Tetrahedron 69 (2013) 6305-6312

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

General approach to benzo[*b*]thiophenes, benzo[*b*]furans, and dibenzofurans via gold-catalyzed cyclization of 1-heteroarylalka-2,3-dienyl acetates

Youai Qiu, Dengke Ma, Chunling Fu, Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027 Hangzhou, Zhejiang, PR China

ARTICLE INFO

Article history: Received 13 March 2013 Received in revised form 14 April 2013 Accepted 23 April 2013 Available online 28 April 2013

Keywords: Gold-catalysis Benzannulation Benzo[b]thiophenes Benzo[b]furans Dibenzofurans

ABSTRACT

An efficient and mild route to a series of benzo[b]thiophenes, benzo[b]furans, and dibenzofurans through gold-catalyzed benzannulation of 1-heteroarylalka-2,3-dienyl acetates was developed. Two possible pathways of this reaction involving gold carbene and aryl gold intermediates have been proposed on the basis of mechanistic studies.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Benzo[*b*]thiophenes,¹ benzo[*b*]furans,² and dibenzofurans³ are important heterocyclic scaffolds because of their widespread occurrence among natural products and material chemistry. Thus, the synthesis of functionalized heterocycles is an important topic in synthetic organic chemistry,⁴ and many methodologies for the construction of benzo[*b*]thiophenes, benzo[*b*]furans, and other fused-ring compounds by metal-catalyzed cyclization reactions have been developed.⁵ However, there still remain some limitations such as low yields, harsh reaction conditions, and not readily available starting materials in these methods. Thus, a mild, efficient, regiocontrolled, and diversified preparation of these compounds is still desirable.

We recently reported a route to construct carbazole alkaloids via the PtCl₂-catalyzed cyclization of 1-(indol-2-yl)-2,3-allenols.⁶ Then, we described a Au-catalyzed approach to a series of naturally carbazoles.⁷ Considering the interests in synthesis of heterocyclic compounds, we reasoned that benzo[*b*]thiophenes, benzo[*b*]furans, and dibenzofurans could be afforded by using thiophenes, furans, and benzo[*b*]furans instead of the indole unit in the starting material (Scheme 1). In this paper, we wish to report our recent

Scheme 1. Cyclization of 2,3-allenols for the formation of the benzene ring.

observation on efficient synthesis of benzo[*b*]thiophenes, benzo[*b*] furans, and dibenzofurans through gold-catalyzed cyclization of 1-heteroarylalka-2,3-dienyl acetates.

2. Results and discussion

Initially, we tried the reaction of 2-phenyl-1-(3-thienyl)buta-2,3-dienol (**1a**) in toluene under the catalysis of $PtCl_2$ (5 mol %),⁶ however, **1a** was recovered in 92% (Scheme 2). With AuCl as the catalyst,⁸ the cycloisomerization product **4** was afforded in 71% yield, instead of the expected benzo[*b*]thiophene derivative (**3a**).

Tetrahedror

^{*} Corresponding author. Fax: +86 (0)2162609305; e-mail address: masm@ sioc.ac.cn (S. Ma).

^{0040-4020/\$ –} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.04.099

Scheme 2. Metal-catalyzed cyclization of allenol 1a.

Interestingly, 5-phenylbenzo[*b*]thiophene **3a** was formed in 5% NMR yield together with cycloisomerization product **4** in 29% NMR yield when AuCl(PPh₃)/AgBF₄ was used.

Thus, the hydroxy group was protected in order to prevent the cycloisomerization reaction forming the dihydrofuran product. The reaction of 2-phenyl-1-(3-thienyl)buta-2,3-dienyl acetate **2a** in DCE with AuCl(PPh₃)/AgBF₄ gave the desired product **3a** in only 8% yield (entry 1, Table 1). Fortunately, the yield was improved to 84% when THF was used instead of DCE (entry 2, Table 1). Notably, the solvent effect was obvious, further study showed that dioxane was the best solvent for this transformation, affording **3a** in 95% yield (entry 5, Table 1)! Then, several combinations of AuCl(PPh₃) with different silver salts were tested, among which AgBF₄ was still the best (entries 5–10, Table 1). Thus, we defined the standard conditions as follows: 5 mol % of AuCl(PPh₃)/AgBF₄ in dioxane at room temperature.

Table 1

Optimization of reaction conditions for the cyclization reaction of 2-phenyl-1-(3-thienyl)buta-2,3-dienyl acetate $(2a)^a$

	Aco Ph AuCl(1 so	PPh ₃)/[Ag] (5 mol%)	Ph
	2a		3a
Entry	[Ag]	Solvent	Yield of 3a ^b (%)
1	AgBF ₄	DCE	8
2	AgBF ₄	THF	84
3	AgBF ₄	Et ₂ O	52
4	AgBF ₄	Toluene	18
5	AgBF ₄	Dioxane	95
6	AgSbF ₆	Dioxane	85
7	AgOTf	Dioxane	77
8	AgPF ₆	Dioxane	90
9 ^c	AgOAc	Dioxane	—
10 ^d	AgOOCCF ₃	Dioxane	—

 $^{\rm a}$ The reaction was conducted with 2a (0.2 mmol) and catalyst (0.01 mmol) in 2 mL of solvent at room temperature.

^b Determined by ¹H NMR of crude product using dibromomethane as internal standard.

^c The recovery of **2a** was 97%.

^d The recovery of **2a** was 87%.

Then, other substrates were screened under the optimal reaction condition. The R^1 group could be aryl (entries 1 and 5–8, Table 2) or alkyl group (entries 2–4, Table 2). In addition to acetate, the protecting group could also be methyl ether (entry 5, Table 2). It is noteworthy that this reaction shows an interesting exclusive elimination of the OAc group to form the benzothiophene ring even when R^1 is CH₂OEt (entry 4, Table 2). Moreover, the reaction can be easily conducted in a scale of 4 mmol (1.0811 g) in a slightly higher yield (entry 6, Table 2). Interestingly, benzo[*b*]furan was also formed in a good yield, when furan was used instead of thiophene (entry 8, Table 2). Table 2

Gold-catalyzed cyclization of 1-heteroarylalka-2,3-dienyl acetates^a

Entry	Х	\mathbb{R}^1	R ²	Time (h)	Yield of 3 ^b (%)
1	S	Ph	Ac (2a)	12	84 (3a)
2	S	Bu	Ac (2b)	10	85 (3b)
3	S	C7H15	Ac (2c)	24	89 (3c)
4	S	CH ₂ OEt	Ac (2d)	12	89 (3d)
5	S	Ph	Me (2e)	12	87 (3e)
6 ^c	S	Ph	Ac (2a)	24	88 (3a)
7	S	p-MeC ₆ H ₄	Ac (2f)	12	93 (3f)
8	0	Ph	Ac (2g)	24	85 (3g)

 $^a\,$ Reaction conditions: 1.0 mmol ${\bf 2}$ and 0.05 mmol AuCl(PPh_3)/AgBF_4 in 10 mL of dioxane.

