-2-vl)nona-2,7-diene-1,9-dione

(*5m*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave **5m**: 539 mg, 21% yield (for three steps), white solid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (s, 2H), 8.00–7.80 (m, 8H), 7.64–7.49 (m, 4H), 7.40–7.31 (m, 2H), 7.24– 7.18 (m, 2H), 7.04–6.86 (m, 4H), 3.16–3.07 (m, 1H), 2.86–2.66 (m, 4H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 190.2, 145.7, 141.3, 135.5, 134.9, 132.7, 132.5, 130.1, 129.5, 129.0, 128.6, 128.5, 128.2, 127.8, 126.8, 124.4, 44.2, 39.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₅H₂₇Cl³⁵O₂Na 537.1592; found 537.1591; calcd for C₃₅H₂₇Cl³⁷O₂Na 539.1562; found 539.1604.

tert-Butyl (*E*)-2-cyano-6-oxo-2-((*E*)-4-oxo-4-phenylbut-2-en-1-yl)-6-phenylhex-4-enoate (7). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave 7: 359 mg, 28% yield (for two steps), white semisolid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.98–7.88 (m, 4H), 7.61–7.53 (m, 2H), 7.52–7.42 (m, 4H), 7.07 (d, *J* = 15.5 Hz, 2H), 7.02–6.89 (m, 2H), 2.93 (dd, *J* = 14.2, 7.4 Hz, 2H), 2.82 (dd, *J* = 14.1, 7.3 Hz, 2H), 1.47 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 166.0, 138.9, 137.2, 133.2, 130.9, 128.74, 128.68, 117.9, 85.6, 48.9, 39.5, 27.8; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₇NO₄Na 452.1832; found 452.1835.

General procedure for intramolecular RC reaction of bis(enones) 1. Bis(enones) 1 (0.1 mmol), 2-mercaptophenol T2 (0.04 mmol), catalyst C5 or C4 (0.02 mmol) and K_2CO_3 (0.06 mmol) were added into a vial equipped with a magnetic stir

 bar. Toluene (1.0 mL) was added. The mixture was stirred at room temperature for 24 to 72 h. Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:40) gave the product **2**.

The racemic products were prepared following the general procedure, using an achiral TBAB as the phase transfer catalyst.

(*S*)-2-(2-Benzoylcyclohex-2-en-1-yl)-1-phenylethanone (2*a*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 2*a*: 27.6 mg, 91% yield, colorless oil; $[\alpha]_D^{25} = -30.6$; [c = 0.85 in CHCl₃; data in the references: 95% ee, $[\alpha]_D^{25} = -38.6$ (c = 0.76 in CHCl₃);⁶ –99% ee, $[\alpha]_D^{25} = +30.0$ (c = 0.35 in CHCl₃);^{5b} –91% ee, $[\alpha]_D^{20} = +25.1$ (c = 0.90 in CHCl₃)^{5c}]; 91% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.63 min, t (minor) = 12.69 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.11–8.01 (m, 2H), 7.73–7.63 (m, 2H), 7.54–7.35 (m, 6H), 6.64–6.56 (m, 1H), 3.58–3.46 (m, 1H), 3.39 (dd, J = 15.0, 3.2 Hz, 1H), 2.84 (dd, J = 15.0, 10.5 Hz, 1H), 2.38–2.24 (m, 1H), 2.22–2.09 (m, 1H), 1.79–1.66 (m, 3H), 1.66–1.53 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.5, 197.9, 144.8, 141.5, 138.8, 136.9, 132.9, 131.6, 129.2, 128.6, 128.4, 128.1, 42.4, 30.3, 26.6, 26.1, 18.1; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₀O₂Na 327.1356; found 327.1355.

(S)-2-(2-(4-Methylbenzoyl)cyclohex-2-en-1-yl)-1-(p-tolyl) ethanone (2b). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 2b: 29.2 mg, 88% yield, colorless oil; $[\alpha]_D^{25} = -15.8$ (c = 0.33 in CHCl₃); 95% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.17 min, t (minor) = 18.53 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.97 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.32–7.19 (m, 4H), 6.63–6.55 (m, 1H), 3.53–3.43 (m, 1H), 3.38 (dd, J = 14.6 Hz, 3.2 Hz, 1H), 2.76 (dd, J = 14.5 Hz, 10.8 Hz, 1H), 2.42 (s, 3H), 2.41(s, 3H), 2.38–2.29 (m, 1H), 2.25–2.14 (m, 1H), 1.81–1.68 (m, 3H), 1.67–1.57 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.5, 198.0, 143.9, 143.8, 142.4, 141.6, 136.0, 134.3, 129.6, 129.3, 128.9, 128.7, 42.5, 30.7, 26.5, 26.1, 21.7, 21.6, 18.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₄O₂Na 355.1669; found 355.1670.

(S)-2-(2-(3-Methoxybenzoyl)cyclohex-2-en-1-yl)-1-(3-methoxyphenyl)ethanone

(2c). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 2c: 30.2 mg, 83% yield, colorless oil; $[\alpha]_D^{25} = -21.7$ (c = 0.41 in CHCl₃); 92% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.51 min, t (minor) = 16.10 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.67 (d, J = 7.6 Hz, 1H), 7.62–7.57 (m, 1H), 7.41–7.29 (m, 2H), 7.28–7.16 (m, 2H), 7.13–7.00 (m, 2H), 6.68–6.59 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.53–3.43 (m, 1H), 3.38 (dd, J = 14.8, 3.2 Hz, 1H), 2.76 (dd, J = 14.8, 10.7 Hz, 1H), 2.40–2.26 (m, 1H), 2.26–2.11 (m, 1H), 1.79–1.67 (m, 3H), 1.65–1.57 (m, 1H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ (ppm) 199.5, 197.7, 159.8, 159.4, 145.1, 141.4, 140.1, 138.0, 129.6, 129.1, 121.8, 121.2, 119.8, 117.7, 114.0, 112.4, 55.5, 55.4, 42.7, 30.5, 26.4, 26.1, 18.0; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₄O₄Na 387.1567; found 387.1565.

(S)-2-(2-(4-Bromobenzoyl)cyclohex-2-en-1-yl)-1-(4-bromophenyl) ethanone (2d).

Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/60) gave **2d**: 41.8 mg, 91% yield, colorless oil; $[\alpha]_D^{25} = +8.44$ (c = 0.45 in CHCl₃); 84% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.27 min, t (minor) = 12.15 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94 (d, J = 8.4 Hz, 2H), 7.67–7.50 (m, 6H), 6.68–6.57 (m, 1H), 3.50– 3.38 (m, 1H), 3.34 (dd, J = 14.8 Hz, 3.2 Hz, 1H), 2.80 (dd, J = 14.8 Hz, 10.3 Hz, 1H), 2.43–2.30 (m, 1H), 2.29–2.17 (m, 1H), 1.80–1.69 (m, 3H), 1.68–1.62 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 198.7, 196.9, 145.6, 141.2, 137.4, 135.4, 132.0, 131.5, 130.9, 130.1, 128.3, 126.6, 42.4, 30.4, 26.5, 26.2, 18.1; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₁H₁₈Br⁷⁹Br⁸¹O₂Na 484.9545; found 484.9548; calcd for C₂₁H₁₈Br⁷⁹₂O₂Na 482.9566; found 482.9568; calcd for C₂₁H₁₈Br⁸¹₂O₂Na 486.9525; found 486.9535.

(*S*)-2-(2-(3-Bromobenzoyl)cyclohex-2-en-1-yl)-1-(3-bromophenyl)ethanone (2e). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/60) gave **2e**: 33.1 mg, 72% yield, colorless oil; $[\alpha]_D^{25} = -17.1$ (*c* = 0.46 in CHCl₃); 79% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.70 min, t (minor) = 11.00 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (t, *J* = 1.8 Hz, 1H), 8.01 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.78 (t, *J* = 1.8 Hz, 1H), 7.72–7.62 (m, 2H), 7.58 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 6.70–6.62 (m, 1H), 3.51–3.40 (m, 1H), 3.32 (dd, *J* = 15.2, 3.3 Hz, 1H), 2.84 (dd, *J* = 15.2, 10.2 Hz, 1H), 2.45–2.31 (m, 1H), 2.30–2.17 (m, 1H), 1.80– 1.69 (m, 3H), 1.70–1.63 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 198.1, 196.3, 146.4, 141.1, 140.6, 138.5, 135.9, 134.5, 132.0, 131.4, 130.3, 129.8, 127.8, 127.1, 123.0, 122.4, 42.4, 30.1, 26.5, 26.3, 18.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₈Br⁷⁹Br⁸¹O₂Na 484.9545; found 484.9559; calcd for C₂₁H₁₈Br⁷⁹₂O₂Na 482.9566; found 482.9572; calcd for C₂₁H₁₈Br⁸¹₂O₂Na 486.9525; found 486.9524.

