Controlled stepwise conversion of 2,4,6,8-tetrachloropyrimido-[5,4-d]pyrimidine into 2,4,6,8-tetrasubstituted pyrimido[5,4-d]pyrimidines

Julian S. Northen, ${ }^{a}$ F. Thomas Boyle, ${ }^{b}$ William Clegg, ${ }^{c}$ Nicola J. Curtin, ${ }^{d}$ Andrew J. Edwards, ${ }^{c}$ Roger J. Griffin ${ }^{a}$ and Bernard T. Golding * ${ }^{a}$
${ }^{a}$ Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, UK NE1 7RU
${ }^{b}$ Cancer Therapeutic Research, ZENECA Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, UK SK10 4TG
${ }^{\text {c }}$ Chemical Crystallography Unit, Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, UK NE1 7 RU
${ }^{d}$ Cancer Research Unit, Medical School, University of Newcastle upon Tyne, UK NE1 7RU

Received (in Cambridge, UK) 8th March 2001, Accepted 2nd August 2001
First published as an Advance Article on the web 3rd December 2001

Abstract

For the rational synthesis of $2,4,6,8$-tetrasubstituted pyrimido[5,4- d] pyrimidines, required as purine mimetics, sequential nucleophilic substitutions of 2,4,6,8-tetrachloropyrimido[5,4-d] pyrimidine have been investigated. Reaction conditions have been devised leading to $2,4,6,8$-tetrasubstituted pyrimido [5,4- d]pyrimidines with patterns of substitution denoted as $a b a b$ (reaction with nucleophile 1 at C-4 and C-8, followed by nucleophile 2 at C-2 and C-6) or abac (reaction with nucleophile 1 at C-4 and C-8, nucleophile 2 at C-2 and nucleophile 3 at C-6) or abcd (reaction with nucleophile 1 at C-4, nucleophile 2 at C-8, nucleophile 3 at C-2 and nucleophile 4 at C-6). The use of low temperature, relatively dilute solution and careful addition of the amine nucleophile can control the critical first step. The third step in the production of the $a b c d$ pattern leads to two regioisomers, which have been structurally characterised by ${ }^{1} \mathrm{H}$ NMR and a crystal structure analysis. Selected $2,4,6,8$-tetrasubstituted pyrimido[5,4- $\left.d\right]$ pyrimidines were tested as inhibitors of the cyclin-dependent kinase 1 complex (cyclin B/CDK1), but none of the compounds showed significant activity.

Introduction

Pyrimido[5,4- d]pyrimidines are a relatively little studied heterocyclic system, which are of interest in the context of drug development because of their structural similarity to purines. We are especially interested in inhibitors of cyclin-dependent kinases (CDKs) and have developed purine derivatives (e.g. 2-amino-6-cyclohexylmethoxypurine 1) that inhibit the cyclin B1/CDK1 and cyclin A3/CDK2 complexes at concentrations in the low micromolar range. ${ }^{1}$ These purines are analogues of the 'benchmark' inhibitors olomoucine 2a and roscovitine $\mathbf{2 b},{ }^{2,3}$ although they bind to CDK2 in a different orientation. ${ }^{1}$ The objective of the present study was to obtain pyrimido $[5,4-d]$ pyrimidine analogues of the purine CDK inhibitors. The synthetic access to such molecules requires that the pyrimido-[5,4-d]pyrimidine scaffold be manipulated in a rational way. To this end we have investigated how to control the substitution chemistry of 2,4,6,8-tetrachloropyrimido[5,4-d] pyrimidine (3, TCPP). ${ }^{4}$ This compound is readily prepared from 1,5 -dihydro-pyrimido[5,4- d]pyrimidine-2,4,6,8-($3 H, 7 H$)-tetraone 4. ${ }^{4}$ Besides enabling the synthesis of individual purine mimetics, a better knowledge of the chemistry of 2,4,6,8-tetrachloropyrimido-[5,4-d]pyrimidines would provide an opportunity for parallel or combinatorial syntheses of a diverse array of novel compounds.

TCPP is the classical precursor of 2,4,6,8-tetrasubstituted pyrimido[5,4- d]pyrimidines, including the useful coronary vasodilator dipyridamole (5, Persantin). ${ }^{5}$ The substitution pattern in dipyridamole can be described as $a b a b$ where a corresponds to a substituent at the 4 - and 8-positions of the pyrimido[5,4-d]pyrimidine scaffold, whereas b corresponds to a
substituent at the 2- and 6-positions (Fig. 1). The formation of pyrimido[5,4- d]pyrimidines with an $a b a b$ pattern of substitution is the typical outcome of two stepwise substitution reactions of TCPP, employing an excess of nucleophile in each step. ${ }^{6,7}$ This is because the rates of substitution greatly favour the $\mathrm{C}-4$ and $\mathrm{C}-8$ positions over $\mathrm{C}-2$ and $\mathrm{C}-6$. For example, treatment of TCPP with an excess of benzylamine at ambient temperature led to the formation of 4,8-bis(benzylamino)-2,6-dichloropyrimido[5,4- d]pyrimidine 6a. Further reaction of this compound with an excess of ethanolamine (2-aminoethanol) at $120^{\circ} \mathrm{C}$ gave 4,8-bis(benzylamino)-2,6-bis(2-hydroxyethylamino) pyrimido[5,4- d]pyrimidine $\mathbf{6 b}$ (Scheme 1). The observed regioselectivity relates to the ability to delocalise the negative charge arising from attack of a nucleophile at C-2/C-6 or C-4/ C-8. Attack at C-4/C-8 gives a species in which negative charge on nitrogen (e.g. $\mathrm{N}-3$) can be delocalised into an adjacent $\mathrm{C}=\mathrm{N}$ bond, whereas attack at C-2/C-6 does not permit this stabilising interaction.

The reactions of 4,8-bis(benzylamino)-2,6-dichloropyrimido-[5,4- d]pyrimidine with nucleophiles can be carried out in a stepwise fashion to afford 4,8-bis(benzylamino)-2,6-disubstituted pyrimido[5,4-d]pyrimidines, with different substituents at C-2 and C-6, i.e. an abac substitution pattern (cf. Fig. 1). Furthermore, we have found that the reaction of TCPP with benzylamine can be controlled to give the mono-substituted product, 4-benzylamino-2,6,8-trichloropyrimido[5,4-d]pyrimidine, in acceptable yield. This compound served as a valuable starting material for the preparation of 2,4,6,8-tetrasubstituted pyrimido[5,4- d]pyrimidines with an abcd pattern of substitution, via a sequence of controlled nucleophilic substitutions of

CyclohexyImethoxyguanine 1

2,4,6,8-Tetrachloropyrimido [5,4-व]pyrimidine (TCPP) 3

1,5-Dihydropyrimido $[5,4-d]$ pyrimidine-2,4,, $8-(3 H, 7 H)$ -tetrone (TCPP) 4

Fig. 1 Substitution patterns for pyrimido[5,4-d]pyrimidines.

