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Abstract—Structure–activity relationships have been investigated through substitutions at the 9-position of the 2-amino-6-(2-fura-
nyl) purine (5) to identify novel and selective A2A adenosine receptor antagonists. Several potent and selective antagonists were iden-
tified. In particular, compounds 20, 25, and 26 show very high affinity with excellent selectivity.
� 2005 Elsevier Ltd. All rights reserved.
Table 1. Receptor binding of phenyl alkyl analogues
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The purine nucleoside, adenosine, is known to act via
four major receptor subtypes, A1, A2A, A2B, and A3

which have been characterized according to their pri-
mary sequences.1 Adenosine A2A receptors are abun-
dant in the caudate–putamen, nucleus accumbens and
olfactory tubercle in several species.2 In the caudate–
putamen, adenosine A2A receptors are localized on
several neurons and have been shown to modulate the
neurotransmission of c-aminobutyric acid (GABA),
acetylcholine, and glutamate.3 These actions of the
A2A receptor contribute to the control of motor behav-
ior.4 A2A agonists inhibit locomotor activity and induce
catalepsy in rodents.5 In contrast, adenosine A2A antag-
onists prevent the motor disturbances of dopamine D2
receptor null mice.6 Recently, an A2A antagonist, KW-
6002, was found to have antiparkinsonian activity in
the parkinsonian monkey without producing hyperac-
tivity and provoking dyskinesia.7 These results suggest
that A2A antagonists have potential to be a new class
of antisymptomatic drugs for Parkinson�s disease.

In the past ten years, great efforts have been devoted to
identify potent and selective A2A adenosine antagonists.
SCH 58261, that displayed single-digit nanomolar po-
tency and modest selectivity (A2A Ki = 4.3 nM, A1/
A2A = 35) has been widely used as a tool for characteri-
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zing the adenosine A2A receptor subtype.8 However,
SCH 58261 suffered from several drawbacks including
low selectivity, poor solubility, and pharmacokinetic
profile. Based on these observations, we undertook a
structure–activity relationship (SAR) investigation to
identify a novel A2A receptor antagonist using SCH
58261 as a template. Our plan was to replace the tricyclic
core of SCH 58261 with purine moiety such as in 1, and
investigate the SAR via substitution at N-9. In this com-
munication, we report the results of this investigation.
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Compound R A2A Ki (nM) A1/A2A

SCH 58261 4.3 35

6 C6H5– 68.5 3

7 C6H5CH2– 34.9 86

8 C6H5CH2CH2– 270.5 7

9 C6H5CH2CH2CH2– 6.8 27

10 C6H5CH(Me)- 381.0 5
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Table 2. Receptor binding of substituted benzyl analogues
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Compound R A2A Ki (nM) A1/A2A

11 OMe 22.0 31

12

OMe
12.3 163

13 OMe 7.7 104

14 10.0 135

15 Cl 21.5 63

16 CF3 20.5 98

17 F F 4.5 162

18 F

F

F

26 58

19
CF3

F
8.7 185

20
CF3

F
2.8 418

21 O

O

Cl

6.3 106

22 ClCl 7.1 195

24 5.6 223

25 1.4 466

26 S
Ph

O O
3.1 574
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Compounds presented in Tables 1 and 2 were prepared
from commercially available 2-amino-6-bromopurine 2
using general procedure described in Scheme 1. Accord-
ingly, compound 2 was protected with triphenylmethyl
to give compound 3 as a major product along with a
small amount of a dialkylated derivative in 85% com-
bined yield. Bromide 3 was then subjected to Stille
coupling9 to produce compound 4, which upon depro-
tection under acidic conditions and neutralization
produced compound 5 in 70–80% yield. Compound 5,
6-(2-furanyl)-9H-purin-2-amine, was utilized to prepare
analogues with general structure 1. Alkylation of 5 with
various benzyl halides produced compounds described
in Tables 1 and 2. The benzyl halides were all commer-
cially available. Compound 6 was prepared using proce-
dure described in Scheme 1.

Compound 5 was subjected to cross-coupling reaction
using phenylboronic acid and cupric acetate10 to pro-
duce 6. All compounds gave satisfactory analytical
results.11

The results of the A2A adenosine receptor binding as-
says12 are expressed as inhibition constants (Ki, nM).
The A1/A2A describes the selectivity over A1 adenosine
receptor. Table 1 shows the SAR of compounds
where N-9 was substituted with phenyl 6 and phenyl
alkyls 7–9 derivatives. Substitution with either phenyl
(6) or phenethyl (8) moieties resulted in the significant
loss of affinity. The benzyl compound 7 shows signif-
icant increase in the selectivity with moderate decrease
in A2A adenosine receptor affinity. Introduction of a
methyl substituent at the benzylic site in compound
10 was detrimental to A2A receptor binding. Com-
pound 9 with three carbon linker exhibited binding
and selectivity very similar to SCH 58261. Since a
benzyl substituent at N-9 produced a significant in-
crease in selectivity over A1 adenosine receptor, the
SAR of a variety of substituted benzyl derivatives
was investigated in detail and results are presented
in Table 2.

The monosubstituted derivatives represented by com-
pounds 11–16 exhibited A2A adenosine receptor bind-
ing affinities in a very narrow range of 8–22 nM. The
para-substituted derivatives in general were more
selective over A1 receptor subtype. It was found that
the nature of the substituents on the benzyl was crit-
ical for the selectivity of A2A over A1 adenosine recep-
tor. The lipophilic substituents produced compounds
with significantly greater selectivity. Hence disubsti-
tuted compounds containing either two fluorine atoms
as in 17, or a combination of fluorine and trifluoro-
methyl as in 19 and 20 produced the best potency
and selectivity. Similarly, naphthalene derivatives 24
and 25 were also very potent and selective. The tri-
substituted compound 18 was significantly less potent
and selective. The phenyl sulfone derivative 26 was
the only monosubstituted compound identified to be
selective with very high affinity for A2A adenosine
receptor.

In summary, we have identified 6-(2-furanyl)-9H-purin-
2-amine derivatives as a novel class of compounds with
high A2A receptor antagonist affinities. Compared to
SCH 58261, several compounds in this series aremore po-
tent and selective. Some of these compounds show better
solubility and pharmacokinetic profiles than SCH 58261.
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Scheme 1. Reagents and conditions: (a) Ph3CCl, Et3N, CH2Cl2, rt; (b) 2-(tributylstannyl)furan, Pd(PPh3)2Cl2, CuI, THF, reflux; (c) HCl; (d) RX,

K2CO3, DMF, rt; (e) PhB(OH)2, Cu(OAc)2, pyridine, CH2Cl2.
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In particular, compounds 20, 25, and 26 show very high
affinity (Ki = 2.8, 1.4, 3.1 nM, respectively) with excellent
selectivity over A1 adenosine receptor.
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