^b Isolated yield.

^c The reaction was conducted with 4 mmol (1.0811 g) scale of **2a**.

We found that even the crude residue **2** without any purification can be used directly for the gold-catalyzed cyclization reactions. Thus, as shown in Table 3, R¹ could be H (entries 3 and 4, Table 3), aryl (entry 1, Table 3), or alkyl group (entries 2 and 5–7, Table 3). R² could be H (entries 1–2 and 5–7, Table 3), phenyl (entry 4, Table 3), or alkyl group (entry 3, Table 3). Benzo[*b*]furans were also afforded under standard reaction conditions (entries 5–7,Table 3).

Table 3

5

6

7

Synthesis of benzothiophenes and benzofurans from 1-arylalka-2,3-dienols

H(21)

H (2m)

H (2n)

12/36

12/30

12/18

52 (3I)

60 (**3m**)

53 (3n)

^a Isolated yield (from **1** to **3**).

Bu

C7H15

CH₂OEt

0

0

0

In addition, we have tested the reaction of the benzofuranderived substrate 1-(benzofuran-2-yl)-2-phenylbuta-2,3-dienyl acetate **20** in dioxane under the catalysis of AuCl(PPh₃)/AgBF₄ (10 mol %) to give dibenzofuran **30** in 48% yield (Scheme 3).

Scheme 3. Synthesis of dibenzofuran through the gold-catalyzed cyclization.

In order to unveil the mechanism, we added D_2O to the reaction mixture of **2a**, the reaction proceeded smoothly to afford **3a**-D in 62% yield with 29% D-incorporation at the 6-position of benzothiophene **3a**-D. The result shows that the reaction may proceed through a carbocation gold intermediate, final protonolysis would release the gold catalyst into the catalytic cycle to afford benzothiophene **3a**-D. Then, we prepared the deuteriumlabeled **2k**-D. To our surprise, the **3k**-D was afforded in 55% yield with 52% D-incorporation at the *ortho*-position of phenyl group (Scheme 4). This means that the reaction may also involve a gold carbene intermediate, subsequent 1,2-D shift would afford **3k**-D.

chromatography was performed on silica gel. Et₂O and dioxane were refluxed in the presence of sodium using diphenyl ketone as indicator and distilled right before use. AuCl(PPh₃) was purchased from Alfa.

Scheme 4. The deuterium-labeling reactions.

On the basis of these results, we proposed two possible mechanistic pathways for this reaction.^{6,9} The reaction of cationic gold with **2a** would form the intermediate **M1** via the coordination of the allene moiety with gold atom followed by nucleophilic attack of the C2 in the thiophene ring. Subsequent elimination of -OAcwould afford gold carbene intermediate **M2** followed by 1,2-H shift to afford the final product **3a** with regeneration of the catalytically cationic gold species. Alternatively, elimination of acetic acid would form aromatic gold intermediate **M3**, which would be followed by protonolysis to release the catalytically active species by protonation to afford the target product **3a** (Scheme 5).

3. Conclusions

In conclusion, we have developed a general Au-catalyzed reaction of 1-heteroarylalka-2,3-dienyl acetates, providing a series of benzo[b]thiophenes, benzo[b]furans, and dibenzofurans. Two possible pathways of this reaction are involved in the reaction as indicated by the mechanistic studies. Due to the easy availability of the starting materials, mild conditions, and the potential of the products, this method may be useful in organic synthesis, material science, and medicinal chemistry. Further studies on synthesis applications of this reaction are being carried out in our laboratory.

4. Experimental section

4.1. General information

¹H and ¹³C nuclear magnetic resonance spectra were recorded with an instrument operated at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR. CDCl₃ was used as solvent in all NMR experiments. Chemical shifts (δ) are given in parts per million (ppm). Infrared spectra were recorded on an FT-IR spectrometer. Mass spectra were carried out in EI mode. HRMS spectra were carried out in EI mode. Flash column

4.2. Synthesis of 1-heteroarylalka-2,3-dienyl acetates 2a—2d, 2f—2g, and 2o

4.2.1. 2-Phenyl-1-(3-thienyl)buta-2,3-dienyl acetate (2a).

Typical procedure: To a solution of **1a**^{6,9b,10} (1.5626 g, 6.86 mmol) and Et₂O (40 mL) were added DMAP (0.1676 g, 1.37 mmol), Et₃N (4.0 mL, *d*=0.73 g/mL, 2.92 g, 28.9 mmol), and Ac₂O (2.6 mL, *d*=1.08 g/ mL, 2.79 g, 27.4 mmol). The resulting mixture was stirred at room temperature until the reaction was complete as monitored by TLC. After being stirred for 12 h, the reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (20 mL), and extracted with diethyl ether (20 mL×3), then washed by water (10 mL). The ether layer was dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel afforded 2a (1.7207 g, 93%) (petroleum ether/ethyl acetate=20:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a liguid: ¹H NMR (300 MHz, CDCl₃) δ 7.41–7.31 (m, 2H, ArH), 7.30–7.11 (m, 5H, ArH), 7.16 (dd, J_1 =5.1 Hz and J_2 =0.9 Hz, 1H, thienyl-H), 6.95 (s, 1H, OCH), 5.26 (d, J=1.8 Hz, 2H, =CH₂), 2.13 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.6, 169.8, 139.3, 133.5, 128.3, 127.0, 126.7, 126.5, 125.7, 123.4, 106.5, 80.4, 69.5, 20.9; IR (KBr) v (cm⁻¹) 3105, 3057, 3033, 2979, 2937, 1941, 1747, 1597, 1578, 1495, 1450, 1423, 1368, 1228, 1152, 1077, 1024; MS (70 eV, EI) *m*/*z* (%) 227 (M⁺-CH₃CO, 33.11), 43 (100). Elemental analysis calcd for C₁₆H₁₄O₂S: C, 71.08; H, 5.22. Found: C, 71.06; H, 5.27.

The following compounds **2b**–**2d**, **2f**–**2g**, and **2o** were prepared according to this procedure.

4.2.2. 2-Butyl-1-(3-thienyl)buta-2,3-dienyl acetate (2b).