ii: $\mathbf{R}^{1}=\mathbf{R}^{2}=\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{HN}, \mathbf{6 b}$
6d
iii: $\mathrm{R}^{1}=\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{HN}, \mathrm{R}^{2}=\mathrm{Cl} 6 \mathbf{c}$
Scheme 1 Conversion of 2,4,6,8-tetrachloropyrimido[5,4- d]pyrimidine 3 (TCPP) into 6a-6d. Reagents and conditions: (i) 4 equiv. benzylamine, THF, rt, 20 min ; (ii) ethanolamine, $120^{\circ} \mathrm{C} 12 \mathrm{~h}$; (iii) 64 equiv. ethanolamine, THF, $75^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (iv) 3.9 equiv. $\mathrm{KOH}, \mathrm{H}_{2}, 30-40 \mathrm{psi}, 10 \%$ Pd/C, THF, 20 h .
the remaining three chloro functions. The structures of the $a b a c$ and $a b c d$ tetrasubstituted pyrimido[5,4- d]pyrimidines described herein were validated by spectroscopic characterisation of all compounds, and for the abcd type by an X-ray analysis of a representative end-product. The abcd pattern of substitution was of particular interest in the context of analogues of purine CDK inhibitors and so selected compounds were evaluated as inhibitors of the cyclin B/CDK1 complex.

Results and discussion

Symmetrical and non-symmetrical 4,8-bis(benzylamino)-pyrimido[5,4-d]pyrimidines (abab and abac substitution pattern e.g. $a=$ benzylamino, $b=2$-hydroxyethylamino, $c=\mathbf{H})$

Various methods to access TCPP 3 have been described. ${ }^{4}$ We found that a satisfactory method is to heat an aqueous solution of 5 -aminoorotic acid at $210^{\circ} \mathrm{C}$ in the presence of ammonium chloride and potassium cyanate to give tetraone $4 .{ }^{4}$ This was isolated as its disodium salt, which was converted into 3 by treatment with a mixture of phosphorus oxychloride and phosphorus pentachloride. Reaction of 4 mol equivalents of benzylamine with TCPP in THF at ambient temperature rapidly gave 4,8-bis(benzylamino)-2,6-dichloropyrimido[5,4- d]pyrimidine 6a in good yield, without formation of the tri- and tetra-substituted benzylamino derivatives (Scheme 1). The procedure used was a modification of that reported, ${ }^{7}$ employing reduced quantities of benzylamine to improve the isolation and purification of compound $\mathbf{6 a}$.

For the synthesis of symmetrical ($a b a b$) and non-symmetrical (abac) 2,6-disubstituted 4,8-bis(benzylamino)pyrimido[5,4- d]pyrimidines, nucleophilic substitutions at the C-2 and C-6 positions were required. Heating $6 \mathbf{a}$ with neat ethanolamine at $100^{\circ} \mathrm{C}$ gave 4,8-bis(benzylamino)-2,6-bis(2-hydroxyethylamino)pyrimido $[5,4-d]$ pyrimidine $\mathbf{6 b}$ (Scheme 1). Substitution at the 2- (or -6) position of $\mathbf{6 a}$ with an amine should result in deactivation of the pyrimido[5,4-d]pyrimidine system to further substitution. By carefully controlling the reaction temperature and the concentration of amine used, it was possible to introduce an amino function selectively at C-2 (or C-6). Thus, when compound 6a was heated with ethanolamine in THF at $75^{\circ} \mathrm{C}$ 4,8-bis(benzylamino)-6-chloro-2-(2-hydroxyethylamino)-pyrimido[5,4-d]pyrimidine $\mathbf{6 c}$ was obtained in good yield.

The reductive dehalogenation of $\mathbf{6 c}$ was performed using $\mathrm{Pd} /$ C, KOH and dry THF in a pressure vessel under a hydrogen atmosphere of $30-40$ psi. ${ }^{8}$ This method produced compound $\mathbf{6 d}$ cleanly and in good yield, with no apparent debenzylation (Scheme 1). Having demonstrated a selective method for the synthesis of the abac substituted pyrimido[5,4-d]pyrimidines with benzylamino substituents at C-4 and C-8, the methodology was applied to the generation of analogous p-methoxyanilino compounds. Reaction of 4-methoxyaniline with TCPP (2.1:1 molar ratio) in THF at ambient temperature gave 4,8-bis(4-methoxyanilino)-2,6-dichloropyrimido[5,4- d]pyrimidine $\mathbf{7 a}$ in good yield (Scheme 2). Subsequent reaction with ethanolamine in THF selectively produced 4,8-bis(4-methoxyanilino)-6-chloro-2-(2-hydroxyethylamino)pyrimido[5,4-d]pyrimidine 7c, whereas the use of neat ethanolamine gave 4,8-bis(4-meth-oxyanilino)-2,6-bis(2-hydroxyethylamino)pyrimido[5,4-d]-
pyrimidine 7b. Reductive dehalogenation of 7c furnished 4,8-bis(4-methoxyanilino)-2-(2-hydroxyethylamino)pyrimido-[5,4- d]pyrimidine 7d (Scheme 2).

Both 7c and 7d displayed marked fluorescence in organic solvents and were also highly photosensitive. Aerial photosensitivity has been reported for dipyridamole 5 , whereby one of the piperidine rings is oxidised to give 2,6-bis(2-hydroxyethyl-amino)-4-(2-oxopiperidinyl)-8-piperidinylpyrimido[5,4-d]pyrimidine. ${ }^{9}$

C-4 Monobenzylaminopyrimido[5,4- d]pyrimidine analogues (abcd substitution pattern, $a=$ benzylamino, $b=e . g$. methylamino, $c=$ 2-hydroxyethylamino, $d=\mathrm{H}$)

The synthesis of homopurine analogues of olomoucine or roscovitine requires selective monosubstitution of the 4 (or 8) chloro group of TCPP 3 with benzylamine. A variety of reaction parameters were investigated in order to achieve this goal. Reproducible results were obtained using a $1.1: 1$ molar ratio of benzylamine to TCPP in an equal volume of THF at

Scheme 2 Conversion of TCPP into 7a-d. Reagents and conditions: (i) 2.1 equiv. 4-methoxyaniline, 2.4 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, rt, 20 min ; (ii) ethanolamine, $100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (iii) 146 equiv. ethanolamine, THF, $65^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (iv) 4.6 equiv. $\mathrm{KOH}, \mathrm{H}_{2}, 30-40 \mathrm{psi}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{THF}, 7$ days.
$-78^{\circ} \mathrm{C}$, with a controlled, dropwise addition of the benzylamine solution from a syringe at a rate of 1 ml per minute. After stirring the mixture for 5 minutes, addition of water precipitated 8 (Scheme 3) in acceptable yield and sufficiently pure by TLC and HPLC analysis to be used directly.

Scheme 3 Conversion of TCPP into $\mathbf{8}$ as an intermediate in the synthesis of 9a-d. Reagents and conditions: (i) 1.14 equiv. benzylamine, $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF, $-78{ }^{\circ} \mathrm{C}$, 15 min ; (ii) excess $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}$, THF, $0^{\circ} \mathrm{C}$, 40 min .

