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ABSTRACT 

The free fatty acid receptor 2 (FFA2/GPR43) is considered a potential target for treatment of 

metabolic and inflammatory diseases. Here we describe the development of the first fluorescent 

tracer for FFA2 intended as a tool for assessment of thermodynamic and kinetic binding 

parameters of unlabeled ligands. Starting with a known azetidine FFA2 antagonist, we used a 

carboxylic acid moiety known not to be critical for receptor interaction as attachment point for a 

nitrobenzoxadiazole (NBD) fluorophore. This led to the development of 4 (TUG-1609), a 

fluorescent tracer for FFA2 with favorable spectroscopic properties and high affinity, as 

determined by bioluminescence resonance energy transfer (BRET)-based saturation and kinetic 

binding experiments, as well as a high specific to non-specific BRET binding signal. A BRET-

based competition binding assay with 4 was also established and used to determine binding 

constants and kinetics of unlabeled ligands.  
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INTRODUCTION 

The free fatty acid receptor 2 (FFA2, also known as GPR43) is a 7-transmembrane receptor 

activated by short-chain fatty acids (SCFAs) produced endogenously during colonic fermentation 

of dietary fiber by the gut microbiota.1-5 The receptor is expressed in various cell types such as 

adipocytes and pancreatic β-cells.6,7 FFA2 is also expressed in immune cells, including 

neutrophils, eosinophils, B lymphocytes, and peripheral blood mononuclear cells, and has been 

shown to mediate SCFA-promoted chemotaxis in neutrophils.8-11 In recent years FFA2 has 

attracted much attention as a possible target for treatment of obesity,12 inflammation,9,13,14 and 

metabolic diseases.5,15 It has however frequently been unclear if the preferred mode of action 

was agonism or antagonism.3 It has been shown that the loss of FFA2 and the related SCFA 

receptor FFA3 (GPR41) leads to increased insulin secretion and improved glucose tolerance, 

indicating a therapeutic potential of antagonists against metabolic diseases.7 The role of the 

receptor in chemotaxis of neutrophils has also suggested anti-inflammatory potential of 

antagonists. For example, the FFA2 antagonist GLPG0974 (1, Chart 1) has been demonstrated to 

inhibit human neutrophil recruitment in vitro and in vivo, suggesting that the compound could 

represent a potential therapeutic target for treatment of inflammatory diseases.13,16 Clinical trials 

with 1 for treatment of ulcerative colitis indeed showed decreased neutrophil infiltration although 

no significant improvement of symptoms was observed in the patients.17 To fully assess the 

therapeutic potential of FFA2, high quality tool compounds are needed for further investigations 

of FFA2 pharmacology and function. 

Fluorescent tracer molecules have been established as useful tools for real-time monitoring of 

receptor-ligand interactions and offer several advantages over conventional radioactive tracers.18-
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21 The small, green-emitting fluorophore 4-amino-7-nitrobenzoxadiazole (NBD) has previously 

been employed for labeling small molecules, lipids and proteins and has been applied in 

competition binding assays and for imaging of living cells.22-25 The fluorescence of NBD is 

almost completely quenched in polar and protic solvents, whereas high fluorescence activity is 

preserved in non-polar environments, which can amplify signal to noise ratio for the bound 

NBD.26 Bioluminescence resonance energy transfer (BRET) between a receptor tagged at its N-

terminus with Nanoluciferase (NLuc) and a fluorescent ligand is useful for real-time interaction 

monitoring, also between GPCRs and small molecules.27 We have recently taken advantage of 

the properties of NBD by developing two free fatty acid receptor 1 (FFA1) fluorescent tracers as 

well as a BRET competition binding assay to NLuc tagged FFA1 and demonstrated its 

usefulness for investigating the binding of natural and synthetic ligands to the FFA1 receptor.21 

NBD was selected due to the almost perfect overlap between its absorption band and the 

emission band of NLuc. NBD is known to be prone to photobleaching.28 However, the avoidance 

of an external light source in the BRET assay minimizes this problem. Recognizing the need for 

a similar fluorescent tracer and assay for FFA2, we aimed to follow an equivalent strategy for 

this receptor. We here report on the design, synthesis and characterization of the first fluorescent 

tracer for FFA2 and the use of the tracer in a BRET competition binding assay. The carboxylic 

acid chain of 1 was originally introduced to tackle ADME issues in the compound series.13 