(*S*)-2-(2-(2-Naphthoyl)cyclohex-2-en-1-yl)-1-(naphthalen-2-yl) ethanone (**2f**). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **2f**: 27.4 mg, 68% yield, colorless oil; $[\alpha]_D^{25} = +13.6$ (*c* = 0.25 in CHCl₃); 81% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.31 min, t (minor) = 19.60 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.69 (s, 1H), 8.19 (s, 1H), 8.11 (dd, *J* = 8.6, 1.8 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.98–7.78 (m, 6H), 7.63–7.46 (m, 4H), 6.76–6.67 (m, 1H), 3.69– 3.55 (m, 2H), 3.02–2.91 (m, 1H), 2.47–2.31 (m, 1H), 2.31–2.15 (m, 1H), 1.88–1.74 (m, 3H), 1.72–1.63 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.8, 198.1, 144.9, 141.8, 136.1, 135.6, 134.9, 134.1, 132.7, 132.3, 130.5, 130.3, 129.8, 129.2, 128.41, 128.38, 128.2, 127.9, 127.8, 127.7, 126.7, 126.6, 125.7, 124.2, 42.8, 30.9, 26.7, 26.3, 18.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₉H₂₄O₂Na 427.1669; found 427.1670.

(S)-1-(Thiophen-2-yl)-2-(2-(thiophene-2-carbonyl)cyclohex-2-en-1-yl)ethanone (2g). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 2g: 25.6 mg, 81% yield, colorless oil; $[\alpha]_D^{25} = -19.0$ (c = 0.21 in CHCl₃); 82% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.44 min, t (minor) = 17.52 min]; ¹H NMR (400

 MHz, CDCl₃): δ (ppm) 7.92 (d, J = 4.0 Hz, 1H), 7.63 (d, J = 4.8 Hz, 1H), 7.62–7.56 (m, 2H), 7.15–7.05 (m, 2H), 6.87–6.81 (m, 1H), 3.55–3.40 (m, 1H), 3.27 (dd, J = 14.2, 3.1 Hz, 1H), 2.68 (dd, J = 14.2, 10.8 Hz, 1H), 2.42–2.29 (m, 1H), 2.27–2.15 (m, 1H), 1.77–1.71 (m, 3H), 1.68–1.60 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 192.5, 189.3, 144.3, 143.9, 141.7, 141.5, 133.6, 133.34, 133.26, 132.8, 128.3, 127.7, 43.2, 31.6, 26.5, 26.0, 18.3; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₇H₁₆O₂S₂Na 339.0484; found 339.0483.

(*S*)-2-(2-Benzoyl-5,5-dimethylcyclohex-2-en-1-yl)-1-phenylethanone (2h). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **2h**: 21.6 mg, 65% yield, colorless oil; $[\alpha]_D^{25} = -80.0$ (c = 0.25 in CHCl₃); 83% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.03 min, t (minor) = 13.41 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.07–7.97 (m, 2H), 7.82–7.72 (m, 2H), 7.59–7.51 (m, 2H), 7.50–7.40 (m, 4H), 6.53–6.43 (m, 1H), 3.52 (dd, J = 15.3, 3.1 Hz, 1H), 3.46–3.34 (m, 1H), 2.83 (dd, J = 15.3, 9.5 Hz, 1H), 2.26–2.16 (m, 1H), 2.02–1.90 (m, 1H), 1.73–1.63 (m, 1H), 1.47–1.35 (m, 1H), 1.00 (s, 3H), 0.87 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.7, 198.2, 142.2, 140.9, 138.5, 136.9, 133.0, 132.0, 129.6, 128.6, 128.3, 128.2, 42.4, 41.7, 39.8, 31.3, 30.6, 29.4, 25.3; IR (CH₂Cl₂) v 2961, 2923, 1680, 1597, 1579, 1448, 1365, 1261, 754, 691 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₄O₂Na 355.1669; found 355.1670.

(S)-2-(4-Benzoyl-3,6-dihydro-2H-pyran-3-yl)-1-phenylethanone (2i). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) gave 2i: 22.2 mg, 73% yield, colorless oil; $[\alpha]_D^{25} = -9.35$ (c = 0.54 in CHCl₃); 78% ee, determined by HPLC analysis: [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 12.74 min, t (minor) = 17.47 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.04–7.94 (m, 2H), 7.72–7.62 (m, 2H), 7.59–7.49 (m, 2H), 7.50–7.38 (m, 4H), 6.63–6.55 (m, 1H), 4.42 (dd, J = 19.1, 3.3 Hz, 1H), 4.32–4.22 (m, 1H), 4.07–4.00 (m, 1H), 3.72–3.64 (m, 1H), 3.51–3.43 (m, 1H), 3.35–3.27 (m, 1H), 3.27–3.20 (m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 198.7, 195.9, 141.8, 138.7, 137.9, 136.9, 133.1, 132.0, 129.2, 128.6, 128.3, 128.2, 67.7, 65.3, 39.9, 29.9; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₀H₁₈O₃Na 329.1148; found 329.1150.

$$(S)-2-(2-(4-Nitrobenzoyl)cyclohex-2-en-1-yl)-1-(p-tolyl)ethanone$$
 (2j).

Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **2j**: 33.4 mg, 92% yield, colorless oil; $[\alpha]_D^{25} = -5.30$ (c = 0.42 in CHCl₃); 93% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.41 min, t (minor) = 21.42 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.33–8.24 (m, 2H), 7.98–7.90 (m, 2H), 7.85–7.76 (m, 2H), 7.27 (d, J = 7.0 Hz, 2H), 6.64–6.56 (m, 1H), 3.53–3.41 (m, 1H), 3.33 (dd, J = 15.0, 3.7 Hz, 1H), 2.93 (dd, J = 15.0, 9.7 Hz, 1H), 2.41 (s, 3H), 2.39–2.31 (m, 1H), 2.30–2.18 (m, 1H), 1.84–1.70 (m, 3H), 1.70–1.62 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.2, 196.0, 149.3, 147.1, 144.4, 144.0, 141.8, 134.4, 130.0, 129.4, 128.5, 123.4, 42.0, 30.1, 26.6, 26.4, 21.7, 18.0; IR (CH₂Cl₂) v 2921, 2851, 1679, 1604, 1524, 1347, 1270, 1183, 967, 805, 721 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₁NO₄Na 386.1363; found 386.1361.

(*S*)-*1*-(*2*-*benzoylcyclohex*-*2*-*en*-*1*-*yl*)*propan*-*2*-*one* (*2k*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/30) gave **2k**: 18.0 mg, 73% yield, colorless oil; $[\alpha]_D^{25} = -62.8$ (*c* = 0.96 in CHCl₃); 80% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, λ = 254 nm, t (major) = 10.17 min, t (minor) = 11.17 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.68–7.62 (m, 2H), 7.54–7.48 (m, 1H), 7.45–7.39 (m, 2H), 6.59–6.53 (m, 1H), 3.41– 3.32 (m, 1H), 2.70 (dd, *J* = 15.7, 3.6 Hz, 1H), 2.46 (dd, *J* = 15.7, 9.7 Hz, 1H), 2.37– 2.26 (m, 1H), 2.25–2.17 (m 1H), 2.17 (s, 3H), 1.82–1.72 (m, 1H), 1.70–1.64 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 208.2, 197.9, 144.5, 141.3, 138.7, 131.7, 129.3, 128.1, 47.4, 29.9, 29.3, 27.0, 26.1, 18.2; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₈O₂Na 265.1199; found 265.1168.

Asymmetric reaction of 2a on a large scale. (2E,7E)-1,9-Diphenylnona-2,7diene-1,9-dione (304.0 mg, 1 mmol), 2-mercaptophenol **T2** (50.4 mg, 0.4 mmol), catalyst **C5** (125.2 mg, 0.2 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol) were stirred in toluene (10 mL) at rt for 72 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **2a**: 221.0 mg, 73% yield, colorless oil; 91% ee.

General procedure for intramolecular RC reaction of bis(enones) 3. Bis(enones) 3 (0.1 mmol), chiral thiol T4 (0.01 mmol), catalyst C6 (0.01 mmol) and K_2CO_3 (0.06 mmol) were added into a vial equipped with a magnetic stir bar. Toluene (1.0 mL) was added. The mixture was stirred at room temperature for 24 h. Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1:40) gave the product 4.