Treatment of the monobenzylamino derivative $\mathbf{8}$ with ammonia, methylamine, dimethylamine or piperidine in THF at $0^{\circ} \mathrm{C}$ gave the corresponding 4,8 -disubstituted pyrimido $[5,4-d]$ pyrimidines 9a-d (Scheme 3). Heating each of compounds 9a-d with ethanolamine in THF afforded the corresponding trisubstituted pyrimido[5,4-d]pyrimidine derivatives 10a-d (Scheme 4). In the absence of THF and with an excess of ethanolamine the corresponding tetrasubstituted pyrimido-$[5,4-d]$ pyrimidines 11a-d were obtained.

Dehalogenation of compounds 10a-d (Scheme 5) gave the corresponding homopurines 12a-d in good yield. Only com-

Table 1 Selected ${ }^{1} \mathrm{H}$ NMR chemical shifts for 12bi and 12bii

12bi (C-6 isomer)	12bii (C-2 isomer)		
Group $\mathbf{1 2 b i}{ }^{\text {a }}$	$12 \mathrm{~b} \mathbf{i}{ }^{\text {b }}$	$12 \mathrm{bii}{ }^{\text {a }}$	$12 \mathrm{bii}{ }^{\text {b }}$
$\mathrm{NCH}_{3} \quad 2.97$	3.06	3.03	3.08
$\mathrm{ArCH}_{2} \mathrm{~N}$	4.78	4.69	4.72
$\mathrm{N}=\mathrm{C}-H \quad 8.17$	8.42	8.14	8.42
${ }^{a} \mathrm{~d}_{6}-\mathrm{DMSO}{ }^{b}+\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$.			

Scheme 4 Mono and disubstitution of $9 \mathbf{a}-\mathbf{d}$ with ethanolamine. Reagents and conditions: i) ethanolamine, THF, $65^{\circ} \mathrm{C}, 6 \mathrm{~h}$; ii) excess ethanolamine, $100^{\circ} \mathrm{C}$.

Scheme 5 Reductive dehalogenations of compounds 10aii-dii [note these reactions were carried out on mixtures of 10ai and 10aii, 10bi and 10bii, 10ci and 10cii, 10di and 10dii leading to mixtures of 12ai and 12aii, 12bi and 12bii, 12ci and 12cii, 12di and 12dii, respectively; only the structures of the $\mathbf{i i}$ isomers are shown (the \mathbf{i} isomers have the Cl or H at $\mathrm{C}-2$ and the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ at C-6)]. Reagents and conditions: i) 6.1 equiv. $\mathrm{KOH}, \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{THF}, 20 \mathrm{~h}$.
pound 11b in the 2,6-bis(2-hydroxyethylamino) series could be obtained in a pure form. Similarly, compound $\mathbf{1 2 b}$ was the only member of the dehalogenated derivatives to be obtained in a pure enough form for characterisation and biological evaluation. This was due to the instability of the compounds and difficulties encountered with purification

The reactions described for compounds 9a-d leading to 10a-d and 12a-d produced an equimolar mixture of $\mathrm{C}-2$ and $\mathrm{C}-6$ regioisomers, as gauged by ${ }^{1} \mathrm{H}$ NMR analysis (Table 1). The respective isomers were separated chromatographically for compounds $\mathbf{1 0 b}$ (i and ii) and $\mathbf{1 2 b}$ (i and ii). ${ }^{1} \mathrm{H}$ NMR analysis of the separated isomers allowed their assignment as 12bi ('C-6 isomer') for the less polar compound and as $\mathbf{1 2 b i i}$ (' $\mathrm{C}-2$ isomer') for the more polar compound. The assignment was based on the positions of the resonances from the N-alkyl group and benzyl methylene. Elucidation of the structures of the isomers of compound $\mathbf{1 2 b}$ (i and $\mathbf{i i}$) was aided by their protonation with DCl (Table 1). The N-methyl resonance furthest upfield should correspond to the pyrimidine ring with the (2hydroxyethylamino) group attached. In contrast, the ring bearing no substituent at C-2 or C-6 should exhibit a downfield shift for either the N-methyl or N-benzyl methylene resonance. Protonation of the pyrimido[5,4- d]pyrimidine system (most likely on an endocyclic nitrogen) resulted in a downfield shift of all resonances and especially the resonance for $\mathrm{H}-2 / \mathrm{H}-6$.

Proof of the structure of $\mathbf{1 2 b i i}$, and hence 12bi, was obtained by X-ray crystal structure analysis which confirmed compound 12bii as the C-2 isomer (for data see Fig. 2). Two conformers,

Fig. 2 The anti (a) and gauche (b) conformers observed in the crystal structure of $\mathbf{1 2 b i i}$.
anti and gauche with respect to the $\mathrm{N}(14)-\mathrm{C}(26)$ (Fig. 2a) and $\mathrm{N}(7)-\mathrm{C}(10)$ (Fig. 2b) bonds, were observed in the crystallographic asymmetric unit of the structure. These are linked together by a network of hydrogen bonds involving all eight potential $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ donors, with N atoms of the pyrimido $[5,4-d$]pyrimidine systems as acceptors, $\mathrm{O} \cdots \mathrm{N}$ and $\mathrm{N} \cdots \mathrm{N}$ distances ranging from 2.72 to $3.17 \AA$. There is also approximately parallel stacking of pyrimido[5,4-d]pyrimidine and phenyl rings in various directions in the crystal structure. This combination of hydrogen bonding and hydrophobic stacking interactions may help to explain the poor solubility of the pyrimido[5,4- d]pyrimidine analogues.

All of the exocyclic $\mathrm{C}-\mathrm{N}$ bonds connecting to the pyrimido-$[5,4-d]$ pyrimidine ring are relatively short [$c a .1 .34 \AA: \mathrm{N}^{14}-\mathrm{C}^{25}$ (1.333), $\mathrm{N}^{10}-\mathrm{C}^{21}$ (1.333), $\mathrm{N}^{8}-\mathrm{C}^{19}$ (1.355); atom numbers refer to the crystal structure assignment], and are approximately the same length as the carbon-carbon double bond of ethene (1.33 A), suggesting partial double bond character. These data are in accord with the observation of rotameric species in the ${ }^{1} \mathrm{H}$ NMR spectra of certain compounds, in particular $\mathbf{8}$ and $9 \mathbf{c}$. The spectra displayed two broad singlets for both the benzyl methylene and dimethylamino groups, each pair collapsing to a broad singlet upon heating the samples to coalescence. The corresponding figures for the C -alkyl- N bonds, by comparison, are greater [by $c a .0 .1 \AA: \mathrm{N}^{14}-\mathrm{C}^{26}(1.464), \mathrm{N}^{10}-\mathrm{C}^{22}(1.464)$, $\mathrm{N}^{8}-\mathrm{C}^{18}(1.450)$], as would be expected for a non-conjugated carbon-nitrogen single bond.