Although the carboxylate contributes somewhat to potency of the compound and has been 

demonstrated to depend on the presence of at least one of the two orthosteric arginine residues, 

the group is not required for the activity of the compound.29 The closely related azetidine 

analogue 2 as well as its methyl ester (3) are also efficient FFA2 antagonists.13,29 As the 

carboxylic acid group appeared to be dispensable for the affinity of the compounds, we decided 
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to explore this group as attachment point for an NBD fluorophore in the design of the proposed 

FFA2 fluorescent tracer 4 (TUG-1609, Chart 1). 

  

Chart 1. Design strategy for an antagonist-based FFA2 fluorescent tracer.  

 

RESULTS AND DISCUSSION 

Synthesis 

The fluorescent tracer 4 was synthesized in 13 steps from commercial starting materials. 

Azetidine 5 was synthesized according to the procedures described by Pizzonero and co-workers 

(Scheme 1).13 Benzothiene-3-acetic acid 6 was activated with bis(2-oxo-3-

oxazolidinyl)phosphinic chloride (BOP-Cl) and coupled with 5 to give 3. Methyl ester 3 was 

hydrolyzed to carboxylic acid 2, activated using BOP-Cl and coupled to mono-Boc-protected 

1,3-diaminopropane to give 7. Boc-deprotection afforded the crude amine, which was reacted 

directly with NBD-Cl in a nucleophilic aromatic substitution to give the fluorescent 4 in 47% 

yield after purification by preparative HPLC.21 
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Scheme 1. Synthesis of 4.a 

 

aReagents and conditions: (i) Et3N, BOP-Cl, DCM, 80 °C, 25 h, 40%; (ii) LiOH, THF, water, 
rt, 96%; (iii) a): Et3N, BOP-Cl, DCM, 50°C, 3 h; b): Et3N, tert-butyl (3-aminopropyl)carbamate, 
30 min at 50 °C, then rt overnight, 46%; (iv) TFA, DCM, rt; (v) NBD-Cl, NaHCO3, MeOH, 50 
°C, 4 h, 38% over 2 steps. 

 

Characterization of Fluorescence Properties 

Absorption and fluorescence spectra of 4 were recorded in PBS7.4 and in n-octanol, with the 

latter solvent emulating the environment of a predominately hydrophobic receptor binding site or 

membrane.30 A shift of 30 nm was observed when comparing the maximum excitation of 4 in n-

octanol (λmax = 462 nm) with that in PBS buffer (λmax = 492 nm, spectrum not shown). The 

extinction coefficient (ε) of 4 at its maximum excitation wavelength was determined (ε462 nm = 

12,550 M-1 cm-1) from absorption spectra recorded in n-octanol at increasing concentrations of 4 

(Table 1). Fluorescent tracer 4 exhibits maximum emission at 525 nm with a Stokes shift of 63 

nm and a quantum yield (Φ) of 0.62 in n-octanol (Table 1 and Figure 1A), whereas the 

fluorescence was almost absent in PBS (Figure 1B). Overall, 4 demonstrated properties 

comparable to the values observed for the recently reported NBD-based FFA1 tracers.21 
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Table 1. Absorption and fluorescence properties of 4. a  

n-Octanol PBS buffer (pH 7.4) 

λex 

[nm] 
λem 

[nm] 

SS 
[nm] 

ε462 nm
b  

[M-1 cm-1] 
Φb λex  

[nm] 
λem  

[nm] 

462 525 63 12,550 ± 276 0.62 ± 0.012 492 557 

aSS, Stokes shift; Φ, quantum yield; ε, extinction coefficient. bValues are reported ± standard 
error (SE). 

 

     

Figure 1. Absorption and fluorescence properties of 4. A) Normalized absorption (dotted line) 

and fluorescence (solid line) spectra in n-octanol. B) Effect of solvent on fluorescence activity of 

4 in n-octanol (black curve) and PBS buffer (blue curve, maximum indicated by arrow). 