(*R*)-2-(2-Benzoylcyclopent-2-en-1-yl)-1-phenylethanone (4a). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 4a: 26.0 mg, 90% yield, colorless oil; $[\alpha]_D^{25} = +91.1 [c = 0.38$ in CHCl₃; data in the reference: 94% ee, $[\alpha]_D^{20} = +108.1 (c = 0.60$ in CHCl₃)^{5c}]; 93% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 9.64 min, t (major) = 19.14 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.08–7.99 (m, 2H), 7.80–7.71 (m, 2H), 7.57–7.49 (m, 2H), 7.49–7.39 (m, 4H), 6.61–6.53 (m, 1H), 3.80–3.68 (m, 2H), 2.89–2.76 (m, 1H), 2.75–2.60 (m, 1H), 2.59–2.44 (m, 1H), 2.39– 2.23 (m, 1H), 1.86–1.70 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.7, 194.2, 147.9, 146.2, 139.0, 137.0, 133.0, 132.0, 128.9, 128.6, 128.3, 128.2, 42.4, 41.7, 32.7, 29.6; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₀H₁₈O₂Na 313.1199; found 313.1201.

(*R*)-2-(2-(4-Methylbenzoyl)cyclopent-2-en-1-yl)-1-(p-tolyl) ethanone (4b). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 4b: 25.9 mg, 82% yield, colorless oil; $[\alpha]_D^{25}$ = +44.4 (c = 0.73 in CHCl₃); 94% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, λ = 254 nm, t (minor) = 12.50 min, t (major) = 25.22 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96–7.87 (m, 2H), 7.70–7.60 (m, 2H), 7.29–7.15 (m, 4H), 6.58–6.48 (m, 1H), 3.78–3.64 (m, 2H), 2.80–2.69 (m, 1H), 2.69–2.59 (m, 1H), 2.57– 2.45 (m, 1H), 2.41 (s, 3H), 2.38 (s, 3H), 2.34–2.23 (m, 1H), 1.82–1.69 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.5, 194.0, 146.9, 146.3, 143.7, 142.7, 136.4,

 134.5, 129.3, 129.1, 128.9, 128.5, 42.4, 41.9, 32.6, 29.5, 21.62, 21.58; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₂O₂Na 341.1512; found 341.1511.

(*R*)-2-(2-(4-Bromobenzoyl)cyclopent-2-en-1-yl)-1-(4-bromophenyl) ethanone (*4c*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **4c**: 35.1 mg, 79% yield, colorless oil; $[\alpha]_D^{25} = +21.3$ (*c* = 1.48 in CHCl₃); 85% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.59 min, t (major) = 16.20 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94–7.86 (m, 2H), 7.67–7.55 (m, 6H), 6.61–6.54 (m, 1H), 3.74–3.62 (m, 2H), 2.79 (dd, *J* = 16.2, 10.6 Hz), 2.74–2.62 (m, 1H), 2.61–2.48 (m, 1H), 2.38–2.25 (m, 1H), 1.82–1.70 (m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 198.6, 193.0, 148.3, 145.8, 137.6, 135.5, 131.9, 131.6, 130.4, 129.8, 128.2, 127.0, 42.2, 41.5, 32.7, 29.5; HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₀H₁₆Br⁷⁹Br⁸¹O₂Na 470.9389; found 470.9392; calcd for C₂₀H₁₆Br⁷⁹₂O₂Na 468.9409; found 468.9415; calcd for C₂₀H₁₆Br⁸¹₂O₂Na 472.9368; found 472.9383.

(*R*)-2-(2-(2-Naphthoyl)cyclopent-2-en-1-yl)-1-(naphthalen-2-yl) ethanone (4d). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 4d: 28.8 mg, 74% yield, colorless oil; $[\alpha]_D^{25} = -8.00$ (c = 0.75 in CHCl₃); 85% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.32 min, t (major) = 26.77 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.62 (s, 1H), 8.27 (s, 1H), 8.11 (d, J = 8.6 Hz, 1H), 8.00–7.84 (m, 7H), 7.66–7.50 (m, 4H), 6.71–6.64 (m, 1H), 4.03–3.91 (m, 1H), 3.91–3.80 (m, 1H), 3.01 (dd, J = 15.6, 10.2 Hz), 2.82–2.68 (m, 1H), 2.68–2.53 (m, 1H), 2.47–2.34 (m, 1H), 2.00–1.82 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.8, 194.3, 147.9, 146.4, 136.3, 135.6, 135.2, 134.2, 132.6, 132.3, 130.3, 130.2, 129.7, 129.3, 128.42, 128.37, 128.3, 128.0, 127.8, 127.7, 126.74, 126.66, 125.1, 124.1, 42.6, 42.0, 32.8, 29.7; IR (CH₂Cl₂) v 2941, 1676, 1627, 1469, 1355, 1277, 1186, 751 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₈H₂₂O₂Na 413.1512; found 413.1505.

(*R*)-1-(*Thiophen-2-yl*)-2-(2-(*thiophene-2-carbonyl*)*cyclopent-2-en-1-yl*) *ethanone* (*4e*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **4e**: 19.3 mg, 64% yield, colorless oil; $[\alpha]_D^{25} = +33.9$ (*c* = 1.12 in CHCl₃); 71% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 11.46 min, t (major) = 25.33 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89–7.81 (m, 1H), 7.71–7.66 (m, 1H), 7.65–7.55 (m, 2H), 7.16–7.05 (m, 2H), 6.84–6.76 (m, 1H), 3.75–3.68 (m, 1H), 3.64 (dd, *J* = 14.9, 3.0 Hz), 2.71 (dd, *J* = 14.8, 10.3 Hz, 1H), 2.68–2.63 (m, 1H), 2.60–2.50 (m, 1H), 2.35–2.21 (m, 1H), 1.88–1.75 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 192.7, 185.1, 145.9, 145.3, 144.4, 144.2, 133.5, 133.1, 132.7, 132.6, 128.2, 127.8, 43.0, 42.6, 32.7, 29.3; IR (CH₂Cl₂) v 3097, 2936, 1655, 1618, 1515, 1413, 722 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₄O₂S₂Na 325.0327; found 325.0330.

General procedure for desymmetric intramolecular RC reaction of bis(enones) 5. Bis(enones) 5 (0.1 mmol), 2-mercaptophenol T5 (0.04 mmol), catalyst C7 (0.02 mmol) and K_2CO_3 (0.06 mmol) were added into a vial equipped with a magnetic stir bar. Toluene (1.0 mL) was added. The mixture was stirred at room temperature for 24 to 72 h. Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave the product 6.

$$((1S,5R)-2-Benzoyl-5-methylcyclohex-2-en-1-yl)-1-phenylethanone$$
(6a)

Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **6a**: 24.2 mg, 76% yield, colorless oil; $[\alpha]_D^{25} = -97.4$ (c = 1.77 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.11 min, t (minor) = 12.28 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.06–7.96 (m, 2H), 7.79–7.70 (m, 2H), 7.57–7.48 (m, 2H), 7.48–7.37 (m, 4H), 6.52–6.46 (m, 1H), 3.52 (dd, J = 15.1, 3.1 Hz, 1H), 3.45–3.33 (m, 1H), 2.73 (dd, J = 15.1, 9.8 Hz, 1H), 2.30–2.17 (m, 1H), 1.98–1.87 (m, 2H), 1.71–1.56 (m, 1H), 1.20 (q, J = 12.1 Hz, 1H), 0.96 (d, J = 6.5 Hz, 3H); ¹³C {¹H} NMR (100 MHz,CDCl₃): δ (ppm) 199.8, 198.3, 142.7, 142.0, 138.5, 136.9, 133.0, 132.1, 129.6, 128.6, 128.4, 128.2, 42.8, 37.6, 34.6, 33.5, 28.1, 21.7; IR (CH₂Cl₂) v 3058, 2908, 1680, 1640, 1597, 1579, 1447, 1369, 1258, 753, 734, 711, 690 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂H₂O₂O_Na 341.1512; found 341.1512.

((1S,5R)-5-Methyl-2-(4-methylbenzoyl)cyclohex-2-en-1-yl)-1-(p-tolyl)ethanone

(6b). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 6b: 22.8 mg, 66% yield, colorless oil; $[\alpha]_D^{25} = -93.5$ (c = 0.62 in CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis: [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 18.90 min, t (major) = 19.81 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.97–7.87 (m, 2H), 7.73–7.65 (m, 2H), 7.29–7.21 (m, 4H), 6.50–6.42 (m, 1H), 3.48 (dd, J = 14.8 Hz, 2.3 Hz, 1H), 3.44–3.33 (m, 1H), 2.65 (dd, J= 14.2 Hz, 10.2 Hz, 1H), 2.41 (s, 3H), 2.39 (s, 3H), 2.29–2.16 (m, 1H), 1.99–1.85 (m, 2H), 1.69–1.59 (m, 1H), 1.27–1.13 (m, 1H), 0.96 (d, J = 6.4 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 199.4, 198.1, 143.6, 142.7, 142.0, 141.5, 135.6, 134.3, 129.7, 129.2, 128.8, 128.4, 42.8, 37.5, 34.4, 33.7, 28.0, 21.7, 21.6, 21.5; IR (CH₂Cl₂) v 2923, 1678, 1642, 1605, 1572, 1454, 1375, 1263, 1180, 807, 747 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₆O₂Na 369.1825; found 369.1831.

