

Article

Subscriber access provided by University of Newcastle, Australia

NEWCASTLE

Chemoselective Coupling of 1,1-Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation

Yeosan Lee, Seung-yeol Baek, Jinyoung Park, Seoung-Tae Kim, Samat Tussupbayev, Jeongho Kim, Mu-Hyun Baik, and Seung Hwan Cho

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b11757 • Publication Date (Web): 14 Dec 2016 Downloaded from http://pubs.acs.org on December 15, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Chemoselective Coupling of 1,1-Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation

Yeosan Lee,^{†,I} Seung-yeol Baek,^{‡,§,I} Jinyoung Park,[†] Seoung-Tae Kim,^{‡,§} Samat Tussupbayev, ^{§,‡} Jeongho Kim,[†] Mu-Hyun Baik^{*,§,‡} and Seung Hwan Cho^{*,†}

[†]Department of Chemistry and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea

[‡]Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea

[§]Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea

Supporting Information Placeholder

ABSTRACT: A new transition-metal-free borylation of aryl and vinyl halides using 1,1-bis[(pinacolato)boryl]alkanes as boron sources is described. In this transformation one of the boron groups from 1,1-bis[(pinacolato)boryl]alkanes is selectively transferred to aryl and vinyl halides in the presence of sodium *tert*-butoxide as the only activator to form organoboronate esters. Under the developed borylation conditions, a broad range of organohalides are borylated with excellent chemoselectivity and functional group compatibility, thus offering a rare example of a transition-metal-free borylation protocol. Experimental and theoretical studies have been performed to elucidate the reaction mechanism, revealing the unusual formation of Lewis acid/base adduct between organohalides and α -borylcarbanion, generated in-situ from the reaction of 1,1-bis[(pinacolato)boryl]alkanes with an alkoxide base, facilitate the borylation reactions.

Introduction

1,1-Bisborylalkanes have recently emerged as new class of coupling reagents in organic synthesis.^{1,2} Prompted by the seminal report by Endo and Shibata on the palladium-catalyzed chemoselective cross-coupling of aryl halides with 1,1bis[(pinacolato)boryl]alkanes,² several considerable efforts were made for the utilization of 1,1-bis[(pinacolato)boryl]alkanes in a variety of chemo- and enantioselective transformations.³⁻⁶ For example, Morken^{3a,b} and Hall^{3c} independently developed an elegant palladium/chiral phosphine system for the enantioselective coupling of aryl^{3a,3c} and vinyl^{3b} halides with 1,1-bis[(pinacolato)boryl]alkanes to afford chiral secondary alkylboronate esters. Wang and co-workers reported that vinyl bromides and 1,1-dibromoalkenes could react with 1,1bis[(pinacolato)boryl]alkanes in the presence of a palladium catalyst, providing 1,4-dienes and allenes.^{3d} Fu and Xiao described that aryl triflates could work as facile electrophiles in chemoselective cross-couplings with 1,1bis[(pinacolato)boryl]alkanes.3e While these studies illustrate the unique reactivity and selectivity of 1.1bis[(pinacolato)boryl]alkanes in the coupling with aryl (pseudo)halides, they typically involve the formation of a C-C bond (Scheme 1a). The formation of a C-B bond with arvl and vinyl halides employing 1,1-bis[(pinacolato)boryl]alkanes as a boron source has thus far been elusive.

Organoboronate esters are highly versatile building blocks in organic synthesis and methods for their preparation continue to inspire organic chemists.⁷ Consequently, extensive efforts have been made to develop efficient strategies for the installation of

Scheme 1. Chemoselective Coupling of Aryl and Vinyl (pseudo)Halides with 1,1-Bis[(pinacolato)boryl]alkanes

a) C-C bond formation of organohalides with 1,1-diborylalkanes

b) This work: C-B bond formation of anyl and vinyl halides with 1,1-diborylalkanes

boron-containing groups into organic molecules. While such compounds are typically prepared by the reaction of organometallic nucleophiles, such as Grignard or organolithium reagents, with boron electrophiles,⁷ recent efforts have focused on the catalytic borylation of aryl (pseudo)halides⁸ or simple arenes.⁹ Electrophilic borylations are also well documented.¹⁰ Despite these splendid advances, transition-metal-free borylation is in high demand because of its low cost and convenience, and several examples have been reported using diboron compounds such as B₂pin₂ or B₂(OH)₄.¹¹ Therefore, finding new reagents for the borylation of aryl and vinyl halides remains an important challenge. In particular, reagents that enable new synthetic methodologies with increased selectivity and efficiency in the construction of target boron compounds are highly sought after.