 

Functional Characterization of 4 on FFA2 

Tracer 4 was found to act as an antagonist of propionate (C3)-mediated elevation of inositol 

monophosphate (IP1) levels in Flp-InTM T-RExTM 293 cells induced to express a form of human 

FFA2 that had enhanced Yellow Fluorescent Protein linked in frame to the intracellular C-

terminal tail of the receptor (hFFA2-eYFP) (Figure 2A). The ability of 4 to inhibit the effects of 

an EC80 concentration of C3 was similar to that of the related clinically tested FFA2 antagonist 1 
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and analogue 2 (Figure 2A, Table 2). Furthermore, in membrane preparations derived from these 

cells, increasing concentrations of 4 were able to prevent specific binding of [3H]-1 to the 

hFFA2-eYFP construct with affinity akin to that of unlabeled 1 and 2 (Figure 2B, Table 2). 

  

 

Figure 2. (A) Functional characterization of 4 against 1 and 2 in IP1 accumulation assay. (B) 

Displacement of [3H]-1 using 1, 2 and 4. Error bars represent SE, n=3. 

 

Table 2. Characterization of antagonist properties and affinities of unlabeled carboxylic acid 1, 

methyl ester 2 and fluorescent tracer 4 as antagonist in functional IP1 and radioligand 

displacement assays. 

Cmpd pIC50 (IP1)a pKi (Displacement)b 

1 6.94 ± 0.04 7.76 ± 0.11 

2 7.08 ± 0.05 7.64 ± 0.08 

4 6.57 ± 0.10 7.31 ± 0.06 

aThe ability of 4 to inhibit IP1 accumulation at EC80 concentration of propionate. b
Ki was 

determined in [3H]-1 displacement assays. Values are means ± SE, n=3. 
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Characterization of 4 as an FFA2 Tracer Molecule 

A saturation binding experiment was performed by adding varying concentrations of 4 to 

membrane preparations generated from Flp-InTM T-RExTM 293 cells induced to express hFFA2-

eYFP. This allowed BRET (Figure 3A) between NLuc and the NBD domain of bound 4. 

Subtraction of signal obtained when the same concentrations of 4 were co-incubated with 50 µM 

1 was used to define non-specific binding of 4 (Figure 3A) and to generate a monophasic binding 

curve with an estimated Kd for 4 of 65.1 ± 1.8 nM (Figure 3B). Following addition of 100 nM 4 

to membrane preparations and waiting 2 hours to allow binding to reach equilibrium, wash-out 

of unbound 4 allowed the dissociation of 4 to be monitored under conditions of infinite dilution 

by the reduction of specific BRET signal over time (Figure 3C). The tendency of the signal to 

extrapolate below zero in Figure 3C may be due to depletion of substrate for NLuc at the end of 

the longer measurements. Time courses of development of specific BRET signals following 

addition of different concentrations of 4 showed the estimated ligand association rate to increase 

with ligand concentration as predicted by mass action (Figure 3D). These experiments allowed 

the determination of a dissociation rate koff of 0.0249 ± 0.0009 min-1 and an association rate kon 

of 368,000 ± 29300 M-1 min-1 for tracer 4. Using these constants to independently calculate the 

affinity of 4 yielded a Kd of 67.7 nM, a value very close to that obtained from the saturation 

binding experiment. 
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Figure 3. (A) BRET-based saturation binding experiment of tracer 4 bound to NLuc tagged 

FFA2 (total binding signal); BRET between 4 and NLuc tagged FFA2 recorded using non-

fluorescent 1 at high concentration (10 µM) (non-specific binding signal). (B) Monophasic 

binding curve for 4 obtained by subtracting total binding signal from non-specific binding signal 

of 4. (C) Dissociation of 4 monitored under conditions of infinite dilution (asymptote at -0.17 ± 

0.02). (D) Time courses measuring the association of 4 to NLuc tagged FFA2 at varying 

concentrations of 4. Error bars represent SE, n=3. 