The reaction of **1b** (0.6869 g, 3.3 mmol), Et₂O (20 mL), DMAP (0.0812 g, 0.66 mmol), Et₃N (2.0 mL, d=0.73 g/mL, 1.46 g, 14.5 mmol), and Ac₂O (1.25 mL, d=1.08 g/mL, 1.35 g, 13.2 mmol) at

room temperature for 16 h afforded **2b** (0.6568 g, 80%) (petroleum ether/ethyl acetate=40:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.32–7.21 (m, 2H, thienyl–H), 7.06 (d, *J*=4.8 Hz, 1H, thienyl–H), 6.27 (s, 1H, OCH), 4.82–4.61 (m, 2H, = CH₂), 2.10 (s, 3H, CH₃), 1.94–1.83 (m, 2H, CH₂), 1.46–1.21 (m, 4H, 2×CH₂), 0.86 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 205.8, 169.9, 139.7, 126.6, 125.8, 122.9, 104.1, 78.5, 71.8, 29.5, 27.7, 22.2, 21.1, 13.9; IR (neat) ν (cm⁻¹) 3106, 2957, 2930, 2860, 1958, 1746, 1369, 1231, 1024; MS (70 eV, EI) *m/z* (%) 251 (M⁺+1, 2.03), 250 (M⁺, 16.31), 249 (100); HRMS calcd for C₁₄H₁₈O₂S (M⁺): 250.1028, found: 250.1028.

4.2.3. 2-Heptyl-1-(3-thienyl)buta-2,3-dienyl acetate (2c).

The reaction of 1c (0.6256 g, 2.5 mmol), Et₂O (20 mL), DMAP (0.0613 g, 0.5 mmol), Et₃N (2.0 mL, *d*=0.73 g/mL, 1.46 g, 14.5 mmol), and Ac₂O (0.94 mL, *d*=1.08 g/mL, 1.02 g, 10.0 mmol) at room temperature for 12 h afforded **2c** (0.6710 g, 92%) (petroleum ether/ethyl acetate=50:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.18 (m, 2H, thienyl–H), 7.05 (dd, J_1 =4.7 Hz and $J_2=1.5$ Hz, 1H, thienyl-H), 6.27 (s, 1H, OCH), 4.90-4.75 (m, 2H, = CH₂), 2.10 (s, 3H, CH₃), 1.94–1.81 (m, 2H, CH₂), 1.47–1.33 (m, 2H, CH₂), 1.33–1.16 (m, 8H, 4×CH₂), 0.87 (t, *J*=6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 205.8, 169.9, 139.7, 126.6, 125.8, 122.8, 104.2, 78.4, 71.9, 31.8, 29.1, 29.0, 28.1, 27.3, 22.6, 21.1, 14.0; IR (neat) ν (cm⁻¹) 3107, 2955, 2927, 2856, 1958, 1746, 1465, 1368, 1230, 1150, 1079, 1021; MS (70 eV, EI) m/z (%) 292 (M⁺, 1.35), 147 (100); HRMS calcd for C₁₇H₂₄O₂S (M⁺): 292.1497, found: 292.1502.

4.2.4. 2-(Ethoxymethyl)-1-(3-thienyl)buta-2,3-dienyl acetate (2d).

The reaction of 1d (0.5698 g, 2.7 mmol), Et₂O (20 mL), DMAP (0.0677 g, 0.54 mmol), Et₃N (2.0 mL, d=0.73 g/mL, 1.46 g, 14.5 mmol), and Ac₂O (1.0 mL, *d*=1.08 g/mL, 1.10 g, 10.8 mmol) at room temperature for 12 h afforded 2d (0.5756 g, 84%) (petroleum ether/ethyl acetate=10:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a liquid: 1 H NMR (300 MHz, CDCl₃) δ 7.38–7.18 (m, 2H, thienyl–H), 7.09 (dd, J₁=4.8 Hz and J₂=0.9 Hz, 1H, thienyl-H), 6.41 (s, 1H, OCH), 5.03-4.77 (m, 2H, =CH₂), 4.12-3.82 (m, 2H, OCH₂), 3.58-3.30 (m, 2H, OCH₂), 2.08 (s, 3H, CH₃), 1.16 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 206.4, 169.6, 139.1, 126.5, 125.7, 123.0, 101.7, 78.3, 69.4, 68.7, 65.2, 20.9, 14.9; IR (neat) ν (cm⁻¹) 3105, 2975, 2930, 2865, 1958, 1744, 1369, 1231, 1094, 1024; MS (70 eV, EI) m/z (%) 252 (M⁺, 0.02), 209 (M⁺-43, 0.48), 43 (100). Elemental analysis calcd for C₁₃H₁₆O₃S: C, 61.88; H, 6.39. Found: C, 61.66; H, 6.34.

4.2.5. 2-(p-Methylphenyl)-1-(3-thienyl)buta-2,3-dienyl acetate (2f)

The reaction of 1f (0.7268 g, 3.0 mmol), Et₂O (20 mL), DMAP (0.0738 g, 0.6 mmol), Et₃N (2.0 mL, d=0.73 g/mL, 1.46 g, 1.46 g)14.5 mmol), and Ac₂O (1.1 mL, *d*=1.08 g/mL, 1.22 g, 12.0 mmol) at room temperature for 24 h afforded 2f (0.6424 g, 75%) (petroleum ether/ethyl acetate=20:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a solid: mp 72.9–74.5 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.17 (m. 4H, ArH), 7.07–6.90 (m. 3H, ArH), 6.76 (s, 1H, OCH), 5.10 (s, 2H, =CH₂), 2.20 (s, 3H, CH₃), 2.00 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.5, 169.9, 139.5, 136.8, 130.5, 129.1, 126.8, 126.5, 125.8, 123.5, 106.4, 80.4, 69.7, 21.1, 21.0; IR (KBr) v (cm⁻¹) 1941, 1745, 1606, 1512, 1432, 1369, 1229, 1151, 1079, 1030; MS (70 eV, EI) *m/z* (%) 284 (M⁺, 0.30), 243 (M⁺-CH₃CO, 28.28), 242 (100). Elemental analysis calcd for C₁₇H₁₆O₂S: C, 71.80; H, 5.67. Found: C, 71.62; H, 5.72.

4.2.6. 1-(3-Furyl)-2-phenylbuta-2,3-dienyl acetate (2g).

The reaction of **1g** (0.6786 g, 3.2 mmol), Et₂O (20 mL), DMAP (0.0786 g, 0.64 mmol), Et₃N (2.0 mL, *d*=0.73 g/mL, 1.46 g, 14.5 mmol), and Ac₂O (1.2 mL, *d*=1.08 g/mL, 1.31 g, 12.8 mmol) at room temperature for 24 h afforded **2g** (0.7779 g, 96%) (petroleum ether/ethyl acetate=30:1, it should be noted that the column packed with silica gel was eluted with a mixture of petroleum ether and triethylamine (100:1) before loading the sample) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.34 (m, 3H, ArH), 7.34–7.23 (m, 3H, ArH), 7.18 (t, *J*=7.2 Hz, 1H, ArH), 6.76 (s, 1H, furyl-H), 6.40 (s, 1H, OCH), 5.24–5.18 (m, 2H, =CH₂), 2.06 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.6, 170.0, 143.0, 141.1, 133.5, 128.4, 127.1, 126.5, 123.6, 109.7, 106.1, 80.6, 66.7, 21.0; IR (neat) ν (cm⁻¹) 1942, 1746, 1598, 1496, 1450, 1429, 1370, 1232, 1159, 1023; MS (70 eV, EI) *m/z* (%) 254 (M⁺, 1.14), 212 (100); HRMS calcd for C₁₆H₁₄O₃ (M⁺): 254.0943, found: 254.0943.