Table 1. Evaluation of Reaction Conditions for the Borylation of Aryl Iodides with 1,1-Bis[(pinacolato)boryl]alkanes^a

		R ¹ = OMe, A1	pinB Bpin base $R^2 = H, B1$ $R^2 = H, B1$	$R^{1} = OMe, C1$	$\begin{bmatrix} R^2 \\ Bpin \end{bmatrix}$ R ¹ = OMe, D1, <1 %	
		R'=F, A2	R ² = Me, B2	R'= F, C2	R'=F, D2 , <1 %	
entry	\mathbf{R}^1	R^2	base	solvent	temp (°C)	Yield $(\%)^b$
1	OMe	Н	LiOtBu	toluene	120	6
2	OMe	Н	NaOtBu	toluene	120	70
3	OMe	Н	KO <i>t</i> Bu	toluene	120	<1
4	OMe	Н	LiOMe	toluene	120	<1
5	OMe	Н	NaOMe	toluene	120	50
6	OMe	Н	KOMe	toluene	120	<1
7	OMe	Н	KF	toluene	120	<1
8	OMe	Н	NaOtBu	THF	120	71
9	OMe	Н	NaOtBu	1,4-dioxane	120	70
10 ^c	OMe	Н	NaOtBu	toluene/THF	120	$91(85)^{d}$
11 ^c	OMe	Н	NaOtBu	toluene/THF	100	80
12 ^c	OMe	Н	NaOtBu	toluene/THF	80	5
13 ^c	OMe	Me	NaOtBu	toluene/THF	120	75
14 ^c	OMe	Н	-	toluene/THF	120	<1
15 ^c	F	Н	NaO <i>t</i> Bu	toluene/THF	120	90

^aReaction Conditions: A1 or A2 (0.2 mmol), B1 or B2 (2.0 equiv), base (2.0 equiv) and solvent (2.0 mL) at indicated temperature for 6 h. ^bGC yield of C1 or C2 using dodecane as an internal standard. ^cA 1:1 mixture of toluene/THF was used as the solvent. ^dYield in parentheses indicates the isolated yield.

toluene/THF

NaOtBu

In this context, Ito previously showed that silvlboron reagents may be used to achieve similar transformations12a,b and a mechanism based on DFT calculations was proposed.12c

F

Н

Herein, we report the transition-metal-free borylation of aryl and vinvl halides using commercially available bis[(pinacolato)boryl]methane as a new class of boron transfer reagents (Scheme 1b).¹³ Our protocol significantly enriches the of useful growing class reactions of 1.1bis[(pinacolato)boryl]alkanes, representing the first example for the formation of C-B bond of aryl halides using 1,1bis[(pinacolato)boryl]alkanes. Mechanistically, these new reactions constitute an interesting platform for discovering how the general Lewis acid/base characteristics of aryl halides and 1,1bis[(pinacolato)boryl]alkanes can be exploited to carry out a demanding reaction in a controlled and specific manner.

Results and Discussion

Reaction Development. In line with our recent efforts utilizing 1,1-bis[(pinacolato)boryl]alkanes in organic synthesis,⁶ we hypothesized initially that 1,1-bis[(pinacolato)boryl]alkanes may be suitable reagents for the transfer of boron to aryl and vinyl halides with unusual chemoselectivity. Interestingly, the reaction of 4-iodoanisole (A1) with bis[(pinacolato)boryl]methane (B1) in the presence of LiOtBu in toluene at 120 °C proceeded to form 4methoxyphenyl boronate ester C1 in 6% yield (Table 1, entry 1), as determined by gas chromatography (GC) analysis. Using NaOtBu as a base (entry 2) significantly increased the yield of C1 to 70%, whereas other alkoxide and fluoride bases (entries 3-7) gave decreased yields compared with that achieved with NaOtBu. Solvent screening (entries 8-10) revealed that an equal mixture of toluene/THF provided the highest yield (entry 10). Lowering the

reaction temperature resulted in a decrease in the yield (entries 11 and 12). The treatment of 1,1-bis[(pinacolato)boryl]ethane ($R^2 =$ Me) instead of B1 also afforded the borylated product C1 (entry 13) in slightly lower yield of 75%, suggesting that substituted 1,1diboryl compound could also be used as a boron source in the current process. No conversion was observed in the absence of a base (entry 15). Notably, the borylation of 4-fluoro-1-iodobenzene (A2) as a substrate afforded the desired borylated product C2 in a good yield even at 80 °C with nearly equal efficiency to the reaction performed at 120 °C (entries 16 and 17), suggesting that the reaction is influenced by the electronic properties of aryl iodides we conducted. It is interesting to note that the borylated products C1 and C2 were formed as the only reaction product

80

 $90(73)^{d}$

16

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Figure 1. Energy profile for the transition-metal-free borylation of 4-iodoanisole (A1) with bis[(pinacolato)boryl]methane (B1). Transition states marked by * were not explicitly located.

and no alkylation products, **D1** or **D2**, were detected under optimized conditions.

Theoretical Studies. Scheme 2 summarizes the initial phase of our proposed mechanism and Figure 1 shows the DFT calculated reaction free energy profile using 4-iodoanisole (A1) and bis[(pinacolato)borvl]methane (B1) as the borvlating agent. The reaction starts with the activation of B1 furnished by the tertbutoxide anion attacking one of the boryl moieties in a nucleophilic fashion. The reactant complex B1A at a relative free energy of -1.7 kcal/mol undergoes B-C bond cleavage to form the sodium α -borylcarbanion **B1B**, liberating the *tert*-butoxyboronate ester. This process is 12.3 kcal/mol uphill traversing the transition state B1A-TS associated with a barrier of 17.5 kcal/mol. Therefore, the initialization step is energetically reasonable and it should be rapid under normal reaction conditions. To push the reaction forward, B1B may react with aryl iodide to afford a weakly bound Lewis acid/base adduct B1C, which was located at 13.6 kcal/mol. The adduct B1C shows a linear C-I-C arrangement, as illustrated in Figure 2. Formally, the borylcarbanion acts as a Lewis base to bind to the iodide which serves as the complementary Lewis acid. This binding motif is

Figure 2. DFT-optimized geometry of **B1C** with selected distances in Å. Non-essential hydrogen atoms were omitted for clarity.