Inhibition of cyclin B/CDK1

Three initial series of pyrimido[5,4-d]pyrimidine analogues have been synthesised in order to determine the inhibitory potential of the pyrimido[5,4-d]pyrimidine pharmacophore against cyclin B/CDK1. The activity of the cyclin B/CDK1 complex, in the presence of seven selected pyrimido $[5,4-d]$ pyrimidines ($\mathbf{6 b} \mathbf{- 6 d}, \mathbf{7 c}, 7 \mathbf{d}, \mathbf{1 0 b i}, \mathbf{1 2 b i}$), was measured by its ability to phosphorylate a cellular substrate using radiolabelled ${ }^{32} \mathrm{P}$ ATP. ${ }^{10}$ Difficulties were encountered in obtaining accurate data because of the low solubility of all of the compounds in aqueous media. This necessitated the inclusion of either 1% or 10% DMSO in the assay medium, although even with 10% DMSO some compounds could not be assayed at a concentration of $100 \mu \mathrm{M}$. It should be noted that a $10 \mu \mathrm{M}$ concentration of the reference standard olomoucine gave 64% inhibition ($\mathrm{IC}_{50} 9 \mu \mathrm{M}$; note IC_{50} is the concentration of drug required to reduce the activity of the enzyme by 50%) in 1% DMSO, whereas the same concentration of drug in 10% DMSO gave 31% inhibition. The results indicated that none of the pyrimido[5,4-d] pyrimidines tested exhibited significant activity (i.e. $\mathrm{IC}_{50}<100 \mu \mathrm{M}$) against cyclin $\mathrm{B} / \mathrm{CDK} 1$.

Conclusions

The work described in this paper has shown how reactions of 2,4,6,8-tetrachloropyrimido[5,4- d] pyrimidine with nucleophiles can be controlled to give structurally characterised tetrasubstituted pyrimido[5,4-d]pyrimidines with abab, abac or abcd substitution patterns. The methodology described in this paper should facilitate the design of pyrimido [5,4-d]pyrimidine analogues, which are more soluble in aqueous media and more active as CDK inhibitors. Furthermore, the results presented indicate how combinatorial approaches could be used for the development of biologically active compounds based on the pyrimido[5,4-d]pyrimidine scaffold.

Experimental

All techniques were performed as described in earlier work, ${ }^{11}$ except where indicated below. Combustion analyses were carried out on a Carlo-Erba Instrumentazione 1106 analyser
or by Butterworths Laboratories Ltd, 54-56 Waldergrave Road, Teddington, Middlesex, UK TW11 8LG. All proton and carbon nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR) spectra were obtained in deuteriated dimethyl sulfoxide (d_{6}-DMSO) except where indicated and exchangeable protons were validated using a deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)$ 'shake'. Carbon spectra were recorded using a Bruker AMX 500 spectrometer and are broad band decoupled. The following abbreviations are used to describe peak patterns in proton spectra: $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet; and combinations thereof, e.g. dd (double doublet)

The general starting material 2,4,6,8-tetrachloropyrimido-[5,4-d]pyrimidine and all products derived from the pyrimido[5,4-d]pyrimidine nucleus were protected from direct light sources due to their potential photosensitive nature. ${ }^{9}$ Tetrahydrofuran was distilled from sodium and benzophenone, and used immediately. Benzylamine was dried over calcium hydride and distilled. Dimethylacetamide was dried over barium oxide and distilled. Distilled solvents were stored over $4 \AA$ molecular sieves under an inert gas atmosphere. ${ }^{12}$

2,4,6,8-Tetrachloropyrimido[5,4-d] pyrimidine $\mathbf{3}^{4}$

A solution containing 5 -aminoorotic acid $\dagger(1.06 \mathrm{~g}, 6.19 \mathrm{mmol})$ potassium cyanate ($2.54 \mathrm{~g}, 31.36 \mathrm{mmol}$) and ammonium chloride ($3.35 \mathrm{~g}, 63.2 \mathrm{mmol}$) in water (19 ml) was stirred for 0.5 h . The mixture was heated to $140^{\circ} \mathrm{C}$ whilst the water was allowed to evaporate, giving a thick paste. Heating the paste at $210^{\circ} \mathrm{C}$ for 0.5 h gave a beige solid which was cooled, triturated with water and filtered. After drying, the solid was added to a boiling solution of sodium hydroxide ($0.1 \mathrm{M}, 125 \mathrm{ml}$), and the yellow solution was left to cool. The product was removed by filtration to yield pale orange crystals, which were dried and used directly ($0.88 \mathrm{~g}, 73 \%$). 3,7-Disodio-1,5-dihydropyrimido-[5,4-d]pyrimidine-2,4,6,8-($3 H, 7 H$)-tetraone ($6.0 \mathrm{~g}, 25 \mathrm{mmol}$) was mixed with phosphorus oxychloride (250 ml) and phosphorus pentachloride (30 g) under nitrogen and refluxed for 15 h. Phosphorus oxychloride was removed by short-path distillation to give a brown solid to which crushed ice $(350 \mathrm{ml})$ was added. The slurry was filtered and the remaining brown solid was dried and extracted with chloroform using a Soxhlet apparatus. Removal of the solvent in vacuo gave the product as a pale yellow powder which was used directly ($3.44 \mathrm{~g}, 51 \%$); $\lambda_{\max } / \mathrm{nm} 329$ (7400), 282 (2800), 258 (12300); EIMS m / z $274(M+6,11 \%), 272(M+4,49), 270(M+2,100), 268$ $\left(\mathrm{M}^{+}, 83\right)$.

4-Benzylamino-2,6,8-trichloropyrimido[5,4- d]pyrimidine 8

To TCPP ($0.10 \mathrm{~g}, 0.37 \mathrm{mmol})$ and potassium carbonate $(0.10 \mathrm{~g}$, $0.74 \mathrm{mmol})$ in THF (6 ml), stirred under nitrogen at $-78^{\circ} \mathrm{C}$, was added benzylamine ($0.04 \mathrm{~g}, 0.42 \mathrm{mmol}$) in THF (6 ml) dropwise from a syringe at a rate of 1 ml per min. A cloudy yellow solution was obtained which was allowed to warm up for 10 min . Addition of an excess of water gave a fine yellow precipitate which was extracted with ethyl acetate. After drying of the organic extract over MgSO_{4}, removal of the solvent gave a yellow glass. Trituration with petrol, filtration and drying in vacuo gave the title compound as a pale yellow solid, which was used without further purification $(0.09 \mathrm{~g}, 72 \%)$; $\delta_{\mathrm{H}} 4.69-$ $4.72\left(2 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.72-4.81(2 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2} \mathrm{~N}\right), 7.31-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 9.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right), 10.19\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right) ; m / z 345$ ($\mathrm{M}+6$, $3 \%), 343(\mathrm{M}+4,23), 341(\mathrm{M}+2,73), 339\left(\mathrm{M}^{+}, 79\right), 308(3)$, 306 (12), 304 (18), 233 (40), 91 (100). Calculated for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{Cl}_{3}: m / z 338.98$. Found 338.98.