4.2.7. 1-(Benzofuran-2-yl)-2-phenylbuta-2,3-dienyl acetate (20).

The reaction of **10** (1.2839 g, 4.9 mmol), Et₂O (30 mL), DMAP (0.1216 g, 0.98 mmol), Et₃N (3.0 mL, *d*=0.73 g/mL, 2.19 g,

21.7 mmol), and Ac₂O (1.85 mL, *d*=1.08 g/mL, 2.00 g, 19.6 mmol) at room temperature for 12 h afforded **20** (1.3620 g, 91%) (petroleum ether/ethyl acetate=50:1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.49 (t, *J*=8.9 Hz, 2H, ArH), 7.41 (d, *J*=7.2 Hz, 2H, ArH), 7.32–7.13 (m, 5H, ArH), 6.95 (s, 1H, ArH), 6.74 (s, 1H, OCH), 5.34–5.23 (m, 2H, =CH₂), 2.14 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 208.7, 169.5, 154.9, 153.4, 133.1, 128.4, 127.2, 126.3, 124.5, 122.7, 121.1, 111.3, 106.3, 104.4, 81.0, 67.3, 20.8; IR (KBr) ν (cm⁻¹) 1942, 1747, 1598, 1496, 1453, 1370, 1254, 1225, 1027; MS (70 eV, EI) *m/z* (%) 304 (M⁺, 1.36), 262 (100); HRMS calcd for C₂₀H₁₆O₃ (M⁺): 304.1099, found: 304.1098.

4.3. Synthesis of methyl 2-phenyl-1-(3-thienyl)buta-2,3dienyl ether (2e)

To a solution of NaH (0.2228 g, 5.55 mmol) and THF (10 mL) was added dropwise 1e (0.8449, 3.7 mmol)/THF (10 mL) at 0 °C with stirring under a nitrogen atmosphere within 15 min. Then the mixture was allowed to warm up to room temperature. After being stirred for 1.5 h, TBAB (0.1236 g, 0.37 mmol) and MeI (0.35 mL, d=2.28 g/mL, 7.88 g, 5.55 mmol) were added. The resulting mixture was stirred at room temperature until the reaction was complete as monitored by TLC. After being stirred for 16 h, the reaction mixture was guenched with a saturated aqueous solution of NH₄Cl (10 mL), and extracted with diethyl ether (20 mL×3), then washed by water (10 mL) and brine (10 mL). The ether layer was dried over anhydrous Na₂SO₄, filtration, evaporation, and column chromatography on silica gel afforded 2a (0.4554 g, 51%) (petroleum ether/ethyl acetate=50:1) as a liquid: ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J=7.5 Hz, 2H, ArH), 7.29-7.20 (m, 4H, ArH), 7.19-7.14 (m, 1H, ArH), 7.07 (dd, *J*₁=4.8 Hz and *J*₂=1.3 Hz, 1H, thienyl–H), 5.27 (s, 1H, OCH), 5.18 (dd, *J*₁=12.5 Hz and *J*₂=1.5 Hz, 1H, one proton of =CH₂), 5.14 (dd, *J*₁=12.3 Hz and *J*₂=0.8 Hz, 1H, one proton of =CH₂), 3.44 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 209.4, 141.8, 134.1, 128.3, 127.0, 126.9, 126.7, 125.4, 122.2, 106.1, 79.7, 79.0, 56.7; IR (neat) v (cm⁻¹) 3055, 2981, 2819, 1938, 1597, 1495, 1450, 1415, 1317, 1217, 1187, 1150, 1091; MS (70 eV, EI) m/z (%) 243 (M⁺+1, 2.26), 242 (M⁺, 9.93), 127 (100); HRMS calcd for C₁₅H₁₄OS (M⁺): 242.0765, found: 242.0769.

4.4. Synthesis of 3a-3g and 3o

4.4.1. 5-Phenylbenzo[b]thiophene (3a).

Typical procedure: A dry Schlenk tube was charged with AgBF₄ (10.2 mg, 0.052 mmol, weighed in a glove box), AuCl(PPh₃) (25.1 mg, 0.05 mmol), **2a** (271.8 mg, 1.0 mmol), and dioxane (10 mL) under N₂. The resulting mixture was stirred at room temperature until the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: Et₂O), evaporation, and column chromatography on silica gel afforded **3a** (177.8 mg, 84%) (petroleum ether) as a solid: mp 98.5–99.2 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz,

CDCl₃) δ 8.10 (s, 1H, ArH), 8.00 (d, *J*=8.7 Hz, 1H, ArH), 7.74 (d, *J*=7.5 Hz, 2H, ArH), 7.67 (dd, *J*₁=8.4 Hz and *J*₂=1.2 Hz, 1H, ArH), 7.60–7.49 (m, 3H, ArH), 7.49–7.39 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 141.3, 140.1, 138.7, 137.6, 128.8, 127.4, 127.1, 127.0, 124.0, 123.8, 122.6, 121.9; IR (KBr) ν (cm⁻¹) 1537, 1487, 1447, 1436, 1410, 1180, 1153, 1054, 1031; MS (70 eV, EI) *m/z* (%) 211 (M⁺+1, 16.79), 210 (M⁺, 100). Elemental analysis calcd for C₁₄H₁₀S: C, 79.96; H, 4.79. Found: C, 79.80; H, 4.72.

The following compounds **3b–3g**, and **3o** were prepared according to this procedure.

4.4.2. 5-Butylbenzo[b]thiophene (3b).

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (24.8 mg, 0.05 mmol), and **2b** (250.7 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 10 h afforded **3b** (162.2 mg, 85%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, *J*=8.1 Hz, 1H, ArH), 7.78 (s, 1H, ArH), 7.52 (d, *J*=5.4 Hz, 1H, ArH), 7.34 (d, *J*=8.1 Hz, 1H, ArH), 2.89 (t, *J*=7.8 Hz, 2H, CH₂), 1.91–1.76 (m, 2H, CH₂), 1.63–1.48 (m, 2H, CH₂), 1.13 (t, *J*=7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 138.9, 137.1, 126.2, 125.4, 123.5, 122.9, 122.0, 35.5, 33.9, 22.3, 14.0; IR (neat) ν (cm⁻¹) 2955, 2927, 2856, 1605, 1502, 1437, 1421, 1089, 1050; MS (70 eV, EI) *m/z* (%) 191 (M⁺+1, 3.51), 190 (M⁺, 20.32), 147 (100); HRMS calcd for C₁₂H₁₄S (M⁺): 190.0816, found: 190.0821.