 $R-C_6H_5$ → $R-C_6H_4^-$ + H^+ , where R = OMe, F, CF₃, NO₂ (1) pinB-CH₃ → pinB-CH₂⁻ + H^+ (2)

 Table 2. Gas- and Aqueous-phase Free Energies of the

 Deprotonation Reaction (1) and (2) in kcal/mol

	$\Delta_r G$ (gas)	$\Delta_{\mathbf{r}}\mathbf{G}$ (water) ^{<i>a</i>}
MeO-C ₆ H ₅	396.8	70.9
F-C ₆ H ₅	392.4	68.4
$F_3C-C_6H_5$	385.9	67.3
pinBCH3	378.4	53.9

^{*a*}Absolute aqueous solvation free energy of the proton was taken equal to -265.9 kcal/mol.¹⁶

reminiscent of what is known as an "ate-complex" of iodine.¹⁵ In a typical ate-complex, such as lithiumbis(pentafluorophenyl) iodinate,^{15d} the C–I–C fragment is symmetric and C–I bonds are relatively short (~2.3 Å). **B1C** is notably different, because the iodine atom is flanked by two very different functional groups; namely, a para methoxy-aryl and an α -borylcarbanion fragment. The α -borylcarbanion is a much weaker base than the methoxyaryl carbanion, as the electron withdrawing boryl fragment stabilizes the anionic charge. To compare the strengths of the basicities and to establish a gauge, we evaluated the the gas-phase free energies of the proton abstraction reactions (1) and (2).

As summarized in Table 2, our calculations show that the methoxyl-aryl carbanion is indeed the strongest Brønsted base with the deprotonation of its conjugate acid requiring 396.8 kcal/mol. As anticipated, the α -borylcarbanion is a much weaker base and the deprotonation of borylmethane is nearly 19 kcal/mol

easier at 378.4 kcal/mol in gas phase.¹⁷ Interestingly, this deprotonation energy is much smaller than that of an aryl carrying highly electron-withdrawing groups like -F or $-CF_3$, for which we calculated deprotonation energies of 392.4 and 385.9 kcal/mol. As a result of these notable difference in the electron-donating nature of the two carbanions, the intermediate **B1C** is not a classical atecomplex and displays significantly different C–I bonds. One of the C–I distances is close to the sum of covalent radii (2.162 Å),while the other is significantly longer 3.126 Å and the negative charge is additionally stabilized by the sodium cation, as illustrated in Figure 2. If the sodium cation is removed these bonds become 2.289 and 2.622 Å, respectively.

The nucleophilic substitution at iodine in Path A proceeds via the transition state B1C-TS, which was located at 33.1 kcal/mol, to form the iodomethyl boronate ester B1D. The C-I-C fragment is again not symmetric in B1C-TS with the newly forming C-I bond being 2.312 Å long, as shown in Figure 3, and the rupturing bond being at 2.925 Å. The sodium has moved and bridges the aryl-anion and the Bpin moiety. In Path B, the electrophilic attack of the carbanion by the Ar-group must traverse B1C-TS' to give B1D'. Our calculations suggest that the C-C coupling product B1D' is 78.2 kcal/mol lower in energy than B1D, i.e. the formation of B1D' is thermodynamically much more preferable. But the resting state B1A must overcome a barrier of 45.9 kcal/mol to form B1D', whereas only 34.7 kcal/mol is required to reach B1D. Hence, in spite of the great stability of B1D' its formation is kinetically impossible and forming the thermodynamically less favorable Lewis acid/base pair **B1D** is the only reaction viable, as illustrated in solid black lines in Figure 1.

Figure 3. DFT-optimized geometries of B1C-TS and B1C-TS' with selected distances in Å. Non-essential hydrogen atoms were omitted for clarity.

The NaAr moiety formed transiently in intermediate **B1D** is highly reactive and will readily engage an equivalent of bis[(pinacolato)boryl]methane **B1** or *tert*-butoxyboronate ester, both present in large excess quantities in solution, as illustrated in Scheme 3. The anionic Ar⁻ fragment can attack the Lewis acidic boron in **B1** or *t*BuO–Bpin via **B1E-TS** and **B1G-TS**, respectively, to give the Ar–borate species **B1F** or **B1H**. Both reaction steps have very low barriers, which is not surprising for a reaction where Ar⁻, a strong and hard Lewis base, attacks strong and hard Lewis acids. Whereas our calculations indicate that the formation of monoborate species **B1F** is slightly preferred kinetically, the computed energy differences are too small to be physically meaningful. Finally, both **B1F** and **B1H** may release Na[H₂C– Bpin] or NaO*t*Bu, respectively, to yield the borylation product C1.¹⁸