[^0]Synthesis of abab substituted-pyrimido[5,4-d]pyrimidines ($\mathrm{a}=$ NHR, $\mathbf{b}=\mathbf{C l}$); standard procedure A
To TCPP ($2.90-7.40 \mathrm{mmol}$) in dry THF ($50-60 \mathrm{ml}$) stirred under N_{2} at $25^{\circ} \mathrm{C}$, was added an appropriate amine (4.0 mol equiv. or 2.1 mol equiv. with 2.40 equiv. potassium carbonate). The resulting suspension was agitated for 20 min . Addition of water $(80 \mathrm{ml})$ precipitated the product. The solid was filtered off, washed with water and dried. The resulting product was either used as such or recrystallised from hot ethyl acetate.

4,8-Bis(benzylamino)-2,6-dichloropyrimido[5,4- d]pyrimidine 6a. TCPP ($2.0 \mathrm{~g}, 7.40 \mathrm{mmol}$), benzylamine ($3.23 \mathrm{~g}, 3.24 \mathrm{ml}$, 29.60 mmol) and dry THF (60 ml) were mixed according to standard procedure A. Recrystallisation from hot ethyl acetate gave the title compound as a fine yellow powder $(2.10 \mathrm{~g}, 69 \%)$; mp 229-230 ${ }^{\circ} \mathrm{C}$ [lit., $\left.{ }^{7} 228-229^{\circ} \mathrm{C}\right]: \lambda_{\text {max }} / \mathrm{nm} 348$ (14516), 341 (11262), 304 (23950), 218 (21573); $\delta_{\mathrm{H}} 4.74(4 \mathrm{H}, \mathrm{d}, J 6.1 \mathrm{~Hz}$, $\mathrm{ArCH}_{2} \mathrm{NH}$), 7.32-7.47 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 9.40 (2 H , br s, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right)$; $\delta_{\mathrm{C}}(200 \mathrm{MHz}) 43.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 127.0,127.4,128.3$, 132.2, 138.2, 155.4, 159.1.

2,6-Dichloro-4,8-bis(4-methoxyanilino)pyrimido[5,4-d]-

pyrimidine 7a. TCPP ($0.80 \mathrm{~g}, 2.96 \mathrm{mmol}$), potassium carbonate $(1.0 \mathrm{~g}, 7.24 \mathrm{mmol})$ and $4-m e t h o x y a n i l i n e ~(~ 0.76 \mathrm{~g}, 6.20 \mathrm{mmol})$ were mixed in THF (50 ml) according to standard procedure A to yield the title compound as a crude yellow solid (0.80 g , $62 \%) ; \delta_{\mathrm{H}} 3.88(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{MeO}), 7.01-7.12(4 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}$, $\left.\mathrm{Ar}-H^{3 / 5}\right), 7.80-7.84\left(4 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \operatorname{Ar}-H^{2 / 6}\right) ; m / z 442\left(\mathrm{M}^{+}\right.$, 20%), 427 (10).

Reaction of 4-benzylamino-2,6,8-trichloropyrimido[5,4-d]pyrimidine (8) with amines; standard procedure B

To a stirred solution of 4-benzylamino-2,6,8-trichloropyrimido-$[5,4-d]$ pyrimidine $(0.077 \mathrm{M})$ in dry THF $(13 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of the appropriate amine ($>2.0 \mathrm{~mol}$ equiv.) in THF (13 ml) over a 10 min period. In all cases a precipitate formed and the suspension was left to stir for $10-30 \mathrm{~min}$. Water (20 ml) was added and the THF was removed in vacuo. Purification of the product was achieved either by filtration and washing with water or by extraction with ethyl acetate. The crude material was dried and the product was either used directly or purified by silica column chromatography.

8-Amino-4-benzylamino-2,6-dichloropyrimido[5,4-d]-

pyrimidine 9a. Aqueous ammonia (4.0 ml) in THF (12 ml) was added to 4-benzylamino-2,6,8-trichloropyrimido[5,4- d]pyrimidine $\mathbf{8}(0.23 \mathrm{~g}, 0.69 \mathrm{mmol})$ in THF (12 ml) according to standard procedure B. Filtration of the reaction mixture, followed by washing with water and drying, gave the title compound as a beige solid $(0.10 \mathrm{~g}, 46 \%)$; $\delta_{\mathrm{H}} 4.69-4.72(2 \mathrm{H}$, d, $J 6.0 \mathrm{~Hz}, \operatorname{ArCH}_{2} \mathrm{NH}$), 7.31-7.41 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H$), 8.29 $\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H_{2}\right), 9.32\left(1 \mathrm{H}, \mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N} H\right) ; m / z 320\left(\mathrm{M}^{+}\right.$, 95%), 91 (100). Calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{Cl}_{2}$: m/z 320.0. Found 320.0.

4-Benzylamino-2,6-dichloro-8-methylaminopyrimido[5,4-d]pyrimidine 9b. 4-Benzylamino-2,6,8-trichloropyrimido[5,4- d]pyrimidine $8(0.30 \mathrm{~g}, 0.88 \mathrm{mmol})$, THF (12 ml) and ethanolic methylamine (33%, 0.8 ml) in THF (12 ml) were mixed according to standard procedure B. Purification of the crude product by extraction into ethyl acetate, followed by chromatography employing 12% ethyl acetate-petrol as eluent, gave the title compound as a white powder ($0.12 \mathrm{~g}, 41 \%$); $\delta_{\mathrm{H}} 3.03(3 \mathrm{H}, \mathrm{d}$, $J 4.2 \mathrm{~Hz}, \mathrm{NHCH}_{3}$), 4.73 ($2 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{NH}$), $7.32-$ $7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 8.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H \mathrm{CH}_{3}\right), 9.37(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right) ; m / z 334$ ($\mathrm{M}^{+}, 100 \%$), 299 (10), 91 (70). Calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{Cl}_{2}: m / z$ 334.0. Found 334.0.

4-Benzylamino-2,6-dichloro-8-dimethylaminopyrimido[5,4-d]pyrimidine 9c. Ethanolic dimethylamine ($0.5 \mathrm{ml}, 33 \%$) in THF (2 ml) was added to 4-benzylamino-2,6,8-trichloropyrimido[$5,4-d$] pyrimidine $8(0.05 \mathrm{~g}, 0.15 \mathrm{mmol})$ in THF (2 ml) according to standard procedure B. Filtration of the reaction mixture followed by washing with water and drying gave the title compound as a beige solid $(0.04 \mathrm{~g}, 67 \%)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.30-3.90(6 \mathrm{H}$, br d, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 4.74-4.76\left(2 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{NH}\right)$, 7.25-7.60 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H \times 5$); m/z 348 ($\mathrm{M}^{+}, 61 \%$), 304 (20), 106 (77), 91 (100). Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{Cl}_{2}: m / z 348.1$. Found 348.1.