((15,5R)-2-(3-Methoxybenzoyl)-5-methylcyclohex-2-en-1-yl)-1-(3-methoxyphenyl)ethanone (6c). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 6c: 28.3 mg, 75% yield, colorless oil; $[\alpha]_D^{25} = -122.3$ (c = 0.27 in CHCl₃); >19:1 dr; 95% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 38.96 min, t (minor) = 44.92 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 7.7 Hz, 1H), 7.60–7.52 (m, 1H), 7.39–7.27 (m, 4H), 7.14–7.03 (m, 2H), 6.55–6.49 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.50 (dd, J = 14.9, 3.1 Hz, 1H), 3.46–3.34 (m, 1H), 2.68 (dd, J = 14.9, 9.9 Hz, 1H), 2.29–2.17 (m, 1H), 2.00–1.85 (m, 2H), 1.69–1.61 (m, 1H), 1.18 (q, J = 12.1 Hz, 1H), 0.96 (d, J = 6.5 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.6, 198.0, 159.9, 159.5, 142.7, 142.0, 139.8, 138.2, 129.6, 129.2, 122.3, 121.1, 119.8, 118.3, 114.1, 112.3, 55.49, 55.46, 43.1, 37.6, 34.5, 33.6, 28.1, 21.7; IR (CH₂Cl₂) v 2923, 1680, 1640, 1596, 1580, 1485, 1452, 1263, 1031, 794, 764, 745 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₆O₄Na 401.1723; found 401.1723.

((1S, 5R)-2-(4-Bromobenzoyl)-5-methylcyclohex-2-en-1-yl)-1-(4-bromophenyl) ethanone (6d). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/60) gave 6d: 31.2 mg, 66% yield, yellow oil; $[\alpha]_D^{25} = -84.2$ (c = 0.36 in

CHCl₃); 13:1 dr; 79% ee, determined by HPLC analysis: [Daicel chiralpak IH, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, λ = 254 nm, t (minor) = 11.27 min, t (major) = 17.90 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89–7.84 (m, 2H), 7.65–7.56 (m, 6H), 6.52–6.46 (m, 1H), 3.43 (dd, *J* = 15.3, 3.2 Hz, 1H), 3.39–3.28 (m, 1H), 2.77 (dd, *J* = 15.3, 9.2 Hz, 1H), 2.31–2.19 (m, 1H), 2.00–1.88 (m, 2H), 1.71–1.60 (m, 1H), 1.28–1.16 (m, 1H), 0.98 (d, *J* = 6.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 198.7, 197.0, 143.2, 141.6, 137.1, 135.6, 131.9, 131.5, 131.1, 129.9, 128.3, 127.1, 42.4, 37.6, 34.5, 33.4, 28.1, 21.7; IR (CH₂Cl₂) v 2951, 2922, 1682, 1642, 1584, 1395, 1260, 1069, 1010, 814, 751 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₂H₂₀Br⁷⁹Br⁸¹O₂Na 498.9702; found 498.9714; calcd for C₂₂H₂₀Br⁷⁹Co₂Na 496.9722; found 496.9737; calcd for C₂₂H₂₀Br⁸¹O₂Na 500.9681; found 500.9697.

((1S,5R)-2-(3-Chlorobenzoyl)-5-methylcyclohex-2-en-1-yl)-1-(3-chlorophenyl)

ethanone (6e). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **6e**: 31.6 mg, 82% yield, colorless oil; $[\alpha]_D^{25} = -118.5$ (c = 0.13 in CHCl₃); 14:1 dr; 70% ee, determined by HPLC analysis: [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.72 min, t (minor) = 15.23 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.99–7.95 (m, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.74–7.70 (m, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.0 Hz, 2H), 7.43–7.37 (m, 2H), 6.57–6.52 (m, 1H), 3.44 (dd, J = 15.6 Hz, 3.0 Hz, 1H), 3.41–3.34 (m, 1H), 2.83 (dd, J = 15.6 Hz, 9.2 Hz, 1H), 2.32–2.23 (m, 1H), 2.01–1.93 (m, 2H), 1.72–1.63 (m, 1H), 1.21 (q, J = 12.2 Hz, 1H), 1.00 (d, J = 6.5 Hz, 3H); ¹³C {¹H} NMR (150 MHz, CDCl₃): δ (ppm) 198.6, 196.9, 144.3, 141.9, 140.4, 138.8, 135.3, 134.7, 133.3,

132.3, 130.3, 129.9, 129.8, 128.7, 128.0, 126.8, 42.9, 38.0, 34.9, 33.5, 28.4, 22.0; IR (CH₂Cl₂) v 2923, 1686, 1645, 1569, 1420, 1254, 1076, 797, 740, 701, 680 (cm⁻¹); HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₂₀Cl³⁵₂NaO₂ 409.0733; found 409.0733; calcd for C₂₂H₂₀Cl³⁵Cl³⁷O₂Na 411.0703; found 411.0714.

((1S,5R)-2-(2-Naphthoyl)-5-methylcyclohex-2-en-1-yl)-1-(naphthalen-2-yl)

ethanone (6f). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **6f**: 31.4 mg, 75% yield, colorless oil; $[\alpha]_D^{25} = -54.4$ (c = 0.45 in CHCl₃); >19:1 dr; 80% ee, determined by HPLC analysis: [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.41 min, t (minor) = 15.31 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.63– 8.57 (m, 1H), 8.31–8.26 (m, 1H), 8.08 (dd, J = 8.6, 1.8 Hz, 1H), 8.01–7.94 (m, 2H), 7.94–7.81 (m, 5H), 7.64–7.48 (m, 4H), 6.64–6.56 (m, 1H), 3.71 (dd, J = 14.9, 3.2 Hz, 1H), 3.63–3.48 (m, 1H), 2.92 (dd, J = 14.9, 9.8 Hz, 1H), 2.35–2.21 (m, 1H), 2.09–1.94 (m, 2H), 1.76–1.65 (m, 1H), 1.37–1.28 (m, 1H), 1.00 (d, J = 6.5 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.8, 198.3, 142.5, 142.2, 135.7, 135.6, 135.2, 134.2, 132.6, 132.3, 131.0, 130.3, 129.8, 129.4, 128.41, 128.36, 128.2, 128.1, 127.8, 127.7, 126.7, 126.6, 125.6, 124.1, 43.0, 37.7, 34.6, 34.0, 28.2, 21.8; IR (CH₂Cl₂) v 2923, 1653, 1619, 1515, 1412, 1265, 722 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₀H₂₆O₂Na 441.1825; found 441.1828.

((1S,5R)-5-Methyl-2-(thiophene-2-carbonyl)cyclohex-2-en-1-yl)-1-(thiophen-2-yl) ethan-1-one (**6g**). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **6g**: 20.5 mg, 62% yield, yellow oil; $[\alpha]_D^{25} = -43.2$ (c = 0.81 in CHCl₃); 3:1 dr; 75% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*- hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 16.11 min, t (minor) = 24.30 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (dd, J = 3.8, 1.2 Hz, 1H), 7.66–7.62 (m, 2H), 7.60 (dd, J = 5.0, 1.1 Hz, 1H), 7.15–7.07 (m, 2H), 6.74–6.66 (m, 1H), 3.45–3.32 (m, 2H), 2.66–2.55 (m, 1H), 2.34–2.22 (m, 1H), 2.02–1.88 (m, 2H), 1.74–1.62 (m, 1H), 1.28–1.16 (m, 1H), 0.98 (d, J = 6.6 Hz, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 192.6, 189.8, 144.4, 144.0, 141.8, 139.9, 133.8, 133.7, 133.6, 132.8, 128.3, 127.8, 43.4, 37.5, 34.4, 34.3, 28.1, 21.7; IR (CH₂Cl₂) v 3100, 2923, 1653, 1619, 1515, 1412, 1265, 722 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₈H₁₈O₂S₂Na 353.0640; found 353.0635.