Scheme 3. Second Part of the Mechanism for the Borylation of 4-Iodoanisole

In one possible side reaction C-C coupling may occur after B1D is formed as a result of the reaction between ICH₂Bpin and NaAr. Here, the aryl-anion may attack the boron atom of ICH₂Bpin directly to give intermediate **B1I'**, which is 25.4 kcal/mol lower in energy than **B1D**. The following C-C coupling to generate **B1D'** proceeds via **B1I'-TS** at a relative free energy of 19.8 kcal/mol, thus giving a barrier of 24.5 kcal/mol. This barrier is much higher than that for the formation of the monoborate species B1F and B1H, but is reasonable for the given reaction condition. Therefore, the reaction pathway affording the undesired product B1D' has the potential to become one of the unproductive side reactions. But at any given time during the course of the reaction, the concentration of free ICH₂Bpin is negligible compared to the overwhelming abundance of both B1 and tBuO-Bpin. Thus, the only way this side reaction can occur is within the product complex **B1D** caught in a solvent cage. Experimentally, there is no evidence for this reaction taking place, in good agreement with our interpretation of the calculated reaction energy profiles. This is a remarkable finding, given the exceptionally great thermodynamic driving force, mentioned above.

A more detailed analysis of the relative energies reveals that the higher barrier for the C-C coupling step associated with B1C-TS', a nucleophilic aromatic substitution, is due to a strong electrostatic repulsion between the π -cloud of aryl moiety, the anionic methylene-carbanion and the anionic iodide leaving group. At 2.627 Å, the C-I bond is not yet fully broken and at 2.670 Å the C-C bond is not yet formed in the transition state B1C-TS' (Figure 3). The electron-donating nature of the methoxy group in the para position compounds the electrostatic penalty. Our calculations show that the energy of B1C-TS' can be significantly lowered by ~ 6 and ~ 10 kcal/mol if the methoxy group in the para position is replaced by electron-withdrawing -F or -CF₃ groups, respectively (see supporting information). Therefore, the kinetic challenge associated with Path B, which is ultimately responsible for the chemoselectivity described above, stems from the fact that the transition state is early and the aryl fragment is too electron-rich to provide a viable reaction partner for the incoming carbanion. This mechanistic insight and the magnitude of change in the transition state energy as a function of the electron density of the aryl-iodide is a potentially powerful handle for controlling the reaction. A more detailed study of how to control the reaction mechanism by functionalizing the aryl-

60

iodide moiety is in progress in our laboratories and will be reported elsewhere in due course.

Figure 4. Comparison of initial rates in the presence of various transition-metal catalysts

Experimental Mechanistic Studies. To challenge and possibly find support for the computed reaction mechanism, several experiments were conducted. First, we used inductively coupled plasma atomic emission spectroscopy (ICP-AES)¹⁴ to ensure that there is no trace amounts of transition-metal contaminants in NaO*t*Bu, which may possibly be responsible for the reactivity. We confirmed that no transition metal impurities could be detected. Moreover, no acceleration of the reaction rate was observed when catalytic amounts of several transition metals were deliberately employed in the reaction, thus ruling out the possibility of a transition-metal-mediated mechanism (Figure 4).¹⁹

Scheme 4. Probe for an Aryl Radical Mechanism

Given the propensity of aryl iodides to undergo homolytic bond cleavage leading to radical species,²⁰ we sought to exclude such alternative mechanism. Unfortunately, density functional theory is notoriously unreliable for modeling radical pathways and, thus, we did not attempt to calculate the radical pathway. Instead, we chose to test for such a possibility experimentally. When an aryl iodide containing a pendant olefin (A3) was subjected to the standard reaction conditions, the arylboronate ester C3 was formed in 85% isolated yield; however, formation of the cyclized product C3' or C3'' were not detected by crude ¹H-NMR and GC-MS analysis (Scheme 4a).²¹ In addition, when the reaction of A1 with B1 was performed in the presence of 5.0 equivalent of the

radical scavenger 9,10-dihydroanthracene (DHA), the product C1 was formed in slightly lower yield along with detectable amounts of anisole (Scheme 4b). To understand how the anisole was formed under the reaction conditions, we performed a control experiment by subjecting 9,10-hydroanthracene to in-situ generated sodium aryl anion. It was found that the corresponding arene was formed in nearly quantitative yield,¹⁴ implying that benzylic C-H bonds of 9,10-dihidroanthracene is deprotonated by the aryl anion species to yield anisole.²² Because a recent radical-mediated borylation reaction have shown that the reaction was completely inhibited in the presence of excess amount of 9,10-dihydroanthracene, we could eliminate a reaction pathway involving aryl radical intermediates with a fair level of certainty.²³

A key component of our proposed mechanism is the involvement of the aryl anion in the reaction path A, as discussed above. In search of an experimental support for this notion, we performed competition experiments using **B1** and electronically different *para*-substituted aryl iodides, as outlined in Scheme 5. When an equimolar mixture of **A4/A5/A6** (0.2 mmol each) was heated at 120 °C in toluene/THF in the presence of 2.5 equivalents each of **B1** (0.5 mmol) and NaOtBu (0.5 mmol) in a single vessel, the electron-deficient aryl iodide (**A6**) underwent borylation more rapidly than the electronically neutral (**A4**) and electron-rich (**A5**) aryl iodides. Whereas this observation does not prove that the aryl anion is really involved, it is very consistent with the calculated reaction pathway discussed above and supports our proposal that an aryl anion species is involved as a key intermediate in our borylation protocol.