 

To compare the usefulness of 4 with that of the radiolabeled FFA2 antagonist [3H]-1, we 

employed the BRET signal produced by 4 bound specifically to NLuc tagged FFA2 in the 

presence of varying concentrations of either 1 or the FFA2 antagonist CATPB (8) as a means to 
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concomitantly measure both ‘on’ and ‘off’ rates of these unlabeled ligands (Table 3).31 

Antagonist 8 is structurally different from 1 but is known to bind to the same site at the FFA2 

receptor.29,32 Previous studies using [3H]-1 indicated that although these two compounds have 

similar affinity at human FFA2, 8 is relatively ‘fast on-fast off’ whilst 1 displays both slower 

association and slower dissociation kinetics.29 These features were reproduced and confirmed 

when employing 4 in such binding kinetic analyses (Figure 4). The rate constants corresponded 

to dissociation constants of 46.9 nM and 18.9 nM for 1 (Figure 4A) and 8 (Figure 4B), 

respectively (Table 3). No problems related to bleaching or day-to-day variability was noticed 

using the BRET assay when care was taken to protect the compound from unnecessary exposure 

to light. 

 

Figure 4. Application of 4 in binding kinetic analyses of unlabeled ligands; (A) 1, (B) 8. Error 

bars represent SE, n=3. 
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Table 3. Kinetic properties for fluorescent tracer 4 and unlabeled ligands 1 and 8.  

Cmpd koff (min-1) kon (M
-1 min-1) Kd (nM) 

4
a 0.0249 ± 0.0009 368,000 ± 29,300 67.7 ± 5.9 

1
b 0.0099 ± 0.0014 211,000 ± 4,780 46.9 ± 6.7 

8
b 0.0205 ± 0.0010 1,083,000 ± 59,800 18.9 ± 1.4 

aRate constants and dissociation constant of 4 determined in BRET-based saturation binding 
assay. bRate constant and dissociation constants for unlabeled ligands 1 and 8 determined using 
tracer 4 in BRET-based competition binding assay. Values are means ± SE, n=3. 

 

Importantly, when varying concentrations of 4 were co-added with a range of concentrations of 

1, analysis of the binding of 4, as reported by the specific BRET signal, was consistent with 

competition between the ligands to bind to the receptor (Figure 5A).  Higher concentrations of 4 

required increasing concentrations of 1 to compete for the receptor binding site (Figure 5A, 

Table 4). Equivalent conclusions were reached for 8 (Figure 5B) and provided an estimated 

affinity for human FFA2 of 14.5 nM, almost identical to the value determined previously when 

employing [3H]-1.29 Notably, affinity values for 1 and 8 determined using 4 in competition 

binding experiments (Table 4) were found to be internally consistent with dissociation constants 

obtained when using 4 in binding kinetic analyses (Table 3). To be useful as a ligand with which 

to screen novel chemical ligands for affinity at human FFA2, it is important that employing 4 

should result in ligand SAR as anticipated from other studies. It is known that replacement of the 

carboxylate moiety of 8 by methyl ester (9) reduces affinity at hFFA2 by more than 10 fold.29 

Herein, using 4 this expectation was again fulfilled (Figure 5C) with 9 displaying 23.6 fold lower 

affinity for human FFA2, when compared to 8. 
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Figure 5. Application of 4 in competition binding experiments of unlabeled ligands (A) 1, (B) 8, 

(C) 9. Error bars represent SE, n=3. 

 

Table 4. Competition binding affinities of selected FFA2 antagonists. 

  

  
1 8 9 

Affinitya 
pKi 7.16 ± 0.06 7.84 ± 0.04 6.42 ± 0.03 

Ki (nM) 69.2 14.5 380 

a Values for pKi are means ± SE, n=3.  

 

CONCLUSION 

By taking advantage of SAR information on known antagonists for FFA2, the fluorescent 

tracer molecule 4 was developed. Tracer 4 contains an NBD fluorescent probe and exhibits 

desirable spectroscopic properties, including a Stokes shift of 63 nm, low fluorescence activity in 
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aqueous solution, and a high quantum yield in non-polar environments. Using an NLuc construct 

built into the extracellular N-terminal domain of the FFA2 receptor and BRET-based binding 

experiments, tracer 4 was found to exhibit a Kd of 65 nM and a low non-specific binding signal. 

The BRET binding assay with 4 was further applied to determine thermodynamic and kinetic 

binding parameters of unlabeled FFA2 ligands, resulting in values comparable to those obtained 

previously using a radiolabeled ligand. Compound 4 is the first fluorescent tracer for FFA2 and 

is expected to be useful tool for further studies of the receptor as well as for characterization of 

FFA2 ligands. 