4.4.3. 5-Heptylbenzo[b]thiophene (3c).

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and **2c** (292.1 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 24 h afforded **3c** (206.8 mg, 89%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J*=8.1 Hz, 1H, ArH), 7.66 (s, 1H, ArH), 7.43 (d, *J*=5.4 Hz, 1H, ArH), 7.22 (d, *J*=8.1 Hz, 1H, ArH), 2.76 (t, *J*=7.7 Hz, 2H, CH₂), 1.80–1.64 (m, 2H, CH₂), 1.47–1.23 (m, 8H, 4×CH₂), 0.93 (t, *J*=6.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 139.0, 137.1, 126.3, 125.4, 123.6, 122.9, 122.1, 35.9, 31.9, 31.8, 29.3, 29.2, 22.7, 14.1; IR (neat) ν (cm⁻¹) 2954, 2926, 2853, 1459, 1437, 1420, 1089, 1050; MS (70 eV, EI) *m/z* (%) 233 (M⁺+1, 2.25), 232 (M⁺, 13.35), 147 (100); HRMS calcd for C₁₅H₂₀S (M⁺): 232.1286, found: 232.1287.

The reaction of AgBF₄ (10.3 mg, 0.053 mmol), AuCl(PPh₃) (24.6 mg, 0.05 mmol), and **2d** (252.6 mg, 1.0 mmol) in dioxane

(10 mL) at room temperature for 12 h afforded **3d** (170.8 mg, 89%) (eluent: petroleum ether \rightarrow petroleum ether/ethyl acetate=100:1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J*=8.4 Hz, 1H, ArH), 7.77 (s, 1H, ArH), 7.39 (d, *J*=5.4 Hz, 1H, ArH), 7.35–7.24 (m, 2H, ArH), 4.59 (s, 2H, CH₂), 3.54 (q, *J*=7.0 Hz, 2H, CH₂), 1.24 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 138.9, 134.7, 126.6, 124.2, 123.7, 122.6, 122.3, 72.7, 65.6, 15.2; IR (neat) ν (cm⁻¹) 2973, 2928, 2862, 1436, 1373, 1354, 1325, 1148, 1097, 1050, 1015; MS (70 eV, EI) *m/z* (%) 193 (M⁺+1, 3.71), 192 (M⁺, 27.41), 147 (100); HRMS calcd for C₁₁H₁₂OS (M⁺): 192.0609, found: 192.0611.

4.4.5. 5-Phenylbenzo[b]thiophene (2e).

2e 3e The reaction of AgBF₄ (10.6 mg, 0.054 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and 2e (243.1 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 12 h afforded 3e (184.0 mg, 87%) (eluent: petroleum ether→petroleum ether/ethyl acetate=100:1) as a solid: ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J*=1.2 Hz, 1H, ArH), 8.03 (d, *J*=8.4 Hz, 1H, ArH), 7.78 (d, *J*=7.2 Hz, 2H, ArH), 7.70 (dd, *J*₁=8.3 Hz and *J*₂=1.4 Hz, 1H, ArH), 7.63–7.42 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 141.2, 140.1, 138.7, 137.6, 128.8, 127.3, 127.1, 126.9, 124.0, 123.8, 122.6, 121.9.

4.4.6. 5-Phenylbenzo[b]thiophene (3a).

2a 3a The reaction of AgBF₄ (39.6 mg, 0.2 mmol), AuCl(PPh₃) (98.6 mg, 0.2 mmol), and **2a** (1081.1 mg, 4.0 mmol) in dioxane (40 mL) at room temperature for 24 h afforded **3a** (739.2 mg, 88%) (eluent: petroleum ether → petroleum ether/ethyl acetate=100:1) as a solid: ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J*=1.2 Hz, 1H, ArH), 8.03 (d, *J*=8.1 Hz, 1H, ArH), 7.83-7.73 (m, 2H, ArH), 7.70 (dd, *J*₁=8.6 Hz and *J*₂=1.4 Hz, 1H, ArH), 7.63-7.42 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 141.2, 140.1, 138.7, 137.6, 128.7, 127.3, 127.0, 126.9, 124.0, 123.8, 122.6, 121.9.

4.4.7. 5-(p-Methylphenyl)benzo[b]thiophene (3f).

The reaction of AgBF₄(10.3 mg, 0.053 mmol), AuCl(31 PPh₃)(25.0 mg, 0.05 mmol), and **2f** (285.6 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 12 h afforded **3f** (208.7 mg, 93%) (eluent: petroleum ether) as a solid: mp 121.8–123.9 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (s, 1H, ArH), 7.91 (d, *J*=8.7 Hz, 1H, ArH), 7.62–7.50 (m, 3H, ArH), 7.45 (d, *J*=5.4 Hz, 1H, ArH), 7.36 (d, *J*=5.1 Hz, 1H, ArH), 7.26 (d, *J*=8.1 Hz, 2H, ArH), 2.40 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 140.2, 138.5, 138.4, 137.6, 136.9, 129.5, 127.2, 126.9, 124.0, 123.8, 122.6, 121.7, 21.1; IR(KBr) ν (cm⁻¹) 1542, 1519, 1497, 1437, 1421, 1401, 1177, 1158, 1115, 1089, 1057, 1025; MS (70 eV, El) *m/z*(%) 225 (M⁺+1, 20.00), 224 (M⁺, 100). Elemental analysis calcd for C₁₅H₁₂S: C, 80.31; H, 5.39. Found: C, 80.38; H, 5.39.

4.4.8. 5-Phenylbenzo[b]furan (3g).

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and **2g** (254.1 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 24 h afforded **3g**¹¹ (164.6 mg, 85%) (eluent: petroleum ether \rightarrow petroleum ether/ethyl acetate=100:1) as a solid: mp 58.6–59.9 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H, ArH), 7.79–7.62 (m, 5H, ArH), 7.57 (t, *J*=7.7 Hz, 2H, ArH), 7.47 (t, *J*=7.2 Hz, 1H, ArH), 6.90 (d, *J*=1.5 Hz, 1H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 154.5, 145.4, 141.6, 136.4, 128.7, 127.9, 127.4, 126.8, 123.9, 119.6, 111.4, 106.7; IR (KBr) ν (cm⁻¹) 1601, 1536, 1463, 1428, 1330, 1296, 1261, 1229, 1160, 1132, 1111, 1031, 1015; MS (70 eV, EI) *m/z* (%) 195 (M⁺+1, 15.43), 194 (M⁺, 100).