((1R,3S)-4-Benzoyl-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)-1-phenylethanone (6h). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 6h: 27.7 mg, 73% yield, colorless oil; $[\alpha]_D^{25} = -84.2$ (c = 0.43 in CHCl₃); >19:1 dr; 84% ee, determined by HPLC analysis: [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.82 min, t (major) = 16.21 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03–7.95 (m, 2H), 7.85–7.78 (m, 2H), 7.60–7.50 (m, 2H), 7.50–7.41 (m, 4H), 7.34–7.27 (m, 2H), 7.25–7.19 (m, 3H), 6.64–6.58 (m, 1H), 3.63– 3.50 (m, 2H), 2.89 (dd, J = 15.9 Hz, 10.0 Hz, 1H), 2.85–2.76 (m, 1H), 2.54–2.45 (m, 2H), 2.26–2.15 (m, 1H), 1.89–1.74 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.5, 198.2, 145.4, 142.1, 142.0, 138.3, 136.8, 133.1, 132.2, 129.6, 128.62, 128.58, 128.31, 128.30, 126.9, 126.5, 42.5, 39.5, 36.3, 34.2, 34.1; IR (CH₂Cl₂) v 2922, 1677, 1640, 1605, 1571, 1263, 1180, 807, 747 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₄O₂Na 403.1669; found 403.1668.

((1R,3S)-4-Benzoyl-4'-chloro-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)-1-phenyl ethanone (6i). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave 6i: 33.9 mg, 82% yield, colorless oil; $[\alpha]_{D}^{25} = -77.3$ (c = 0.67 in CHCl₃); >19:1 dr; 86% ee, determined by HPLC analysis: [Daicel chiralpak ID, nhexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (minor) = 9.16 min, t (major) = 10.11 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 7.6 Hz, 2H), 7.81 (d, J= 7.4 Hz, 2H), 7.59–7.51 (m, 2H), 7.50–7.41 (m, 4H), 7.27 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 6.63–6.55 (m, 1H), 3.63–3.49 (m, 2H), 2.92 (dd, J = 15.8 Hz, 9.6 Hz, 1H), 2.86–2.74 (m, 1H), 2.50–2.41 (m, 2H), 2.24–2.13 (m, 1H), 1.78 (q, J = 12.5 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ (ppm) 199.4, 198.0 143.8, 142.1, 141.5, 138.2, 136.8, 133.1 132.3, 132.1, 129.6, 128.7, 128.6, 128.31, 128.28, 128.2, 42.3, 38.9, 36.1, 34.1, 34.0; IR (CH₂Cl₂) v 2923, 1680, 1642, 1596, 1492, 1447, 1263, 1091, 1013, 821, 754, 690 (cm⁻¹); HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₇H₂₃Cl³⁵O₂Na 437.1279; found 437.1271; calcd for C₂₇H₂₃Cl³⁷O₂Na 439.1249; found 439.1255.

Ethyl-(1R,5S)-4-benzoyl-5-(2-oxo-2-phenylethyl)cyclohex-3-ene-1-carboxylate

(*6j*). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave **6j**: 30.8 mg, 82% yield, colorless oil; $[\alpha]_D^{25} = -93.5$ (c = 0.77 in CHCl₃); >19:1 dr; 85% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 34.29 min, t (major) = 45.75 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.01–7.93 (m, 2H), 7.81–7.74 (m, 2H), 7.58–7.51 (m, 2H), 7.50–7.40 (m, 4H), 6.55–6.48 (m, 1H), 4.19–4.06 (m, 2H), 3.52–3.40 (m, 2H), 2.97– 2.88 (m, 1H), 2.64–2.53 (m, 2H), 2.52–2.43 (m, 1H), 2.39–2.32 (m, 1H), 1.74–1.66 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 198.9, 197.7, 174.8, 141.7, 140.3, 138.0, 136.8, 133.0, 132.2, 129.6, 128.6, 128.3, 128.2, 60.7, 41.9, 38.6, 32.4, 31.4, 28.2, 14.1; IR (CH₂Cl₂) v 2925, 1727, 1683, 1644, 1597, 1579, 1448, 1374, 1263, 1176, 755, 692 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₄H₂₄O₄Na 399.1567; found 399.1571.

((15,5*R*)-2-Benzoyl-5-((tert-butyldimethylsilyl)oxy)cyclohex-2-en-1-yl)-1-phenyl ethanone (**6k**). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave **6k**: 32.6 mg, 75% yield, colorless oil; $[\alpha]_D^{25} = -51.4$ (c = 0.42 in CHCl₃); 10:1 dr; 83% ee, determined by HPLC analysis: [Daicel chiralpak AD-H, *n*hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.81 min, t (major) = 8.14 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.01–7.92 (m, 2H), 7.80–7.72 (m, 2H), 7.58–7.50 (m, 2H), 7.49–7.38 (m, 4H), 6.44–6.36 (m, 1H), 4.02–3.90 (m, 1H), 3.61– 3.49 (m, 1H), 3.36 (dd, J = 16.3 Hz, 3.1 Hz, 1H), 3.14 (dd, J = 16.3 Hz, 9.5 Hz, 1H), 2.50–2.27 (m, 2H), 2.14–1.99 (m, 1H), 1.81–1.66 (m, 1H), 0.86 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.2, 197.8, 141.6, 139.9, 138.4, 137.1, 132.9, 132.1, 129.5, 128.5, 128.2, 128.1, 66.7, 42.2, 36.9, 35.6, 31.5, 25.9, 18.1, -4.6, -4.7; IR (CH₂Cl₂) v 2925, 1686, 1597, 1579, 1448, 1201, 1070, 1025, 756, 699 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₃₄O₃SiNa 457.2169; found 457.2173.

((1S,5R)-2-Benzoyl-5-isobutylcyclohex-2-en-1-yl)-1-phenylethanone(61). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 61: 32.4 mg, 85% yield, colorless oil; $[\alpha]_D^{25} = -110.0$ (c = 0.76 in CHCl₃); >19:1 dr; 84% ee, determined by HPLC analysis: [Daicel chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 9.91 min, t (major) = 11.30 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05–7.97 (m, 2H), 7.80–7.73 (m, 2H), 7.57–7.50 (m, 2H), 7.49–7.41 (m, 4H), 6.55–6.48 (m, 1H), 3.51 (dd, J = 15.2, 3.1 Hz, 1H), 3.46–3.34 (m, 1H), 2.77 (dd, J = 15.2, 9.6 Hz, 1H), 2.32–2.22 (m, 1H), 2.03–1.95 (m, 1H), 1.95–1.85 (m, 1H), 1.71-1.64 (m, 1H), 1.63-1.59 (m, 1H), 1.23-1.16 (m, 1H), 1.17-1.12 (m, 2H),0.84 (t, J = 6.5 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 199.8, 198.3, 142.7, 142.2, 138.4, 136.9, 133.0, 132.1, 129.6, 128.6, 128.3, 128.2, 46.1, 42.8, 36.1, 33.4, 32.9, 30.6, 24.8, 23.1, 22.5; IR (CH₂Cl₂) v 3060, 2953, 2906, 1681, 1642, 1597, 1579, 1447, 1366, 1259, 753, 691 (cm⁻¹); HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₅H₂₈O₂Na 383.1982; found 383.1988. ((1R,3S)-4-(2-Naphthoyl)-4'-chloro-1,2,3,6-tetrahydro-[1,1'-biphenyl]-3-yl)-1-

(naphthalen-2-yl)ethan-1-one (6m). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/30) gave **6m**: 40.0 mg, 70% yield, white semisolid; $[\alpha]_D^{25}$ = -13.0 (c = 2.24 in CHCl₃); >19:1 dr; 81% ee, determined by HPLC analysis: [Daice] chiralpak AD-H, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, λ = 254 nm, t (minor) = 18.44 min, t (major) = 32.60 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.55 (s, 1H), 8.32 (s, 1H), 8.06-7.80 (m, 8H), 7.64-7.47 (m, 4H), 7.26 (d, J = 7.9 Hz, 2H), 7.15 (d, J =8.2 Hz, 2H), 6.72–6.61 (m, 1H), 3.77–3.63 (m, 2H), 3.06 (dd, J = 15.8, 9.9 Hz, 1H), 2.89-2.77 (m, 1H), 2.54-2.42 (m, 2H), 2.29-2.18 (m, 1H), 1.93-1.80 (m, 1H); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ (ppm) 199.4, 198.0, 143.9, 142.3, 141.3, 135.6, 135.4, 135.3, 134.1, 132.6, 132.3, 132.1, 131.1, 130.2, 129.7, 129.4, 128.7, 128.5, 128.4, 128.3,

 128.24, 128.20, 127.8, 127.7, 126.8, 126.7, 125.6, 124.0, 42.5, 39.0, 36.2, 34.4, 34.1; IR (CH₂Cl₂) v 3057, 2921, 1671, 1625, 1595, 1492, 1467, 1353, 1276, 1263, 1123, 816, 734 (cm⁻¹); HRMS (ESI-TOF) *m*/z: [M + Na]⁺ calcd for $C_{35}H_{27}Cl^{35}O_2Na$ 537.1592; found 537.1588; calcd for $C_{35}H_{27}Cl^{37}O_2Na$ 539.1562; found 539.1579.