Scheme 5. Intermolecular Competition Experiment

Scope of Borylation of Aryl Iodides. On the basis of this mechanistic understanding, the substrate scope of our borylation reaction was investigated, as enumerated in Table 3. Because the mechanism suggests that the borylation reaction should be highly dependent on the electronic nature of aryl iodides, as it is directly involved in the rate determining step, and we were able to qualitative confirm this dependence in our experiments, we explored the scope by fine-tuning the reaction temperature while varying the nature of the aryl iodides. The borylation of aryl iodides containing electronically neutral (C4) and donating (C5, C7-C8) substituents at the *para* position provided the desired products in good vields at 120 °C. Interestingly, arvl iodides bearing a CF₃ (C6 and C18) group borylated readily even at 50 °C. Furthermore, 1-chloro and 1-bromo-4-iodobenzene were successfully reacted with B1 at 80 °C, conveniently leaving the chloro and bromo groups intact (C9 and C10) for further elaboration. Substrates containing ester (C11) and amide (C12) reacted in good to moderate yields at 80 °C. Protected alcohol (C13 and C14) and masked ketone (C15) groups are also tolerated. The presence of substituents at the meta (C16-C18) and ortho (C19) positions of the aryl rings has little impact upon reaction efficiency. Moreover, aryl iodides containing two additional substituents were suitable for the borylation, and provided the corresponding boronate esters (C20-C28) in good to excellent yields. The protocol developed here could also be applied to sterically demanding substrates, which were exceedingly difficult to access by previously known catalytic borylation protocols.⁸ The reaction of 1,3-dimethyl-(C29), 1-

Table 3. Borylation of (Hetero)Aryl and Vinyl Iodides with Bis[(pinacolato)boryl]methane^{a,b}

^{*a*}Reaction Conditions: **A** (0.2 mmol), **B1** (2.0 equiv), NaOtBu (2.0 equiv), and toluene/THF (2.0 mL, 1:1) at indicated temperature for 6 h. ^{*b*}Yield of isolated product is given. ¹H-NMR yield using dibromomethane as an internal standard is shown in parentheses. ^{*c*}Runs at 120 °C. ^{*d*}Runs at 80 °C. ^{*f*}Runs at 50 °C. ^{*f*}I,4-Dioxane was used as a solvent instead of toluene/THF.

ethyl-3-methyl-(C30), and 1,3,5-trimethyl-(C31) substituted aryl iodides afforded the corresponding borylated products in good yields. Notably, substrates having at least one halide group in the aryl ring underwent borylation at temperatures ranging from 50 to 80°C, whereas alkyl-substituted aryl iodides required high temperature (120 °C) to afford satisfactory product yields. 1-Iodonaphthalene was also found to be an effective substrate for the borylation reaction forming the borylated products C32 in good to moderate yields. We were pleased to observe that heteoaryl iodides could also be utilized as efficient substratesunder the present borylation conditions. Electron deficient heteroaryl iodides such as 3-iodopyridine and 3iodoquinoline reacted with B1 at 50 °C to provide the desired products C33 and C34 in moderate yields. Moreover, 8-Iodo-Nmethyl-indole and 3-iododibenzothiophene were also viable substrates and products C35 and C36 were obtained in satisfactory yields at elevated temperature (120 °C). Finally, we were able to apply the developed borylation protocol to transvinyl iodides when 1,4-dioxane was used as the solvent to obtain a single stereoisomer of the borylated products C37 and C38 in moderate yields.

Substituent Effects and Scope of Borylation of Aryl Bromides. The theoretical studies described above shed light on why electron deficient aryl iodides facilitated the borylation reaction under mild conditions. In order to rationalize these electronic effects, the complete free energy pathway profiles for three representative aryl iodides (A1, A2 and A6) were calculated and summarized in Figure 5.¹⁴ The change of substituent does not

Figure 5. Comparison of free energy varying electronic nature of aryl iodides. Transition states marked by * were not explicitly located.

affect the mechanism significantly: the conversion of **B1A** to **B1D** via the transition state **B1C-TS** is still rate-limiting step. The free energy barrier for the formation of **B1C-TS** from **A1** was 34.8 kcal/mol since the formation of **A2-B1C-TS** from **A2** and **A6-B1C-TS** from **A6** was found to be lower in energy than **B1C-TS** by 1.6 kcal/mol and 2.9 kcal/mol, respectively. This findings are in excellent agreement with the experimental results (Table 1 and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 2) that aryl iodides bearing electron withdrawing substituents underwent the borylation under relatively mild conditions. To test whether this borylation process occurs with aryl bromides in a similar fashion, we performed DFT calculations using 1-bromo-4-(trifluoromethyl)benzene (E1) as a model substrate (Figure 6). These calculations suggest that E1-B1C-TS located at 32.9 kcal/mol is the highest energy transition state, implying that this reaction may be feasible at high temperatures.¹⁴

Figure 6. Comparison of free energy for the borylation of 1-iodo-4-(trifluoromethyl)benzene (A6) and 1-bromo-4-(trifluoromethyl)benzene (E1) with B1. Transition states marked by * were not explicitly located.