4.4.9. 3-Phenyldibenzofuran (30).

The reaction of AgBF₄ (20.1 mg, 0.1 mmol), AuCl(PPh₃) (49.8 mg, 0.1 mmol), and **20** (304.6 mg, 1.0 mmol) in dioxane (10 mL) at room temperature for 48 h afforded **30** (118.0 mg, 48%) (eluent: petroleum ether \rightarrow petroleum ether/dichloromethane=10:1) as a solid: mp 131.9–132.9 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.06–7.96 (m, 2H, ArH), 7.85 (s, 1H, ArH), 7.78–7.71 (m, 2H, ArH), 7.68–7.61 (m, 2H, ArH), 7.58–7.37 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 156.7, 156.5, 140.9, 140.6, 128.8, 127.4, 127.3, 127.0, 124.0, 123.2, 122.7, 122.1, 120.7, 120.6, 111.6, 110.0; IR (KBr) ν (cm⁻¹) 1597, 1571, 1514, 1484, 1456, 1416, 1356, 1299, 1228, 1175, 1103; MS (70 eV, EI) *m/z* (%) 245 (M⁺+1, 18.42), 244 (M⁺, 100). Elemental analysis calcd for C₁₈H₁₂O: C, 88.50; H, 4.95. Found: C, 88.40; H, 4.98.

4.5. Synthesis of 3h-3n

4.5.1. 5-(p-Methoxyphenyl)benzo[b]thiophene (3h).

Typical procedure: To a solution of **1h** (0.2418 g, 0.94 mmol) and Et₂O (10 mL) were added DMAP (0.0246 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol). The resulting mixture was stirred at room temperature until the reaction was complete as monitored by TLC. After being stirred for 12 h, the reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (10 mL), and extracted with diethyl ether (20 mL×3), then washed by water and brine. The ether layer was dried over anhydrous Na₂SO₄. Filtration through a short column of silica gel (eluent: Et₂O), evaporation, and filtration through a short column of silica gel (eluent: Et₂O) and evaporation afforded **2h**. The product **2h** was then used without further purification.

A dry Schlenk tube was charged with $AgBF_4$ (10.3 mg, 0.053 mmol, weighed in a glove box), $AuCl(PPh_3)$ (24.6 mg,

0.05 mmol), **2h** (prepared in the previous step), and dioxane (10 mL) under N₂. The resulting mixture was stirred at room temperature until the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: Et₂O), evaporation, and column chromatography on silica gel afforded **3h** (163.8 mg, 73%, from **1h** to **3h**) (eluent: petroleum ether \rightarrow petroleum ether/ethyl acetate=50:1) as a solid: mp 140.6–141.8 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J*=0.9 Hz, 1H, ArH), 7.94 (d, *J*=8.4 Hz, 1H, ArH), 7.67–7.55 (m, 3H, ArH), 7.49 (d, *J*=5.1 Hz, 1H, ArH), 7.39 (d, *J*=5.7 Hz, 1H, ArH), 7.03 (d, *J*=9.0 Hz, 2H, ArH), 3.88 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 140.2, 138.1, 137.3, 133.8, 128.3, 126.9, 124.0, 123.6, 122.6, 121.4, 114.2, 55.3; IR (KBr) ν (cm⁻¹) 1607, 1575, 1523, 1496, 1303, 1283, 1264, 1249, 1092, 1034, 1016; MS (70 eV, El) *m/z* (%) 241 (M⁺+1, 14.98), 240 (M⁺, 100). Elemental analysis calcd for C₁₅H₁₂OS: C, 74.97; H, 5.03. Found: C, 74.97, H, 5.33.

The following compounds **3i**–**3n** were prepared according to this procedure.

4.5.2. 5-Allylbenzo[b]thiophene (3i).

The reaction of **1i** (0.1930 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0246 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room temperature for 24 h afforded **2i**. The product **2i** was then used without further purification.

The reaction of AgBF₄ (10.7 mg, 0.055 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and **2i** (prepared in the previous step) in dioxane (10 mL) at room temperature for 48 h afforded **3i** (65.6 mg, 38%, from **1i** to **3i**) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, *J*=8.1 Hz, 1H, ArH), 7.61 (s, 1H, ArH), 7.37 (d, *J*=5.1 Hz, 1H, ArH), 7.24 (d, *J*=5.4 Hz, 1H, ArH), 7.16 (dd, *J*₁=8.1 Hz and *J*₂=0.6 Hz, 1H, ArH), 6.09–5.89 (m, 1H, =CH), 5.18–4.97 (m, 2H, =CH₂), 3.48 (d, *J*=6.6 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 137.6, 137.5, 136.1, 126.5, 125.4, 123.6, 123.2, 122.3, 115.8, 40.1; IR (neat) ν (cm⁻¹) 3075, 3003, 2976, 2901, 1638, 1606, 1503, 1435, 1421, 1327, 1259, 1222, 1158, 1143, 1089, 1050; MS (70 eV, EI) *m/z* (%) 175 (M⁺+1, 17.35), 174 (M⁺, 100); HRMS calcd for C₁₁H₁₀S (M⁺): 174.0503, found: 174.0502.

4.5.3. 7-Propylbenzo[b]thiophene (3j).

The reaction of **1j** (0.1932 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0250 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room temperature for 12 h afforded **2j**. The product **2j** was then used without further purification.

The reaction of AgBF₄ (10.3 mg, 0.052 mmol), AuCl(PPh₃) (25.0 mg, 0.05 mmol), and **2j** (prepared in the previous step) in dioxane (10 mL) at room temperature for 24 h afforded **3j** (76.3 mg, 44%, from **1j** to **3j**) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J*=7.8 Hz, 1H, ArH), 7.46 (d, *J*=5.1 Hz, 1H, ArH), 7.42–7.32 (m, 2H, ArH), 7.21 (d, *J*=6.9 Hz, 1H, ArH), 2.93 (t, *J*=7.5 Hz, 2H, CH₂), 2.00–1.80 (m, 2H, CH₂), 1.07 (t, *J*=7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 139.6, 136.6, 125.5, 124.5, 123.4, 121.3, 37.1, 22.4, 14.1; IR (neat) ν (cm⁻¹) 2958, 2930, 2870,

1571, 1461, 1394, 1378, 1250, 1109, 1087, 1036; MS (70 eV, El) m/z (%) 177 (M⁺+1, 4.69), 176 (M⁺, 35.42), 84 (100); HRMS calcd for C₁₁H₁₂S (M⁺): 176.0660, found: 176.0662.

4.5.4. 7-Phenylbenzo[b]thiophene (3k).

The reaction of **1k** (0.2290 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0240 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room temperature for 18 h afforded **2k**. The product **2k** was then used without further purification.