Asymmetric reaction of 5a on a large scale. (2E,7E)-5-Methyl-1,9-diphenylnona-2,7-diene-1,9-dione 5a (159.0 mg, 0.5 mmol), 5-Br-2-mercptophenol T5 (41.0 mg, 0.2 mmol), catalyst C7 (62.8 mg, 0.1 mmol) and K₂CO₃ (41.4 mg, 0.3 mmol) were stirred in toluene (5 mL) at rt for 72 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 6a: 124.2 mg, 78% yield, colorless oil; 90% ee, 14:1 dr.

*Procedure for the synthesis of tert-butyl (1S,5R)-4-benzoyl-1-cyano-5-(2-oxo-2-phenylethyl)cyclohex- 3-ene-1-carboxylate (8). tert-*Butyl (*E*)-2-cyano-6-oxo-2-((*E*)-4-oxo-4-phenyl but-2-en-1-yl)-6-phenylhex-4-enoate **7** (42.9 mg, 0.1 mmol), (*R*)-bis*ortho*-mercaptophenol **T4** (14.1 mg, 0.04 mmol), catalyst **C6** (15.6 mg, 0.02 mmol) and K₂CO₃ (8.4 mg, 0.06 mmol) were stirred in toluene (1 mL) at 50 °C for 18 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave **8**: 36.5 mg, 85% yield, white solid, mp 140–146 °C; $[\alpha]_D^{25} = +21.9$ (*c* = 1.95 in CHCl₃); 11:1 dr; 75% ee, determined by HPLC analysis: [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 10.38 min, t (minor) = 13.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94–7.86 (m, 2H), 7.80–7.73 (m, 2H), 7.58–7.49 (m, 2H), 7.49–7.37 (m, 4H), 6.47–6.39 (m, 1H), 3.74–3.60 (m, 1H), 3.41 (dd, J = 17.2, 3.1 Hz, 1H), 3.26 (dd, J = 17.2, 8.0 Hz, 1H), 3.02–2.90 (m, 1H), 2.79–2.65 (m, 1H), 2.53–2.41 (m, 1H), 2.15–2.03 (m, 1H), 1.50 (s, 9H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 198.3, 196.8, 167.2, 141.6, 137.6, 136.6, 135.1, 133.4, 132.5, 129.7, 128.7, 128.4, 128.1, 118.7, 84.5, 43.2, 40.4, 34.7, 32.7, 30.5, 27.8; IR (CH₂Cl₂) v 2980, 2931, 1733, 1683, 1647, 1597, 1579, 1448, 1370, 1261, 1153, 754, 735, 701, 690 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₇NO₄Na 452.1832; found 452.1829.

Procedure for the synthesis of 2-((1S,2R,5R)-3-benzoylbicyclo[3.2.1]oct-3-en-2vl)-1-phenylethan-1-one (10). 3,3'-(Cyclopentane-1,3-diyl)bis(1-phenylprop-2-en-1one) 9 (33.0 mg, 0.1 mmol, as a *cis/trans* mixture, but the ratio might be various from different preparation reactions), 2-mercaptophenol T2 (5.2 mg, 0.04 mmol), catalyst C5 (12.6 mg, 0.02 mmol) and K_2CO_3 (13.8 mg, 0.1 mmol) were stirred in toluene (1 mL) at 50 °C for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 10: 9.2 mg, 28% yield, colorless oil; $[\alpha]_D^{25}$ = -31.2 (c = 0.78 in CHCl₃); >19:1 dr; 82% ee, determined by HPLC analysis: [Daice] chiralpak AD-H, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 254 nm, t (major) = 12.53 min, t (minor) = 14.97 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.04–7.94 (m, 2H), 7.68–7.59 (m, 2H), 7.52–7.44 (m, 2H), 7.44–7.33 (m, 4H), 6.70–6.61 (m, 1H), 3.72– 3.62 (m, 1H), 3.42 (dd, J = 15.0, 3.6 Hz, 1H), 2.73 (dd, J = 15.0, 11.3 Hz, 1H), 2.56– 2.47 (m, 1H), 2.44–2.32 (m, 1H), 1.98–1.82 (m, 2H), 1.82–1.72 (m, 1H), 1.72–1.61 (m, 2H), 1.61–1.54 (m, 1H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ (ppm) 199.9, 198.4, 149.9, 138.9, 138.5, 136.9, 133.0, 132.0, 129.5, 128.6, 128.4, 128.2, 41.4, 38.7, 36.6,

 36.5, 36.1, 33.8, 23.7; IR (CH₂Cl₂) v 3059, 2942, 1680, 1634, 1597, 1578, 1447, 1370, 1266, 748, 697 (cm⁻¹); HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₃H₂₂O₂Na 353.1512; found 353.1516.

Procedure for the synthesis of (S)-3-methyl-4a,*5*,*6*,*7-tetrahydronaphthalen-1(4H)-one (11).* (3*E*,8*E*)-Undeca-3,8-diene-2,10-dione **11** (18.0 mg, 0.1 mmol), 2mercaptophenol **T2** (5.2 mg, 0.04 mmol), catalyst **C5** (12.6 mg, 0.02 mmol) and K₂CO₃ (27.6 mg, 0.2 mmol) were stirred in toluene (1 mL) at 60 °C for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) to give **11**: 7.8 mg, 43% yield, colorless oil; $[\alpha]_D^{25} = +108.4$ (*c* = 0.55 in CHCl₃); 71% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 8.62 min, t (minor) = 9.82 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.93–6.84 (m, 1H), 6.00–5.93 (m, 1H), 2.75–2.59 (m, 1H), 2.31 (dd, *J* = 17.4, 5.8 Hz, 1H), 2.26–2.17 (m, 2H), 2.15–2.06 (m, 1H), 2.05–1.98 (m, 1H), 1.96 (s, 3H), 1.83–1.75 (m, 1H), 1.58–1.44 (m, 1H), 1.40–1.26 (m, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) 188.2, 161.2, 136.2, 135.3, 127.1, 38.1, 35.0, 29.9, 25.9, 24.6, 21.1; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₁H₁₄ONa 185.0937; found 185.0942.

General procedure for intramolecular RC reaction of nitroolefin enoate 12.

Nitroolefin enoate **12** (0.1 mmol), 2-mercaptophenol **T2** (5.2 mg, 0.04 mmol), catalyst **C9** (7.8 mg, 0.02 mmol) were dissolved in toluene (1.0 mL). Then the mixture was stirred at 50 °C for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave **13**.

Ethyl (*R*)-2-(3-nitro-2H-chromen-2-yl)acetate (13a). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 13a: 21.3 mg, 81% yield, yellow oil; $[\alpha]_D^{25} = -67.0$ (c = 0.88 in CHCl₃); 91% ee, determined by HPLC analysis: [Daicel chiralpak AD-H, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 15.02 min, t (major) = 16.51 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (s, 1H), 7.43–7.35 (m, 1H), 7.30 (dd, J = 7.6, 1.7 Hz, 1H), 7.09–7.01 (m, 1H), 6.98–6.92 (m, 1H), 6.05 (dd, J = 9.4, 3.5 Hz, 1H), 4.18 (q, J = 7.1, 2H), 2.86 (dd, J = 15.1, 9.4 Hz, 1H), 2.71 (dd, J = 15.1, 3.6 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 168.9, 152.8, 140.8, 134.5, 130.5, 129.4, 123.0, 117.8, 117.6, 69.8, 61.2, 37.9, 14.1, HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₃H₁₃NO₅Na 286.0686; found 286.0681.

Methyl (*R*)-2-(3-nitro-2*H*-chromen-2-yl)acetate (13b). Purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/40) gave 13b: 18.7 mg, 75% yield, yellow solid; $[\alpha]_D^{25} = -75.0$ [c = 0.20 in CHCl₃; data in the reference: 98% ee, $[\alpha]_D^{16} = -97.87$ (c = 1.10 in CHCl₃)¹⁵]; 89% ee, determined by HPLC analysis: [Daicel chiralpak OD-H, *n*-hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.40 min, t (major) = 19.36 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (s, 1H), 7.39 (td, J = 7.6, 1.7 Hz, 1H), 7.30 (dd, J = 7.6, 1.7 Hz, 1H), 7.05 (td, J = 7.5, 1.1 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.05 (dd, J = 9.4, 3.5 Hz, 1H), 3.73 (s, 3H), 2.88 (dd, J = 15.2, 9.5 Hz, 1H), 2.72 (dd, J = 15.2, 3.5 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ (ppm) 169.3, 152.7, 140.7, 134.5, 130.5, 129.4, 123.0, 117.8, 117.7, 69.7, 52.2, 37.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₂H₁₁NO₅Na 272.0529; found 272.0531.