4-Benzylamino-2,6-dichloro-8-piperidinopyrimido[5,4- d]-

pyrimidine 9d. 4-Benzylamino-2,6,8-trichloropyrimido[5,4d] pyrimidine $8(0.13 \mathrm{~g}, 0.37 \mathrm{mmol})$, THF (5 ml) and piperidine ($0.04 \mathrm{~g}, 0.44 \mathrm{mmol}$) in THF (5 ml) were mixed according to standard procedure B. Extraction with ethyl acetate, drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and removal of the solvent in vacuo gave the title compound as a crude solid ($0.09 \mathrm{~g}, 63 \%$); $\delta_{\mathrm{H}} 1.76(6 \mathrm{H}$, br s, $\left.\left.-\left(\mathrm{CH}_{2}\right)_{3}\right)^{-}\right), 4.30\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 4.72-4.75(2 \mathrm{H}, \mathrm{d}, J 6.4$ $\left.\mathrm{Hz}, \mathrm{ArCH}_{2} \mathrm{NH}\right), 7.32-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 9.35(1 \mathrm{H}, \mathrm{t}, J 6.4$ $\left.\mathrm{Hz}, \mathrm{ArCH}_{2} \mathrm{~N} H\right) ; \mathrm{m} / \mathrm{z} 392(\mathrm{M}+4,9 \%), 390(\mathrm{M}+2,50), 388$ ($\mathrm{M}^{+}, 75$), 297 (8), 106 (20), 91 (90), 84 (100). Calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{Cl}_{2}: m / z$ 388.1. Found 388.1.

Reaction of $a b a b$ and $a b c c$ substituted-pyrimido[5,4-d]-

 pyrimidines with ethanolamine (mono substitution); standard procedure \mathbf{C}To the appropriate 2,6-dichloro-4,8-disubstituted-pyrimido-[5,4- d]pyrimidine ($0.15-1.13 \mathrm{mmol}$) in THF ($5-12 \mathrm{ml}$) under nitrogen was added ethanolamine $(1.25-10 \mathrm{ml})$. The resultant yellow solution was heated at $65^{\circ} \mathrm{C}$ for $2-6 \mathrm{~h}$ (unless stated otherwise), over which period a fine precipitate of ethanolamine hydrochloride formed. The suspension was cooled and water (50 ml) was added, precipitating the product and dissolving the salt. The resultant mixture was filtered, to give an off-white solid which was retained. The filtrate was extracted with ethyl acetate and the organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated, producing a secondary yield of product. Column chromatography and/or recrystallisation from a suitable solvent afforded the desired compound.

4,8-Bis(benzylamino)-6-chloro-2-(2-hydroxyethylamino)-pyrimido[5,4- \boldsymbol{d}]pyrimidine 6c. 4,8-Bis(benzylamino)-2,6-dichloropyrimido[5,4-d]pyrimidine $\mathbf{6 a}(0.31 \mathrm{~g}, 0.74 \mathrm{mmol})$, dry THF (12 ml) and ethanolamine ($3.0 \mathrm{ml}, 48 \mathrm{mmol}$) were heated at $75^{\circ} \mathrm{C}$ for 6 h following standard procedure C . The product was obtained by recrystallisation from hot ethyl acetate to yield the title compound as a fine white powder $(0.12 \mathrm{~g}, 61 \%)$; $\operatorname{mp} 180-181^{\circ} \mathrm{C}: v_{\text {max }} / \mathrm{cm}^{-1} 3584(\mathrm{NH}), 3354(\mathrm{OH}), 3029(\mathrm{CH})$, $2936(\mathrm{CH}), 1590,1568,1534,1508 ; \delta_{\mathrm{H}} 3.50(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.75\left(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH} \times 2, \mathrm{CH}_{2} \mathrm{OH}\right), 6.81$ (1 H , br s, $\left.\mathrm{CH}_{2} \mathrm{~N} H\right), 7.41(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 8.44(2 \mathrm{H}$, br m, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 437(\mathrm{M}+2,19 \%), 435\left(\mathrm{M}^{+}, 60\right), 91$ (100) (Found: C $60.73 ; \mathrm{H} 4.95 ; \mathrm{N} 22.38 ; \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{ClO}$ requires: C 60.58; H 5.09; N 22.50\%).

6-Chloro-2-(2-hydroxyethylamino)-4,8-bis(4-methoxyanilino)-pyrimido[5,4-d] pyrimidine 7c. 2,6-Dichloro-4,8-bis(4-methoxyanilino) pyrimido[5,4- d]pyrimidine $7 \mathbf{a}(0.50 \mathrm{~g}, 1.13 \mathrm{mmol})$, THF $(10 \mathrm{ml})$ and ethanolamine $(10.12 \mathrm{~g}, 10 \mathrm{ml})$ were stirred for 2 h following standard procedure C. Recrystallisation from ethyl acetate gave the product as a yellow solid ($0.48 \mathrm{~g}, 91 \%$); mp $198-200{ }^{\circ} \mathrm{C}: \delta_{\mathrm{H}} 3.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.81\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 7.01-7.05$ $\left(3 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{Ar}-H^{3 / 5}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.09-7.14(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}$, $\left.\mathrm{Ar}-H^{3 / 5}\right), 7.83-7.87\left(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{Ar}-H^{2 / 6}\right), 7.99-8.04$ $\left(2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, \mathrm{Ar}-H^{2 / 6}\right), 9.50\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right)$;
$m / z 467\left(\mathrm{M}^{+}, 100 \%\right), 452$ (20), 436 (89) (Found: C 56.59; H 4.62; N 20.93; $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{7} \mathrm{O}_{3}$ requires: C 56.56; H 4.75; N 20.98%).

8-Amino-4-benzylamino-2-chloro-6-(2-hydroxyethylamino)-pyrimido[5,4- d]pyrimidine 10 ai and 8-amino-4-benzylamino-6-chloro-2-(2-hydroxyethylamino)pyrimido[5,4- d]pyrimidine 10aii. Following standard procedure C; 8-amino-4-benzylamino-2,6-dichloropyrimido[5,4- d]pyrimidine $9 \mathbf{9 a}(0.20 \mathrm{~g}, 0.63 \mathrm{mmol})$, THF (10 ml) and ethanolamine (5 ml) were stirred for 3 h . Purification of the crude product by column chromatography using 3% methanol-dichloromethane as eluent, followed by recrystallisation from ethyl acetate, gave a mixture of the title compounds as a yellow solid $(0.10 \mathrm{~g}, 47 \%) ; \mathrm{mp} 164-166^{\circ} \mathrm{C}$: $\delta_{\mathrm{H}} 3.46-3.57\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.70-4.78(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.79\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.31-7.48(6 \mathrm{H}$, $\mathrm{m}, \operatorname{Ar}-H, \mathrm{HN} H), 8.41(1 \mathrm{H}$, br s, $H \mathrm{NH}), 8.43(1 \mathrm{H}$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 345\left(\mathrm{M}^{+}, 60 \%\right), 329$ (15), 314 (45), 91 (100) (Found: C 52.18; H 4.48; $\mathrm{N} 27.99 ; \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{7} \mathrm{ClO}$ requires: C 52.17; H 4.67; N 28.39\%).