 

EXPERIMENTAL SECTION 

Synthesis 

Commercial staring materials and solvents were used without further purification, unless 

otherwise stated. THF was freshly distilled from sodium/benzophenone, and MeOH and DCM 

were dried over 3 Å sieves. Petroleum ether (PE) refers to alkanes with pb 60 – 80 °C. TLC was 

performed on TLC silica gel 60 F254 plates and visualized at 254 or 365 nm or by staining with 

ninhydrin or KMnO4 stains. Purification by flash chromatography was carried out using silica gel 

60 (0.040-0.063 mm, Merck). 1H and 13C NMR spectra were recorded at 400 and 101 MHz, 

respectively, on a Bruker Avance III 400 at 300 K. Rotamer peaks have been assigned by 

asterisk (*). Integrals reported as H represent sum of rotamers, whereas integrals reported as H’ 

and H’’ represent specific rotamers where H’ + H’’ = H for the relevant signal. High-resolution 

mass spectra (HRMS) were obtained on a Bruker micrOTOF-Q II (ESI). Purity was determined 

by HPLC and confirmed by inspection of NMR spectra (1H and 13C NMR). HPLC analysis was 

performed using a Gemini C18 column (5 µm, 4.6x150 mm); flow: 1 mL/min; 10% MeCN in 
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water (0-1 min), 10-100% MeCN in water (1-10 min), 100% MeCN (11-15 min), with both 

solvents containing 0.1% HCOOH as modifier; UV detection at 254 nm. All test compounds 

were of ≥95% purity unless otherwise stated.  

Compounds 1, 8 and 9 were synthesized according to published procedures.13,33  

4-(1-(2-(Benzo[b]thiophen-3-yl)acetyl)-2-methyl-N-(4-(trifluoromethyl)benzyl)azetidine-

2-carboxamido)butanoic acid (2). Compound 3 (50.0 mg, 92 µmol) dissolved in THF (1 mL) 

was added 0.6 M aqueous LiOH (0.45 mL) and stirred for 3.5 h at rt, whereafter the reaction 

mixture was acidified with 1 M HCl until pH 2-3 and extracted with EtOAc (x3). The extract 

was washed with brine, dried over Na2SO4, and concentrated in vacuo to give 2 as a sticky oil 

(46.9 mg, 96%); 1H NMR (400 MHz, CDCl3) δ 7.93 – 7.51 (m, 4H), 7.49 – 7.13 (m, 5H), 4.93 – 

4.26 (m, 2H), 4.09 – 2.95 (m, 6H), 2.61 – 2.43 (m, 1H), 2.40 – 2.12 (m, 3H), 2.00 – 1.70 (m, 

5H); 13C NMR (101 MHz, CDCl3) δ 172.6, 170.2, 140.31, 140.25, 139.3, 138.8, 130.1, 129.9, 

128.0, 127.0, 125.8, 124.6, 124.3, 124.1, 124.0, 122.9, 122.8, 122.2, 122.0, 121.8, 71.3, 46.7, 

46.2, 43.3, 34.3, 33.6, 30.5, 29.8, 29.5, 29.0, 25.3, 23.7; ESI-HRMS calcd for C27H27F3N2NaO4S 

(M + Na+) 555.1536, found 555.1544; HPLC: tR = 11.80 min, 97.1% pure. 1H NMR in overall 

agreement with literature.13 

Methyl 4-(1-(2-(benzo[b]thiophen-3-yl)acetyl)-2-methyl-N-(4-(trifluoromethyl)benzyl)-

azetidine-2-carboxamido)butanoate (3). In a dry microwave vial carboxylic acid 6 (57.4 mg, 

0.30 mmol) and amine 5 (93.4 mg, 0.23 mmol) were suspended in dry DCM (0.45 mL). To the 

stirred suspension were added Et3N (175 µL, 1.26 mmol) and BOP-Cl (88.5 mg, 0.35 mmol), 

and the vial was heated at 80 °C for 25 h. The reaction was cooled to rt, vented, water was added, 

and the mixture extracted with DCM (x5). The extract was dried over Na2SO4 and concentrated 

in vacuo. The product was obtained after flash chromatography (EtOAc:PE 4:1 � 100% EtOAc) 
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as a pale yellow sticky oil (50.2 mg, 40%): Rf = 0.26 (EtOAc); 1H NMR (400 MHz, CDCl3) δ 