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.1 mg, 0.05 mmol), and **2k** (prepared in the previous step) in dioxane (10 mL) at room temperature for 12 h afforded **3k** (130.0 mg, 62%, from **1k** to **3k**) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 8.01–7.82 (m, 3H, ArH), 7.70–7.44 (m, 7H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 140.6, 140.3, 138.8, 136.7, 128.7, 128.1, 127.8, 126.6, 124.8, 124.23, 124.20, 122.6; IR (neat) ν (cm⁻¹) 3100, 3056, 3027, 1602, 1574, 1510, 1490, 1457, 1444, 1378, 1347, 1217, 1181, 1099, 1076, 1042, 1028; MS (70 eV, El) *m/z* (%) 211 (M⁺+1, 16.23), 210 (M⁺, 100); HRMS calcd for C₁₄H₁₀S (M⁺): 210.0503, found: 210.0500.

4.5.5. 5-Butylbenzo[b]furan (31).

The reaction of **11** (0.1906 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0246 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room temperature for 12 h afforded **21**. The product **21** was then used without further purification.

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.1 mg, 0.05 mmol), and **2l** (prepared in the previous step) in dioxane (10 mL) at room temperature for 36 h afforded **3l** (90.5 mg, 52%, from **1l** to **3l**) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J*=1.8 Hz, 1H, ArH), 7.51–7.40 (m, 2H, ArH), 7.17 (dd, *J*₁=8.3 Hz and *J*₂=1.7 Hz, 1H, ArH), 6.75 (d, *J*=1.5 Hz, 1H, ArH), 2.76 (t, *J*=7.7 Hz, 2H, CH₂), 1.77–1.62 (m, 2H, CH₂), 1.52–1.36 (m, 2H, CH₂), 1.00 (t, *J*=7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 144.9, 137.3, 127.4, 124.9, 120.3, 110.8, 106.3, 35.5, 34.3, 22.3, 13.9; IR (neat) ν (cm⁻¹) 3022, 2956, 2929, 2857, 1614, 1590, 1538, 1469, 1444, 1378, 1329, 1262, 1196, 1127, 1110, 1032; MS (70 eV, El) *m/z* (%) 175 (M⁺+1, 2.93), 174 (M⁺, 18.85), 131 (100); HRMS calcd for C₁₂H₁₄O (M⁺): 174.1045, found: 174.1044.

4.5.6. 5-Heptylbenzo[b]furan (3m).

The reaction of **1m** (0.2343 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0250 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room

temperature for 12 h afforded **2m**. The product **2m** was then used without further purification.

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (25.1 mg, 0.05 mmol), and **2m** (prepared in the previous step) in dioxane (10 mL) at room temperature for 30 h afforded **3m** (130.0 mg, 60%, from **1m** to **3m**) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J*=2.1 Hz, 1H, ArH), 7.52–7.39 (m, 2H, ArH), 7.18 (d, *J*=8.4 Hz, 1H, ArH), 6.84–6.66 (m, 1H, ArH), 2.76 (t, *J*=7.5 Hz, 2H, CH₂), 1.80–1.63 (m, 2H, CH₂), 1.48–1.26 (m, 8H, 4×CH₂), 0.96 (t, *J*=6.5 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.5, 144.9, 137.4, 127.4, 124.9, 120.3, 110.9, 106.4, 35.9, 32.2, 31.9, 29.3, 29.2, 22.7, 14.1; IR (neat) ν (cm⁻¹) 2955, 2927, 2855, 1538, 1468, 1444, 1262, 1197, 1128, 1110, 1033; MS (70 eV, EI) *m/z* (%) 217 (M⁺+1, 3.97), 216 (M⁺, 19.82), 131 (100); HRMS calcd for C₁₅H₂₀O (M⁺): 216.1514, found: 216.1515.

4.5.7. 5-(Ethoxymethyl)benzo[b]furan (3n).

The reaction of **1n** (0.1943 g, 1.0 mmol), Et₂O (10 mL), DMAP (0.0250 g, 0.2 mmol), Et₃N (1.0 mL, d=0.73 g/mL, 0.73 g, 7.2 mmol), and Ac₂O (0.38 mL, d=1.08 g/mL, 0.41 g, 4.0 mmol) at room temperature for 12 h afforded **2n**. The product **2n** was then used without further purification.

The reaction of AgBF₄ (10.8 mg, 0.055 mmol), AuCl(PPh₃) (24.6 mg, 0.05 mmol), and **2n** (prepared in the previous step) in dioxane (10 mL) at room temperature for 18 h afforded **3n** (92.6 mg, 53%, from **1n** to **3n**) (eluent: petroleum ether/ethyl acetate=100:1 to 50:1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J*=2.1 Hz, 1H, ArH), 7.60 (s, 1H, ArH), 7.49 (d, *J*=8.4 Hz, 1H, ArH), 7.31 (dd, *J*₁=8.4 Hz and *J*₂=1.2 Hz, 1H, ArH), 6.76 (d, *J*=1.5 Hz, 1H, ArH), 4.61 (s, 2H, CH₂), 3.58 (q, *J*=6.9 Hz, 2H, CH₂), 1.28 (t, *J*=7.1 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 154.5, 145.2, 133.1, 127.4, 124.3, 120.5, 111.1, 106.5, 72.8, 65.5, 15.2; IR (neat) ν (cm⁻¹) 2975, 2930, 2864, 1538, 1470, 1444, 1375, 1355, 1329, 1264, 1197, 1128, 1108, 1032; MS (70 eV, EI) *m/z* (%) 177 (M⁺+1, 2.02), 176 (M⁺, 17.47), 131 (100); HRMS calcd for C₁₁H₁₂O₂ (M⁺): 176.0837, found: 176.0835.

Acknowledgements

Financial support from the National Natural Science Foundation of China (21232006) and the National Basic Research Program (2009CB825300) is greatly appreciated. S.M. is a Qiu Shi Adjunct Professor at Zhejiang University. We thank Mr. Bukeyan Miao in this group for reproducing the results presented in entries 1 and 8 of Table 2, entry 2 of Table 3.

Supplementary data

Supplementary data related to this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2013.04.099.