4-Benzylamino-2-chloro-6-(2-hydroxyethylamino)-4-methylaminopyrimido $[5,4-d$]pyrimidine 10 bi and 4-benzylamino-6-chloro-2-(2-hydroxyethylamino)-4-methylaminopyrimido[5,4-d]pyrimidine 10bii. 4-Benzylamino-2,6-dichloro-8-methylamino-pyrimido[5,4-d]pyrimidine $9 \mathbf{b}(0.50 \mathrm{~g}, 0.15 \mathrm{mmol})$, THF (5 ml) and ethanolamine $(1.25 \mathrm{ml})$ were stirred for 75 min according to standard procedure C. Column chromatography using 65% ethyl acetate-petrol as eluent gave a mixture of the title compounds as a white solid $(0.04 \mathrm{~g}, 65 \%) ; \mathrm{mp} 121-122^{\circ} \mathrm{C}: \delta_{\mathrm{H}} 2.97-$ 2.99 and $3.02-3.05\left(3 \mathrm{H}, 2 \times \mathrm{d}, J 4.7 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 3.56-3.62$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.68-4.70$ and $4.71-4.77(3 \mathrm{H}, 2 \times \mathrm{m}$, $\left.\left.\mathrm{ArCH}_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.75(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})_{3}\right), 7.31-7.48(5 \mathrm{H}$, $\mathrm{m}, \operatorname{Ar}-H), 7.86-8.02\left(1 \mathrm{H}\right.$, br d, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 8.38(1 \mathrm{H}$, br d, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 361(\mathrm{M}+2,8 \%), 359\left(\mathrm{M}^{+}, 22\right), 328$ (15), 91 (100) (Found: C 53.52; H 4.84; $\mathrm{N} 26.93 ; \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{ClO}$ requires: C 53.48; H 5.05; N 27.28\%).

4-Benzylamino-2-chloro-6-(2-hydroxyethylamino)-8-dimethyl-aminopyrimido[5,4-d]pyrimidine 10 ci and 4-benzylamino-6-chloro-2-(2-hydroxyethylamino)-8-dimethylaminopyrimido-
[5,4-d]pyrimidine 10cii. Following standard procedure C; 4-benzylamino-2,6-dichloro-8-dimethylaminopyrimido[5,4-d]pyrimidine $9 \mathrm{c}(0.30 \mathrm{~g}, 0.86 \mathrm{mmol})$, ethanolamine $(10 \mathrm{ml})$ and THF (10 ml) were stirred for 3 h . Purification by column chromatography using 2% methanol-dichloromethane, followed by 6% methanol-dichloromethane, produced a mixture of the title compounds as a white solid $(0.08 \mathrm{~g}$, $25 \%)$; mp $106-108^{\circ} \mathrm{C}: \delta_{\mathrm{H}} 3.50-3.63\left(10 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right), 4.68-4.77\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.78$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.32-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H), 8.50(1 \mathrm{H}$, m, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right) ; m / z 373\left(\mathrm{M}^{+}, 45 \%\right), 329$ (18), 91 (100) (Found: C 54.99; H 5.35; N 25.79; $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{7} \mathrm{ClO}$ requires: C 54.68; H 5.40; N 26.26\%).

[^1]
Reaction of $a b a b$ and $a b c c$ substituted-pyrimido[5,4-d]pyrimidines with ethanolamine (disubstitution); standard procedure D

The appropriate pyrimido[5,4- d]pyrimidine was slurried in ethanolamine $(2-5 \mathrm{ml})$ under nitrogen and heated at $80-120^{\circ} \mathrm{C}$ for $1-3$ days. After cooling the solution, water (20 ml) was added and an extraction was performed using ethyl acetate (100 $\mathrm{ml})$. The organic solvent was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and removed in vacuo. Purification of the crude product was achieved either by recrystallisation from hot ethyl acetate or by column chromatography on silica, to give the product as a pale yellow solid.

4,8-Bis(benzylamino)-2,6-bis(2-hydroxyethylamino)pyrimido-[5,4- \boldsymbol{d}]pyrimidine $\mathbf{6 b}$. Following standard procedure $\mathrm{D} ; 4,8-$ bis(benzylamino)-2,6-dichloropyrimido[5,4-d]pyrimidine $\quad \mathbf{6 a}$ $(0.10 \mathrm{~g}, 0.24 \mathrm{mmol})$ and ethanolamine $(2 \mathrm{ml})$ were heated at $120^{\circ} \mathrm{C}$ for 20 h . The crude solid was recrystallised from ethyl acetate, producing the title compound as yellow crystals ($0.08 \mathrm{~g}, 73 \%$); mp $223-224^{\circ} \mathrm{C}: v_{\max } / \mathrm{cm}^{-1} 3396(\mathrm{NH}), 3359$ $(\mathrm{OH}), 2919(\mathrm{CH}), 1564,1525 ; \delta_{\mathrm{H}} 3.55\left(8 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)$, $4.73\left(6 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH} \times 2, \mathrm{CH}_{2} \mathrm{OH}\right), 6.12(2 \mathrm{H}, \mathrm{t}, J 5.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N} H \times 2\right)$, $7.32-7.77(10 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-H), 8.15(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH}_{2} \mathrm{NH} \times 2$); m/z $460\left(\mathrm{M}^{+}, 100 \%\right.$) (Found: C 62.89; H 6.20; N 24.68; $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2}$ requires: C 62.57; H 6.13; N 24.34%).

4-Benzylamino-2,6-bis(2-hydroxyethylamino)-8-methylamino-pyrimido[5,4- \boldsymbol{d}]pyrimidine 11b. Following standard procedure D; 4-benzylamino-2,6-dichloro-8-methylaminopyrimido[5,4- d]pyrimidine $9 \mathbf{b}(0.02 \mathrm{~g}, 0.07 \mathrm{mmol})$ and ethanolamine $(5 \mathrm{ml})$ were heated at $80^{\circ} \mathrm{C}$ for 3 days. Purification using $6-10 \%$ methanoldichloromethane gave the title compound as a yellow solid $(0.13 \mathrm{~g}, 56 \%) ; \delta_{\mathrm{H}} 3.00-3.02\left(3 \mathrm{H}, \mathrm{d}, J 4.9 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right), 3.23-$ $3.75\left(8 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.68-4.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{NH}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH} \times 2\right), 6.05-6.12(1 \mathrm{H}, \mathrm{q}, J 4.9 \mathrm{~Hz}, \mathrm{NHCH} 3), 7.24-7.44$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H} \times 5, \mathrm{CH}_{2} \mathrm{NH} \times 2$), $7.68-7.74(1 \mathrm{H}, \mathrm{t}, J 5.6 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 386(\mathrm{M}+2,25 \%), 384\left(\mathrm{M}^{+}, 79\right), 91$ (100) (Found: C 56.64; H 6.18; N 29.13; $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}$ requires: C 56.24; H 6.29; N 29.15\%).

Reductive dehalogenation of $a b a c$ and $a b c d$ substituted-pyrimido[5,4- d]pyrimidines; standard procedure \mathbf{E}

The appropriate pyrimido[5,4- $d]$ pyrimidine ($0.23-1.10 \mathrm{mmol}$) in dry THF $(20-40 \mathrm{ml})$ was added under nitrogen to a pressure vessel containing $10 \% \mathrm{Pd} / \mathrm{C}(0.1-0.24 \mathrm{~g})$ and potassium hydroxide (3.86-6.07 equiv.). The flask was evacuated and charged with hydrogen before pressurising to 40 psi and agitating for 1-7 days. On completion, the flask contents were filtered through Celite and eluted with ethyl acetate $(100 \mathrm{ml})$. The solvent was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and removed in vacuo to produce a crude solid. Purification was achieved by recrystallisation from hot ethyl acetate (or ethyl acetate-petrol) and/or silica column chromatography using methanol-dichloromethane as eluents, to give the desired product as a white solid.