7.95 – 7.53 (m, 4H), 7.50 – 7.12 (m, 5H), 4.94 – 4.26 (m, 2H), 4.10 – 2.96 (m, 6H), 3.66* (s, 

3H’), 3.63 (s, 3H’’), 2.63 – 2.46 (m, 1H), 2.43 – 2.14 (m, 3H), 2.00 – 1.71 (m, 5H); 13C NMR 

(101 MHz, CDCl3) δ 172.6, 172.0, 169.7, 141.4, 140.3, 139.3, 138.8, 130.1, 128.0, 126.9, 126.3, 

125.8, 124.5, 124.3, 124.1, 124.0, 123.8, 122.9, 122.8, 122.1, 121.8, 71.0, 51.9, 51.8, 46.7, 46.3, 

43.1, 34.4, 33.7, 31.3, 30.7, 29.4, 29.1, 23.8, 23.1; ESI-HRMS calcd for C28H29F3N2NaO4S (M + 

Na+) 569.1692, found 569.1714. 

1-(2-(Benzo[b]thiophen-3-yl)acetyl)-2-methyl-N-(4-((3-((7-nitrobenzo[c][1,2,5]oxadiazol-

4-yl)amino)propyl)amino)-4-oxobutyl)-N-(4-(trifluoromethyl)benzyl)azetidine-2-

carboxamide (4). To a pre-dried microwave vial at rt, the Boc-protected amine 7 (23.9 mg, 35 

µmol) was dissolved in dry DCM (70 µL) followed by dropwise addition of TFA (66 µL, 0.87 

mmol). Upon full deprotection indicated by TLC the reaction mixture was diluted with DCM, 

added NaHCO3 (sat), extracted with DCM (x5), the organic phases dried over Na2SO4, and 

concentrated in vacuo. The crude amine (17 mg) was used in the next step without further 

purification. 

To a pre-dried microwave vial under argon were added crude amine (17 mg), NBD-Cl (17.3 

mg, 87 µmol), NaHCO3 (9.8 mg, 117 µmol) and the reactants were dissolved in dry MeOH (0.7 

mL). The vial was capped, protected from light, and stirred at 50 °C for 4 h. The reaction was 

cooled to rt, concentrated under a flow of N2, redissolved in a mixture of EtOAc (2 mL) and 

water (2 mL), extracted with EtOAc (x3), washed with brine, and concentrated in vacuo. The 

crude product was purified on preparative HPLC using a Phenomenex Luna C18 5 µm column 

(250×21.2 mm), with gradient elution of 0.05% TFA/MeCN and 0.05% TFA/H2O at a flow rate 

of 20 mL/min. HPLC fractions were combined an concentrated under reduced pressure and the 
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remaining aqueous phase extracted with EtOAc (x5). The organic phases were combined, 

washed with brine and concentrated in vacuo to give 4 as a red sticky oil (10.1 mg, 38% over 2 

steps): Rf = 0.32 (DCM [10% MeOH]); 1H NMR (400 MHz, CDCl3) δ 8.39 (d, J = 8.4 Hz, 1H), 

8.01 – 7.92 (m, 1H), 7.84 – 7.77 (m, 1H), 7.72 – 7.67 (m, 1H), 7.63 (d, J = 7.7 Hz, 2H), 7.42 – 

7.36 (m, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.24 (m, 1H), 7.23 (br s, 1H), 6.01 (d, J = 8.4 Hz, 1H), 

4.67 – 4.58 (m, 1H), 4.36 – 4.25 (m, 1H), 4.21 – 3.99 (m, 3H), 3.68 – 3.63 (m, 2H), 3.51 – 3.22 

(m, 6H), 2.58 – 2.45 (m, 1H), 2.39 – 2.17 (m, 4H), 1.94 – 1.73 (m, 4H), 1.70 – 1.55 (m, 2H); 

ESI-HRMS calcd for C36H37F3N7O6S (M + H+) 752.2473, found 752.2502; HPLC: tR = 12.29 

min, 99.9% pure. 