Procedure for the synthesis of (1S,4aR,9aS)-7-methoxy-1-(2-(3
methoxyphenyl)-2-oxoethyl)-1,2,3,4,4a,9a-hexahydro-9H-fluoren-9-one (14). (S)-2
(2-(3-Methoxybenzoyl)cyclohex-2-en-1-yl)-1-(3-methoxyphenyl)ethan-1-one 2c (36.
mg, 0.1 mmol), FeCl ₃ ·6H ₂ O (27.0 mg, 0.1 mmol) were stirred in toluene (1 mL) at 5
°C for 5 h. After completion, purification by flash chromatography on silica ge
(EtOAc/petroleum ether = $1/40$) gave product 14: 25.4 mg, 70% yield, colorless of
$[\alpha]_D^{25} = -5.23$ ($c = 0.65$ in CHCl ₃); 91% ee, determined by HPLC analysis: [Daice
chiralpak IC, <i>n</i> -hexane/ <i>i</i> -PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 47.4
min, t (major) = 49.70 min]; ¹ H NMR (400 MHz, CDCl3): δ (ppm) 7.59 (d, J = 7.7 Hz
1H), 7.50 (t, $J = 2.1$ Hz, 1H), 7.41–7.32 (m, 2H), 7.23–2.14 (m, 2H), 7.09 (dd, $J = 8.2$
2.7 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.78–3.70 (m, 1H), 3.42 (q, <i>J</i> = 6.3 Hz, 1H
2.91 (dd, J=16.2, 9.6 Hz, 1H), 2.58 (dd, J=9.5, 6.5 Hz, 1H), 2.33–2.20 (m, 1H), 2.01
1.89 (m, 1H), 1.88–1.71 (m, 2H), 1.66–1.60 (m, 1H), 1.46–1.32 (m, 1H), 1.28–1.14 (n
1H); ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): δ (ppm) 207.5, 199.4, 159.8, 159.4, 149.7
138.5, 137.1, 129.6, 125.3, 123.5, 120.9, 119.6, 112.3, 105.8, 55.6, 55.4, 53.5, 43.5
37.5, 31.7, 29.3, 27.7, 20.4; IR (CH ₂ Cl ₂) v 2924, 1710, 1683, 1597, 1583, 1455, 1279
1257, 1025, 786, 687 (cm ⁻¹); HRMS (ESI-TOF) m/z : [M + Na] ⁺ calcd for C ₂₃ H ₂₄ O ₄ N
387.1567; found 387.1571.

Procedure for the synthesis of (7aS,8S,10S,11aR)-10-(4-chlorophenyl)-8-(2-(naphthalen-2-yl)-2-oxoethyl)-7a,8,9,10,11,11a-hexahydro-7H-benzo[c]fluoren-7-one (15). 2-((1*R*,3*S*)-4-(2-nNaphthoyl)-4'-chloro-1,2,3,6- tetrahydro-[1,1'-biphenyl]-3-yl)-1-(naphthalen-2-yl)ethan-1-one **6m** (51.4 mg, 0.1 mmol), FeCl₃·6H₂O (27.0 mg, 0.1

mmol) were stirred in toluene (1.0 mL) at 40 °C for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20) gave product **15**: 13.8 mg, 27% yield, white solid, mp 137–147 °C; $[\alpha]_{D}^{25} = +2.63$ (c = 0.84 in CHCl₃); 81% ee, determined by HPLC analysis: [Daicel chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, $1.0 \text{ mL/min}, \lambda = 254 \text{ nm}, \text{ t (major)} = 26.82 \text{ min}, \text{ t (minor)} = 41.20 \text{ min}]; {}^{1}\text{H NMR}$ (400 MHz, CDCl₃): δ (ppm) 8.73–8.67 (m, 1H), 8.13 (dd, J = 8.6, 1.7 Hz, 1H), 8.07–8.01 (m, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.94–7.87 (m, 2H), 7.87–7.79 (m, 2H), 7.68–7.55 (m, 4H), 7.35-7.30 (m, 2H), 7.30-7.26 (m, 2H), 4.31-4.21 (m, 2H), 3.17 (dd, J = 16.0),9.8 Hz, 1H), 3.06-2.96 (m, 1H), 2.93 (dd, J = 9.7, 7.1 Hz, 1H), 2.82-2.70 (m, 1H), 2.50–2.40 (m, 1H), 2.35–2.23 (m, 1H), 1.99–1.88 (m, 1H), 1.63–1.58 (m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃): δ (ppm) 207.8, 199.8, 158.4, 146.0, 137.5, 136.0, 134.6, 134.5, 133.0, 132.3, 130.7, 130.12, 130.09, 129.7, 129.42, 129.39, 129.2, 128.8, 128.6, 128.1, 127.6, 127.1, 124.8, 124.4, 120.1, 53.2, 45.1, 37.7, 36.3, 36.2, 35.9, 31.9; IR (CH₂Cl₂) v 3057, 2925, 1696, 1678, 1625, 1591, 1458, 1377, 1266, 1091, 1013, 821, 736 (cm⁻¹); HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₃₅H₂₇Cl³⁵O₂Na 537.1592; found 537.1598; calcd for C₃₅H₂₇Cl³⁷O₂Na 539.1562; found 539.1587.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Complete screening conditions and experimental procedures; NMR, HRMS spectra and HPLC chromatograms (PDF); cif files of enantiopure **8** and **15**.

Accession Codes

CCDC 2002926 (8) and 2002927 (15) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, or by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

duweiyb@scu.edu.cn

ycchen@scu.edu.cn

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful for the financial support from the NSFC (21931006) and Sichuan Science and Technology Program (19YYJC2413).

REFERENCES

(1) For selected reviews, see: (a) Huddleston, R.; Krische, M. Catalytic cycloreduction, cycloaddition and cycloisomerization. *Synlett* 2003, 12. (b) Aroyan, C. E.; Dermenci, A.; Miller, S. J. The Rauhut–Currier reaction: A history and its synthetic application. *Tetrahedron* 2009, 65, 4069. (c) Methot, J. L.; Roush, W. R. Nucleophilic phosphine organocatalysis. *Adv. Synth.*

Catal. **2004**, *346*, 1035. (d) Xie, P.; Huang, Y. Domino cyclization initiated by cross-Rauhut– Currier reactions. *Eur. J. Org. Chem.* **2013**, *2013*, 6213. (e) Chandra Bharadwaj, K. Intramolecular Morita–Baylis–Hillman and Rauhut–Currier reactions. A catalytic and atom economic route for carbocycles and heterocycles. *RSC Adv.* **2015**, *5*, 75923.

(2) Frank, S. A.; Mergott, D. J.; Roush, W. R. The Vinylogous intramolecular Morita–Baylis–Hillman reaction: Synthesis of functionalized cyclopentenes and cyclohexenes with trialkylphosphines as nucleophilic catalysts. *J. Am. Chem. Soc.* **2002**, *124*, 2404.

(3) Wang, L.-C.; Luis, A. L.; Agapiou, K.; Krische, M. J. *J. Am. Chem. Soc.* Organocatalytic Michael cycloisomerization of bis(enones): The intramolecular Rauhut–Currier reaction. **2002**, *124*, 2402.

(4) For selected example, see: (a) Erguden, J.-K.; Moore, H. W. A new tandem route to angular tetraquinanes. Synthesis of the Waihoensene ring system. Org. Lett. 1999, 1, 375. (b) Methot, J. L.; Roush, W. R. Synthetic studies toward FR182877. Remarkable solvent effect in the vinylogous Morita–Baylis–Hillman cyclization Org. Lett. 2003, 5, 4223. (c) Agapiou, K.; Krische, M. J. Catalytic crossed Michael cycloisomerization of thioenoates: Total synthesis of (±)-Ricciocarpin A. Org. Lett. 2003, 5, 1737. (d) Casas, J.; Persson, P. V.; Iversen, T.; Cordova, A. Direct organocatalytic ring-opening polymerizations of lactones Adv. Synth. Catal. 2004, 346, 1087. (e) Winbush, S. M.; Mergot, D. J.; Roush, W. R. Total synthesis of (–)-Spinosyn A: Examination of structural features that govern the stereoselectivity of the key transannular Diels–Alder reaction. J. Org. Chem. 2008, 73, 1818. (f) Webber, P.; Krische, M. J. Concise stereocontrolled formal synthesis of (±)-quinine and total synthesis of (±)-7-hydroxyquinine via merged Morita–Baylis–Hillman–Tsuji–Trost cyclization. J. Org. Chem. 2008, 73, 9379.