With this result in mind, we reinvestigated the reaction parameters for the borylation using 1-bromo-4-(trifluoromethyl)benzene **E1** and **B1** as model substrates, which were initially not found to be viable substrates. After extensive reoptimization,¹⁴ we found that **E1** undergoes borylation in the presence of an excess amount of **B1** (3.0 equiv) and THF as the solvent at elevated temperature (120 °C) with prolonged reaction time (12 h) to afford the corresponding borylated product **C6** in 37% ¹H-NMR yield (Table 4). Further Investigation showed that

Table 4. Borylation of Aryl Bromides with 1,1-Bis[(pinacolato)boryl]alkanes

^aReaction Conditions: aryl bromide (**E**, 0.2 mmol), **B1** or **B2** (3.0 equiv), NaOtBu (2.0 equiv), and THF (2.0 mL) at 120 °C for 12 h. ^{b1}H-NMR yield using dibromomethane as an internal standard is given.

1,1-bis[(pinacolato)boryl]ethane (B2) was more effective borylation reagent than B1 to form C6 (55%), which may be attributed to making the carbon that undergoes C–Br formation more electron-rich. By using these modified reaction conditions, the reactions of aryl bromides bearing electron withdrawing substituent such as 1-bromo-4- chloro-benzene (E2), 1-bromo-3-(trifluoromethyl)benzene (E3) and 4-bromo-2-chloro-1methylbenzene (E4) with B1 or B2 afforded the products C9, C18 and C23 in low to moderate yields. It should be noted that B2 gives higher yields when reacting with aryl bromides. As anticipated, electronically rich (E5) and neutral (E6) aryl bromides exhibited low reactivity (C1 and C4).

Conclusion

In summary, we developed a transition-metal-free borylation of aryl and vinyl halides employing 1.1bis[(pinacolato)boryl]alkanes as the boron source. This operationally simple reaction proceeds chemoselectively, thus transferring one boron group from 11bis[(pinacolato)boryl]alkanes to aryl or vinyl halides to form diverse organoboronate esters with high functional group tolerance. Combining theoretical and experimental studies, we were able to understand how aryl halides and α -borylcarbanion, of generated in-situ by combination 1.1bis[(pinacolato)boryl]alkanes and NaOtBu, are able to generate sodium aryl anion species, which can subsequently undergo C-B bond formation reactions. This work constitutes the first example for the formation of C-B bond of aryl halides using 1,1bis[(pinacolato)boryl]alkanes as boron source with integrated theoretical and experimental studies. We believe that the present transition-metal-free borylation protocol will provide a powerful tool for the preparation of synthetically useful organoboron compounds with uncommon chemoselective coupling of 1,1bis[(pinacolato)boryl]alkanes.

ASSOCIATED CONTENT

Supporting Information

Experimental procedure and characterization of compounds (¹H and ¹³C-NMR spectra), kinetic profiles, Cartesian coordinates of DFT-optimized structures, benchmark calculations and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*seunghwan@postech.ac.kr *mbaik2805@kaist.ac.kr

Author Contributions

[®]These authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A02036326). M.-H.B. acknowledges support from the Institute for Basic Science (IBS-R10-D1) in Korea. J. Park thanks the National Research Foundation of Korea (NRF) for the global Ph.D. fellowship (NRF-2016H1A2A1908616).

REFERENCES

1. (a) Lee, J. C. H.; McDonald, R.; Hall, D. G. *Nat. Chem.* **2011**, *3*, 894. (b) Feng, X.; Jeon, H.; Yun, J. *Angew. Chem., Int. Ed.* **2013**, *52*, 3989. (c) Lee, J. C. H.; Sun, H.-Y.; Hall, D. G. J. Org. Chem. **2015**, *80*, 7134.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 2. (a) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. J. Am. Chem. Soc. 2010, 132, 11033. (b) Endo, K.; Ohkubo, T.; Shibata, T. Org. Lett. 2011, 13, 3368. (c) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. J. Org. Chem. 2012, 77, 4826. (d) Endo, K.; Ishioka, T.; Shibata, T. Synlett 2014, 25, 2184.

3. For transition-metal-catalyzed C–C bond forming reactions of 1,1-bis[(pinacolato)boryl]alkanes with organohalides, see: (a) Sun, C.; Potter, B.; Morken, J. P. J. Am. Chem. Soc. **2014**, *136*, 6534. (b) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. J. Am. Chem. Soc. **2014**, *136*, 17918. (c) Sun, H.-Y.; Kubota, K.; Hall, D. G. Chem. Eur. J. **2015**, *21*, 19186. (d) Li, H.; Zhang, Z.; Shangguan, X.; Huang, S.; Chen, J.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. **2014**, *53*, 11921. (e) Cui, L.-C.; Zhang, Z.-Q.; Lu, X.; Xiao, B.; Fu, Y. RSC Adv. **2016**, *6*, 51932.