References and notes

- (a) Qin, Z.; Kasrati, I.; Chandrasena, R. E. P.; Liu, H.; Yao, P.; Petukhov, P. A.; Bolton, J. L.; Thatcher, G. R. J. J. Med. Chem. 2007, 50, 2682; (b) Chen, Z.; Mocharla, V. P.; Farmer, J. M.; Pettit, G. R.; Hamel, E.; Pinney, K. G. J. Org. Chem. 2000, 65, 8811; (c) Queiroz, M.-J. R. P.; Calhelha, R. C.; Vales-Silva, L. A.; Pinto, E.; Nascimento, M. S.-J. Eur. J. Med. Chem. 2009, 44, 1893; (d) McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline, R. J.; Cölle, M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; Hamilton, E.; Richter, L.; Salleo, A.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W. Adv. Mater. 2009, 21, 1091; (e) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, L. C.; Preti, D.; Fruttarolo, F.; Pavanim, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Cristima, D. A.; Balzarini, J.; Hadfield, J. A.; Brancale, A.; Hamel, E. J. Med. Chem. 2007, 50, 2273.
- 2. (a) Greve, H.; Meis, S.; Kassack, M. U.; Kehrasus, S.; Krick, A.; Wright, A. D.; König, G. M. J. Med. Chem. 2007, 50, 5600; (b) Saitoh, M.; Kumitomo, J.; Kimura, E.; Iwashita, H.; Uno, Y.; Onishi, T.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C. D.; Dougan, D. R.; Textor, G. P.; Snell, G. P.; Takizawa, M.; Itoh, F.; Kori, M. J. Med. Chem. 2009, 52, 6270; (c) Halabalaki, M.; Aligiannis, N.; Papoutsi, Z.; Mitakou, S.; Moutsatsou, P.; Sekeris, C.; Skaltsounis, A. L. J. Nat. Prod. 2000, 63, 1672; (d) Hu, Y.; Xiang, J. S.; DiGrandi, M. J.; Du, X.; Ipek, M.; Laakso, L. M.; Li, J.; Li, W.; Rush, T. S.; Schmid, J.; Skotnicki, J. S.; Tam, S.; Thomason, J. R.; Wang, Q.; Levin, J. I. Bioorg. Med. Chem. 2005, 13, 6629; (e) Yang, Z.; Liu, H. B.; Lee, C. M.; Chang, H. M.; Wong, H. N. C. J. Org. Chem. 1992, 57, 7248; (f) Flynn, B. L.; Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.; Leske, A. F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A.; Kos-terwicz, E.; Shackleford, D. M.; Morizzi, J.; Hamel, E.; Katherine, M.; Kremmidiotis, G. J. Med. Chem. 2011, 54, 6014; (g) Mazurov, A. A.; Kombo, D. C.; Hauser, T. A.; Miao, L.; Dull, G.; Genus, J. F.; Fedorov, N. B.; Benson, L.; Sidach, S.; Xiao, Y.; Hammond, P. S.; James, J. W.; Miller, C. H.; Yohannes, D. J. Med. Chem. 2012, 55, 9793.
- (a) Kokubun, T.; Harborne, J. B.; Eagles, J.; Waterman, P. G. Phytochemistry 1995, 39, 1039; (b) Wang, S.; Hall, J. E.; Tanious, F. A.; Wilson, W. D.; Partick, D. A.; McCurdy, D. R.; Bender, B. C.; Tidwell, R. R. Eur, J. Med. Chem. 1999, 34, 215; (c) Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Org. Lett. 2006, 8, 4211; (d) Ye, Y.-Q.; Koshino, H.; Onose, J.-I.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett. 2009, 11, 5074; (e) Feng, X.; Wu, P. L.; Bolze, F.; Leung, H. W. C.; Li, K. F.; Mark, N. K.; Kwong, D. W. J.; Nicoud, J.-F.; Cheah, K. W.; Wong, M. S. Org. Lett. 2010, 12, 2194; (f) Voigt, B.; Meijer, L.; Lozach, O.; Schachtele, C.; Totzke, F.; Hilgeroth, A. Bioorg. Med. Chem. Lett. 2005, 15, 823.
- Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J. In Modern Heterocyclic Chemistry; Alvarez-Builla, J., Vaquero, J. J., Barluenga, J., Eds.; Wiley-VCH: Weinheim, Germany, 2011.
- For the related reviews on the synthesis of heterocyclic scaffolds, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285; (b) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127; (c) Tansandote, P.; Lautens, M. Chem. —Eur. J. 2009, 15, 5874; (d) Stokes, B. J.; Driver, T. G. Eur. J. Org. Chem. 2011, 4071; (e) Beccalli, E. M.; Broggini, G.; Fasana, A.; Rigamonti, M. J. Organomet. Chem. 2011, 696, 277; (f) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193; (g) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243; (h) Alonson, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
- (a) Kong, W.; Fu, C.; Ma, S. Chem. Commun. 2009, 4572; (b) Kong, W.; Fu, C.; Ma, S. Org. Biomol. Chem. 2012, 10, 2164; (c) Kong, W.; Qiu, Y.; Fu, C.; Ma, S. Adv. Synth. Catal. 2012, 354, 2339.
- 7. (a) Kong, W.; Fu, C.; Ma, S. *Chem.—Eur. J.* **2011**, *17*, 13134; (b) Kong, W.; Qiu, Y.; Fu, C.; Ma, S. Org. Biomol. Chem. **2013**, *11*, 1666.
- For selected reviews on the chemistry of platinum- and gold-catalyzed reaction, see: (a) Shapiro, N. D.; Toste, F. D. Synlett **2010**, 675; (b) Hashmi, A. S. K. Angew. Chem., Int. Ed. **2010**, 49, 5232; (c) Hashmi, A. S. K. Chem. Rev. **2007**, 107, 3180; (d) Fürstner, A. Chem. Soc. Rev. **2009**, 38, 3208; (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. **2008**, 108, 3351; (f) Krisch, S. F. Synthesis **2008**, 3183; (g) Li, Z.; Brouwer, C.; He, C. Chem. Rev. **2008**, 108, 3239; (h) Gorin, D. J.; Toste, F. D. Nature **2007**, 446, 395; (i) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. **2006**, 45, 7896; (j) Jiménēz-Núñez, E.; Echavarren, A. M. Chem. Rev. **2008**, 108, 3326; (k) Krause, N.; Winter, C. Chem. Rev. **2011**, 111, 1994; (l) Wang, S.; Zhang, G.; Zhang, L. Synlett **2010**, 692; (m) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. **2009**, 38, 2269.
- (a) Kong, W.; Fu, C.; Ma, S. *Eur. J. Org. Chem.* **2010**, 6545; (b) Park, C.; Lee, P. H. Org. *Lett.* **2008**, *10*, 3359; (c) Huang, X.; Zhang, L. Org. *Lett.* **2007**, 9, 4627; (d) Watanabe, T.; Oishi, S.; Fuji, N.; Ohno, H. Org. *Lett.* **2007**, 9, 4821.
- (a) Trost, B. M.; Jonasson, C.; Wuchrer, M. J. Am. Chem. Soc. 2001, 123, 12736; (b) Trost, B. M.; Jonasson, C. Angew. Chem., Int. Ed. 2003, 42, 2063; (c) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. Eur. J. Org. Chem. 2005, 98.
- Varela-Fernández, A.; González-Rodríguez, C.; Varela, J. A.; Castedo, L.; Saá, C. Org. Lett. 2009, 11, 5350.