tert-Butyl-(3-(4-(1-(2-(benzo[b]thiophen-3-yl)acetyl)-2-methyl-N-(4-(trifluoromethyl)-

benzyl)azetidine-2-carboxamido)butanamido)propyl)carbamate (7). The crude carboxylic 

acid 2 (40.0 mg, 75 µmol) in dry DCM (150 µL) was added Et3N (20 µL, 0.15 mmol) followed 

by BOP-Cl (23.9 mg, 94 µmol), and the reaction was heated slowly to 50 °C. After 3 h, 

additional Et3N (25 µL, 0.19 mmol) was added followed by tert-butyl (3-aminopropyl)carbamate 

(17.3 mg, 1.0 mmol). The reaction was stirred at 50 °C for 30 min, cooled to rt, and stirred over 

night before concentration in vacuo and purification of the crude product by flash 

chromatography (DCM [5% MeOH]) to yield the desired product as clear sticky oil (23.9 mg, 

46%): Rf = 0.12 (DCM [5% MeOH]); 1H NMR (400 MHz, CDCl3) δ 7.93 – 7.51 (m, 4H), 7.49 – 

7.13 (m, 5H), 7.24 – 7.11 (m, 1H), 6.79 – 6.40 (m, 1H), 4.92 – 4.49 (m, 2H), 4.47 – 4.27 (m, 

1H), 4.24 – 3.84 (m, 3H), 3.78 – 3.38 (m, 2H), 3.26 – 3.16 (m, 2H), 3.14 – 3.00 (m, 2H), 2.58 – 

2.41 (m, 1H), 2.38 – 2.20 (m, 1H), 1.94 – 1.73 (m, 5H), 1.71 – 1.48 (m, 4H), 1.43* (s, 9H’), 1.42 

(s, 9H’’); ESI-HRMS calcd for C35H43F3N4NaO5S (M + Na+) 711.2798, found 711.2786. 
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Characterization of absorption and fluorescence properties of 4 

Single concentration absorption and fluorescence spectra of fluorescent tracer 4 were recorded 

at 8.82 µM. Extinction coefficient for 4 in n-octanol was recorded in duplicates using a 

FLUOstar Omega Microplate Reader (BMG labtech). For fluorescent quantum yield 

determination, fluorescence spectra for 4 were recorded in duplicates using a ChronosFD time-

resolved spectrofluorometer coupled to PMT detectors. Coumarin 153 (C-153) and 4 were 

excited at a fixed excitation wavelength of 402 nm, and C-153 in EtOH was used as an internal 

standard for determination of quantum yield (ΦC-153 = 0.546, λex = 402 nm).34 All experiments 

were performed at 25 °C. Data analysis was performed using Graphpad Prism v5. 

 

IP1 accumulation assay  

All IP1 experiments were performed using Flp-InTM T-RExTM 293 cells able to express receptor 

constructs of interest in an inducible manner. Experiments were carried out using a homogeneous 

time-resolved FRET-based detection kit (Cis-Bio Bioassays, Codolet, France) according to the 

manufacturer’s protocol. Cells were induced to express the receptor of interest by treatment for 

24 h with 100 ng/mL doxycycline and plated at 7500 cells/well in low-volume 384-well plates. 

The ability of C3 to induce accumulation of IP1 was assessed following a co-incubation for 2 

hours with C3, which was preceded by a 15-min pre-incubation with antagonist to allow for 

equilibration. 

 

Radioligand displacement assay 

All receptor radioligand binding experiments using [3H]-1 were conducted in glass tubes, in 

binding buffer (50 mM Tris-HCl, 100 mM NaCl, 10 mM MgCl2, 1 mM EDTA, pH 7.4). 
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Membrane protein was generated from Flp-InTM T-RExTM 293 cells induced to express the 

receptor construct of interest with 100 ng/mL doxycycline. For [3H]-1 competition binding 

assays, the radioligand at approximately Kd concentration and varying concentrations of 

unlabeled ligand of choice were co-added to 5 µg of membrane protein. Non-specific binding of 

the radioligand was determined in the presence of 10 µM 8. After an incubation period of 2 h at 