4. For transition-metal-catalyzed C-C bond forming reactions of 1,1-bis[(pinacolato)boryl]alkanes with other electrophiles, see: (a) Zhang, Z.-Q.; Yang, C.-T.; Liang, L.-J.; Xiao, B.; Lu, X.; Liu, J.-H.; Sun, Y.-Y.; Marder, T. B.; Fu, Y. Org. Lett. **2014**, *16*, 6342. (b) Joannou, M. V.; Moyer, B. S.; Meek, S. J. J. Am. Chem. Soc. **2015**, *137*, 6176. (c) Joannou, M. V.; Moyer, B. S.; Goldfogel, M. J.; Meek, S. J. Angew. Chem., Int. Ed. **2015**, *54*, 14141. (d) Xu, S.; Shangguan, X.; Li, H.; Zhang, Y.; Wang, J. J. Org. Chem. **2015**, *80*, 7779. (e) Shi, Y.; Hoveyda, A. H. Angew. Chem., Int. Ed. **2016**, *55*, 3455. (f) Zhang, Z.-Q.; Zhang, B.; Lu, X.; Liu, J.-H.; Lu, X.-Y.; Xiao, B.; Fu, Y. Org. Lett. **2016**, *18*, 952. (g) Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. **2016**, *6*, 3381. (h) Ebrahim-Alkhalil, A.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Lu, X.-Y.; Xiao, B.; Fu, Y. Chem. Commun. **2016**, *52*, 4891.

5. For transition-metal-free C–C bond forming reactions of 1,1bis[(pinacolato)boryl]alkanes, see: (a) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. **2014**, *136*, 10581. (b) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am. Chem. Soc. **2014**, *136*, 16140.

(a) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed.
 2016, 55, 1498. (b) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett.
 2016, 18, 1210. (c) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew.
 Chem., Int. Ed. 2016, 55, 9690. (d) Kim, J.; Cho, S. H. Synlett, 2016, 27, 2525.

7.(a) Hall, D. G. *Boronic Acids*; Wiley-VCH: Weinheim, Germany, 2005. (b) Suzuki, A.; Brown, H. C. *Organic Synthesis via Boranes*; Aldrich: Milwaukee, WI, 2003. (c) Brown, H. C.; Cole, T. E. *Organometallics* **1983**, *2*, 1316.

8. For selected examples of transition-metal-catalyzed borylation of organo(pseudo)halides: (a) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271. (b) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535. (c) Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C. P.; Wong, W. T.; Kwong, F. Y. RSC Adv. 2013, 3, 12518. (d) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48, 5350. (e) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. J. Am. Chem. Soc. 2010, 132, 17701. (f) Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766. (g) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 18730. (h) Bose, S. K.; Marder, T. B. Org. Lett. 2014, 16, 4562. (i) Liu, X.-W.; Echavarren, J.; Zarate, C.; Martin, R. J. Am. Chem. Soc. 2015, 137, 12470. (j) Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313. (k) Zarate, C.; Manzano, R.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6754. (1) Tobisu, M.; Kinuta, H.; Kita, Y.; Rémond, E.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 115. (m) Tobisu, M.; Nakamura, K.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 5587.

 9. For selected examples of C-H borylations: (a) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (b) Hartwig, J. F. Acc. Chem. Res. 2011, 45, 864.
 (c) Ros, A.; Fernández, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229. (d) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R., III. Science 2002, 295, 305. (e) Dombray, T.; Werncke, C. G.; Jiang, S.; Grellier, M.; Vendier, L.; Bontemps, S.; Sortais, J.-B.; Sabo-Etienne, S.; Darcel, C. J. Am. Chem. Soc. 2015, 137, 4062. (f) Furukawa, T.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2015, 137, 12211. (g) Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7, 712. (h) Légaré, M.-A.; Courtemanche, M.-A.; Rochette, É.; Fontaine, G.-G. Science 2015, 349, 513. (i) Smith, K. T.; Berritt, S.; González-Moreiras, M.; Ahn, S.; Smith III, M. R.; Baik, M.-H.; Mindiola, D. J. Science, 2016, 251, 1424.

For selected examples of electrophilic borylations: (a) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. *Chem. Rev.* 2012, *112*, 4246.
 (b) Ingleson, M. J. *Synlett* 2012, *23*, 1411. (c) Ingleson, M. J. *Top. Organomet. Chem.* 2015, *49*, 39. (d) Stahl, T.; Müther, K.; Ohki, Y.; Tatsumi, K.; Oestreich, M. J. Am. Chem. Soc. 2013, *135*, 10978.