(g) Dermenci, A.; Selig, P. S.; Domaoal, R. A.; Spasov, K. A.; Anderson, K. S.; Miller, S. J. Quasi-biomimetic ring contraction promoted by a cysteine-based nucleophile: Total synthesis of Sch-642305, some analogs and their putative anti-HIV activities. Chem. Sci. 2011, 2, 1568. (5) For selected asymmetric intramolecular RC reaction of linear bis(enones) substrates via phosphine catalysis, see: (a) Gladysz, J.; Seidel, F. Enantioselective catalysis of intramolecular Morita-Baylis-Hillman and related reactions by chiral rhenium-containing phosphines of the formula (η⁵-C₅H₅)Re(NO)(PPh₃)(CH₂PAr₂). Synlett **2007**, 0986. (b) Gong, J.-J.; Li, T.-Z.; Pan, K.; Wu, X.-Y. Enantioselective intramolecular Rauhut-Currier reaction catalyzed by chiral phosphinothiourea. Chem. Commun. 2011, 47, 1491. (c) Zhang, X.-N.; Shi, M. A highly nucleophilic multifunctional chiral phosphane-catalyzed asymmetric intramolecular Rauhut-Currier reaction. Eur. J. Org. Chem. 2012, 2012, 6271. (d) Zhao, X.; Gong, J.-J.; Yuan, K.; Sha, F.; Wu, X.-Y. Highly enantioselective intramolecular Rauhut-Currier reaction catalyzed by chiral thiourea-phosphine. Tetrahedron Lett. 2015, 56, 2526. (e) Zhou, X.; Nie, H.; Liu, X.; Long, X.; Jiang, R.; Chen, W. Ferrocene-based bifunctional organocatalyst for highly enantioselective intramolecular Rauhut-Currier reaction. Catal. Commun. 2019, 121, 78. (6) Aroyan, C. E.; Miller, S. J. Enantioselective Rauhut-Currier reactions promoted by

(6) Aroyan, C. E.; Miller, S. J. Enantioselective Rauhut–Currier reactions promoted by protected cysteine. *J. Am. Chem. Soc.* **2007**, *129*, 256.

(7) Li, K.; Jin, Z.; Chan, W.-L.; Lu, Y. Enantioselective construction of bicyclic pyran and hydrindane scaffolds via intramolecular Rauhut–Currier reactions catalyzed by thiourea-phosphines. *ACS Catal.* **2018**, *8*, 8810.

(8) For other desymmetric enantioselective intramolecular RC reactions of cyclohexadienones having an acrylate moiety, see: (a) Takizawa, S.; Nguyen, T. M.-N.; Grossmann, A.; Enders,

D.; Sasai, H. Enantioselective synthesis of α -alkylidene- γ -butyrolactones: Intramolecular Rauhut–Currier reaction promoted by acid/base organocatalysts. Angew. Chem., Int. Ed. 2012, 51, 5423. (b) Takizawa, S.; Nguyen, T. M.-N.; Grossmann, A.; Suzuki, M.; Enders, D.; Sasai, H. Facile synthesis of α -methylidene- γ -butyrolactones: Intramolecular Rauhut-Currier reaction promoted by chiral acid base organocatalysts. *Tetrahedron* **2013**, *69*, 1202. (c) Su, X.; Zhou, W.; Li, Y.; Zhang, J. Design, synthesis, and application of a chiral sulfinamide phosphine catalyst for the enantioselective intramolecular Rauhut-Currier reaction. Angew. Chem., Int. Ed. 2015, 54, 6874. (d) Yao, W.; Dou, X.; Wen, S.; Wu, J. e.; Vittal, J. J.; Lu, Y. Enantioselective desymmetrization of cyclohexadienones via an intramolecular Rauhut-Currier reaction of allenoates. Nat. Commun. 2016, 7, 13024. (e) Jin, H.; Zhang, Q.; Li, E.; Jia, P.; Li, N.; Huang, Y. Phosphine-catalyzed intramolecular Rauhut-Currier reaction: enantioselective synthesis of hydro-2H-indole derivatives. Org. Biomol. Chem. 2017, 15, 7097. (f) Kishi, K.; Arteaga, F. A.; Takizawa, S.; Sasai, H. Multifunctional catalysis: Stereoselective construction of α -methylidene- γ -lactams via an amidation/Rauhut–Currier sequence. Chem. *Commun.* **2017**, *53*, 7724. For selected reviews on enantionselective desymmetrization of prochiral dienone system, see: (g) Maertens, G.; Ménard, M.-A.; Canesi, S. Catalytic enantioselective desymmetrizations of prochiral dienone systems. Synthesis 2014, 46, 1573. (h) Kalstabakken, K. A.; Harned, A. M. Asymmetric transformations of achiral 2,5cyclohexadienones. Tetrahedron 2015, 46, 9571.

(9) (a) Zhou, Z.; He, Q.; Jiang, Y, Ouyang, Q.; Du, W.; Chen, Y.-C. Double Thiol-chiral Brønsted base catalysis: Asymmetric cross Rauhut–Currier reaction and sequential [4 + 2] annulation for assembly of different activated olefins. *Org. Lett.* **2019**, *21*, 7184. For double

activation catalysis of thiols and chiral amines, see: (b) Zhou, Z.; Wang, Z.-X.; Zhou, Y.-C.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y.-C. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions. *Nat. Chem.* **2017**, *9*, 590. (c) Wang, Z.-X.; Zhou, Z.; Xiao, W.; Ouyang, Q.; Du, W.; Chen, Y.-C. Double activation catalysis for α'-alkylidene cyclic enones with chiral amines and thiols. *Chem. - Eur. J.* **2017**, *23*, 10678. (d) Yang, Q.-Q.; Xiao, W.; Du, W.; Ouyang, Q.; Chen, Y.-C. Asymmetric [4 + 2] annulations to construct norcamphor scaffolds with 2-cyclopentenone via double amine–thiol catalysis. *Chem. Commun.* **2018**, *54*, 1129. (e) Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. Asymmetric formal [5 + 3] cycloadditions with unmodified Morita–Baylis–Hillman alcohols via double activation catalysis. *ACS Catal.* **2019**, *9*, 1258.

(10) (a) Selig, P. S.; Miller, S. J. ortho-Acidic aromatic thiols as efficient catalysts of intramolecular Morita–Baylis–Hillman and Rauhut–Currier reactions. *Tetrahedron Lett.* 2011, *52*, 2148. (b) Aroyan, C. E.; Dermenci, A.; Miller, S. J. Development of a cysteine-catalyzed enantioselective Rauhut–Currier reaction. *J. Org. Chem.* 2010, *75*, 5784.

(11) For more screening conditions, see the Supporting Information.

(12) A plausible stereochemical model for the generation of chiral **6m** has been proposed in the Supporting Information.

(13) The *trans*-isomer could not undergo the intramolecular RC reaction probably due the long distance between the two enone moieties.

(14) For a racemic process via phosphine catalysis, see: Thalji, R. K.; Roush, W. R. Remarkable phosphine-effect on the intramolecular aldol reactions of unsaturated 1,5-diketones: Highly regioselective synthesis of cross-conjugated dienones. *J. Am. Chem. Soc.* **2005**, *127*, 16778.

(15) Wang, X.-F.; Peng, L.; An, J.; Li, C.; Yang, Q.-Q.; Lu, L.-Q.; Gu, F.-L.; Xiao, W.-J. Enantioselective intramolecular crossed Rauhut–Currier reactions through cooperative nucleophilic activation and hydrogen-bonding catalysis: Scope and mechanistic insight. *Chem. - Eur. J.* 2011, *17*, 6484.

(16) (a) Krieger, J.; Smeilus, T.; Schackow, O.; Giannis, A. Lewis acid mediated Nazarov cyclization as a convergent and enantioselective entry to *C*-nor-*D*-homo-steroids. *Chem. - Eur. J.* 2017, *23*, 5000. (b) Marcus, A. P.; Lee, A. S.; Davis, R. L.; Tantillo, D. J.; Sarpong, R.
Pronounced steric effects of substituents in the Nazarov cyclization of aryl dienyl ketones. *Angew. Chem., Int. Ed.* 2008, *47*, 6379.

(17) Prévost, S.; Thai, K.; Schützenmeister, N.; Coulthard, G.; Erb, W.; Aggarwal, V. K. Synthesis of prostaglandin analogues, Latanoprost and Bimatoprost, using organocatalysis via a key bicyclic enal intermediate. *Org. Lett.* **2015**, *17*, 504.

(18) (a) Hanzlik, R. P.; Weller, P. E.; Desai, J.; Zheng, J.; Hall, L. R.; Slaughter, D. E. Synthesis of mercapturic acid derivatives of putative toxic metabolites of bromobenzene. *J. Org. Chem.* **1990**, *55*, 2736. (b) Creutz, S. E.; Peters, J. C. Diiron bridged-thiolate complexes that bind N₂ at the Fe^{II}Fe^{II}, Fe^{II}Fe^I, and Fe^IFe^I redox states. *J. Am. Chem. Soc.* **2015**, *137*, 7310.

(19) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. Efficient visible light photocatalysis

of [2+2] enone cycloadditions. J. Am. Chem. Soc. 2008, 130, 12886.