25 °C, bound and free [3H]-1 were separated by rapid vacuum filtration through GF/C glass 

filters using a 24-well Brandel cell harvester (Alpha Biotech, Glasgow, UK), and unbound 

radioligand was washed from filters by three washes with ice-cold PBS. After drying (3–12 h), 3 

mL of Ultima GoldTM XR (PerkinElmer Life Sciences) was added to each sample vial, and 

radioactivity was quantified by liquid scintillation spectrometry. Aliquots of [3H]-1 were also 

quantified to define the concentration of [3H]-1 added per tube. Data were fitted to a one-site 

model using Graphpad Prism v6 and used to calculate pKi values based on a Kd value for [3H]-

1 of 7.5 nM.16 

 

Equilibrium BRET binding assay 

The NLuc-hFFA2 construct and cell line were developed as described by Christiansen et al.20 

NLuc-hFFA2 Flp-InTM T-RExTM 293 cells were induced to express the receptor construct by 

treating with 100 ng/mL doxycycline for 24 h. Cells were then harvested and used to make total 

cell membrane preparations. Membranes were suspended in binding buffer and transferred into a 

white 96-well plate at 5 µg membrane protein per well. Membranes were then co-incubated with 

the indicated concentration of 4 (and 1 for non-specific binding measurements; or competing 

ligand for competition experiments) for 2 h at 30 °C. Following incubation, the NLuc substrate, 

Nano-Glo (Promega) was added to a final 1:800 dilution. Membranes were incubated a further 5 
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min before the bioluminescent emission at 460 and 545 nm was measured using a Clariostar 

plate reader (BMG labtech). Total and non-specific saturation binding data were then globally fit 

to a one-site binding model using Graphpad Prism v6. Competition binding experiments were fit 

to a one-site model and used to calculate pKi values based on a Kd value for 4 of 65.1 nM. 

 

Kinetic BRET binding assay 

For kinetic BRET binding assays, cell membranes were generated as for the equilibrium 

binding assay and again distributed in white 96-well microplates (2.5 µg membrane 

protein/well). The Nano-Glo substrate was then added (1:800 final dilution) before incubation 

for 5 min at 30 °C. Plates were then inserted into a Clariostar plate reader, with temperature set 

to 30 °C and set to read emission at 460 and 545 nm at 90 s intervals. For association 

experiments, 4 was manually added to the plate after 60 s to a final concentration of 100, 300, 

500 or 1000 nM. Readings were continued at 90 s intervals for the indicated time period. For 

dissociation experiments the reaction was pre-incubated for 2 h at 30 °C followed by two washes 

with binding buffer, performed via centrifugation at 14,000 rpm at 4 °C for 15 min. The pellet 

was then resuspended in binding buffer at 37 °C and transferred into a white 96-well microplate 

at 90 µL/well and standard kinetic binding assay procedure as described above was followed. In 

all kinetic experiments parallel wells were assessed in which 1 had been pre-added, and these 

were used to subtract the non-specific binding signal for 4. Kinetic binding data were then fit to 

one-phase association or dissociation models using Graphpad Prism v6 to obtain estimates of koff, 

kon, and Kd. 
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Determination of the “On” and “Off” Rates of Unlabeled Ligands through Measurement 

of Competition Binding Kinetics of 4 

The kinetic binding parameters of unlabeled ligands were determined through assessment of 

the binding kinetics of 4 as described above. Here the standard procedure was followed. After 5 

min pre-incubation of membrane protein with Nano-Glo, 4 (100 nM) and the competing 

unlabeled ligand at three different concentrations (1-, 3-, or 10-fold the estimated respective Ki 

concentration) were added simultaneously. Readings were then continued at 90 s intervals for 60 

min. Three different concentrations of competitor were assessed to ensure that the rate 

parameters calculated were independent of ligand concentration. Data were fit globally using the 

kinetics of the competitive binding equation available from GraphPad Prism v6, with the kon and 

koff values of 4 entered as constraints. 
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 ABBREVIATIONS 

BOP-Cl, bis(2-oxo-3-oxazolidinyl)phosphinic chloride; BRET, bioluminescence resonance 

energy transfer; FFA1, free fatty acid receptor 1 (GPR40); FFA2, free fatty acid receptor 2 

(GPR43); FFA3, free fatty acid receptor 2 (GPR41); NBD, 4-nitro-7-aminobenzodiazole; NLuc, 

NanoLuciferase; PE, petroleum ether; PMT, photomultiplier tubes; SS, Stoke’s shift. 
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