11. For examples of transition-metal-free borylations: (a) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. **2010**, 49, 1846. (b) Zhu, C.; Yamane, M. Org. Lett. **2012**, 14, 4560. (c) Qiu, D.; Jin, L.; Zheng, Z.; Meng, H.; Mo, F.; Wang, X.; Zhang, Y.; Wang, J. J. Org. Chem. **2013**, 78, 1923. (d) Zhang, J.; Wu, H.-H.; Zhang, J. Eur. J. Org. Chem. **2013**, 6263. (e) Yu, J.; Zhang, L.; Yan, G. Adv. Synth. Catal. **2012**, 354, 2625. (f) Erb, W.; Hellal, A.; Albini, M.; Rouden, J.; Blanchet, J. Chem. Eur. J. **2014**, 20, 6608. (g) Miralles, N.; Romero, R. M.; Fernández, E.; Muñiz, K. Chem. Commun. **2015**, 51, 14068. (h) Mfuh, A. M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O. V. J. Am. Chem. Soc. **2016**, 138, 2985. (i) Chen, K.; Zhang, S.; He, P.; Li, P. Chem. Sci. **2016**, 7, 3676. (j) Chen, K.; Cheung, M. S.; Lin, Z.; Li, P. Org. Chem. Front. **2016**, 3, 875.

12. (a) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. J. Am. Chem. Soc. 2012, 134, 19997. (b) Yamamoto, E.; Ukigai, S.; Ito, H. Chem. Sci. 2015, 6, 2943. (c) Uematsu, R.; Yamamoto, E.; Maeda, S.; Ito, H.; Taketsugu, T. J. Am. Chem. Soc. 2015, 137, 4090.

13. The bis[(pinacolato)boryl]methane is commercially available from Aldrich (catalog number 794287) and TCI (catalog number B4103).

14. See the Supporting Information for details.

(a) Winkler, H. J. S.; Winkler, H. J. Am. Chem. Soc. 1966, 88, 964.
 (b) Winkler, H. J. S.; Winkler, H. J. Am. Chem. Soc. 1966, 88, 969.
 (c) Rogers, H. R.; Houk, J. J. Am. Chem. Soc. 1982, 104, 522.
 (d) Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108, 2449.
 (e) Harada, T.; Katsuhira, T.; Oku, A. J. Org. Chem. 1992, 57, 5805.
 (f) Beak, P.; Allen, D. J. J. Am. Chem. Soc. 1992, 114, 3420.
 (g) Ando, K. J. Org. Chem. 2006, 71, 1837.
 (h) Cheung, M. S.; Marder, T. B.; Lin, Z. Organometallics 2011, 30, 3018.

16. (a) Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. J.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A **1998**, 102, 7787. (b) Camaioni, D. M.; Scherdtfeger, C. A. J. Phys. Chem. A **2005**, 109, 10795.

17. Note that we use gas phase free energies to obtain a direct and most immediate measure of the intrinsic deprotonation energy. These are not to be confused with solution phase deprotonation energies. The solvation energy of a proton is \sim 260 kcal/mol in water and the solvation energies of the carbanions will also be \sim 50-100 kcal/mol. Thus, the solution phase free energy of deprotonation will be much smaller in absolute number. Here, we are interested in assessing the electronic energy, as it will be the most direct measure for how the anionic fragments will behave as binding partners.

18. During the course of the reaction, we detected $(CH_2Bpin)_2$ and $tBuOCH_2Bpin$, which are presumably formed by the reaction between (iodomethyl)boronate ester (ICH_2Bpin) and α -borylcarbanion (**B1B**) or alkoxide anion, by GC-MS.

19. The alkylated product **D1** was solely obtained in the presence of $Pd(OAc)_2$ as a catalyst. For related works, see Refs 2 and 3.

20. For selected examples of aryl radical generation from aryl iodides in the presence of alkoxide base: (a) Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. **2010**, *132*, 15537. (b) Qiu, Y.; Liu, Y.; Yang, K.; Hong, W.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S. Org. Lett. **2011**, *13*, 3556. (c) Wei, W.; Dong, X.; Nie, S.; Chen, Y.; Zhang, X.; Yan, M. Org. Lett. **2013**, *15*, 6018. (d) Chen, Y.; Zhang, X.; Yuan, H.; Wei, W.; Yan, M. Chem. Commun. **2013**, *49*, 10974. (e) Drapeau, M. P.; Fabre, I.; Grimoud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem., Int. Ed. **2015**, *54*, 10587. (f) Barham, J. P.; Coulthard, G.; Emery, K. J.; Doni, E.; Cumine, F.; Nocera, G.; John, M. P.; Berlouis, L. E. A.; McGuire, T.; Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc., **2016**, *138*, 7402.

21. Annunziata, A.; Galli, C.; Marinelli, M.; Pau, T. Eur. J. Org. Chem. 2001, 1323.

22. We carried out the borylation reaction of 4-iodoanisole (A1) with B1 in the presence of 1.0 equivalent of *tert*-butanol as a proton source. As anticipated, detectable amounts of anisole (19%), presumably captured by *tert*-butanol, was formed along with the

desired borylated product (20%) in 60% conversion of A1. This result provides a supportive evidence that aryl anion is likely involved as a reactive species in the reaction. For details, see the Supporting Information.

23. Bose, S. K.; Fucke, K.; Liu, L.; Steel, P. G.; Marder, T. B. Angew. Chem., Int. Ed. 2014, 53, 1799.

ACS Paragon Plus Environment