4,8-Bis(benzylamino)-2-(2-hydroxyethylamino)pyrimido-

[5,4-d]pyrimidine 6d. 4,8-Bis(benzylamino)-2-chloro-6-(2-hydroxyethylamino)pyrimido[5,4-d]pyrimidine $\mathbf{6 c}(0.10 \mathrm{~g}, 0.23$ $\mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}$ catalyst $(0.11 \mathrm{~g}), \mathrm{KOH}(0.05 \mathrm{~g})$ and THF (20 ml) were mixed for 20 h according to standard procedure E . Recrystallisation of the solid from hot ethyl acetate gave the title compound as a white powder $(0.04 \mathrm{~g}, 46 \%)$; mp 141$142{ }^{\circ} \mathrm{C}: v_{\max } / \mathrm{cm}^{-1} 3395(\mathrm{NH}), 3274(\mathrm{OH}), 3028(\mathrm{CH}), 2916$ (CH), 1585, 1568, 1537, 1516; $\delta_{\mathrm{H}} 3.00\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right)$, 4.72-4.82 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH} \times 2, \mathrm{CH}_{2} \mathrm{OH}\right), 6.65(1 \mathrm{H}$, br s, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 7.27-7.48(10 \mathrm{H}, \mathrm{m}$, Ar- H) , $8.00(1 \mathrm{H}$, br s , $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right), 8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{C}-H), 8.52\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{~N} H\right)$; $m / z 401\left(\mathrm{M}^{+}, 60 \%\right), 91$ (100) (Found: C 65.64; H 5.59; N 23.98; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}$ requires C 65.82 ; H 5.77; N 24.42%).

2-(2-Hydroxyethylamino)-4,8-bis(4-methoxyanilino)pyrimido-[5,4-d]pyrimidine 7d. Following standard procedure E; 6-chloro-2-(2-hydroxyethylamino)-4,8-bis(4-methoxyanilino)pyrimido-$[5,4-d]$ pyrimidine $7 \mathrm{c}(0.25 \mathrm{~g}, 0.50 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(0.24 \mathrm{~g})$, $\mathrm{KOH}(0.13 \mathrm{~g})$ and THF (40 ml) were agitated for 7 days. Purification by silica column chromatography using 4% methanoldichloromethane as eluent, followed by recrystallisation from ethyl acetate produced the title compound as a white solid (0.10 $\mathrm{g}, 45 \%) ; \mathrm{mp} 166-16{ }^{\circ} \mathrm{C}: \delta_{\mathrm{H}} 3.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 3.88$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 7.01-7.11 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-H^{3 / 5} \times 2, \mathrm{CH}_{2} \mathrm{~N} H\right), 7.92-7.96(2 \mathrm{H}, \mathrm{d}$, $\left.J 8.6 \mathrm{~Hz}, \mathrm{Ar}-H^{2,6}\right), 7.67-7.81\left(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{Ar}-H^{2,6}\right), 8.43$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{C}-H), 9.20\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 433\left(\mathrm{M}^{+}\right.$, 40%), 418 (10), 402 (20) (Found: C 61.12; H 5.16; N 22.37; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}$ requires: C 60.96; H 5.35; N 22.62%).

4-Benzylamino-6-(2-hydroxyethylamino)-8-methylaminopyrimido $[5,4-d$]pyrimidine 12 bi and 4 -benzylamino-2-(2-hydroxyethylamino)-8-methylaminopyrimido[5,4-d]pyrimidine 12bii. A mixture of 4-benzylamino-2-chloro-6-(2-hydroxyethyl-amino)-8-methylaminopyrimido[5,4-d]pyrimidine 10bi and 4-benzylamino-6-chloro-2-(2-hydroxyethylamino)-8-methylaminopyrimido $[5,4-d]$ pyrimidine $10 \mathrm{bii}(0.40 \mathrm{~g}, 1.10 \mathrm{mmol})$, $10 \% \mathrm{Pd} / \mathrm{C}(0.20 \mathrm{~g}), \mathrm{KOH}(0.34 \mathrm{~g})$ and THF (40 ml) were agitated for 72 h according to standard procedure E. Purification by column chromatography using 70-90\% ethyl acetatepetrol gave a mixture of the title compounds as a white solid ($0.15 \mathrm{~g}, 42 \%$); mp $142-144{ }^{\circ} \mathrm{C} ; m / z 325\left(\mathrm{M}^{+}, 50 \%\right), 219(90), 91$ (100%). Repeated chromatography gave homogeneous samples (LCMS analysis) of the title compounds from the early and late column fractions.

12bi (white solid): $\delta_{\mathrm{H}} 2.97\left(3 \mathrm{H}\right.$, distorted d, $\left.J 5 \mathrm{~Hz}, \mathrm{NHCH}_{3}\right)$, 3.5-3.6 (4 H, m, $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.66(1 \mathrm{H}$, br t, $J 5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH}\right), 6.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}\right)$, 7.3-7.4 (5 H, m, Ar-H), 7.9-8.0 ($2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH}$ and $\left.\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}\right), 8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{C}-H)$ [note on addition of $\mathrm{D}_{2} \mathrm{O}$, the resonances at 4.66 and $7.9-8.0$ disappeared, whilst those at 2.97 and 4.76 collapsed to singlets] (Found: C 58.95; H 5.78; N 29.64; $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}$ requires: C 59.06; H 5.89; $\mathrm{N} \mathrm{30.13} \mathrm{\%)}$.

12bii (yellow solid): $\delta_{\mathrm{H}} 3.03$ (3 H , distorted d, $J 5 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{3}\right), 3.5-3.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}\right), 4.66(1 \mathrm{H}, \mathrm{m}$, $\left.\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH}\right), 6.6(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})_{3}\right), 7.3-$ $7.4(5 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-H), 7.5(1 \mathrm{H}$, br m, N$H), 8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{C}-H)$, $8.4(1 \mathrm{H}$, br $\mathrm{m}, \mathrm{N} H)$ [note on addition of $\mathrm{D}_{2} \mathrm{O}$, the resonances at 4.66 and 7.9-8.0 disappeared, whilst those at 2.97 and 4.76 collapsed to singlets] (Found: C 58.95; H 5.78; N 29.64; $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}$ requires: C 59.06; H 5.89; N 30.13%).

X-Ray crystallography

Crystal data for $\mathbf{1 2 b i i}: \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}, M=325.4$, orthorhombic, space group $P b c n, a=38.754(8), b=7.9580(16), c=20.954$ (4) $\AA, V=6462(2) \AA^{3}, Z=16(2$ independent molecules in the asymmetric unit), synchrotron radiation $(\lambda=0.6889 \AA),{ }^{13}$ $T=160 \mathrm{~K}$; conventional $R\left(F, F^{2}>2 \sigma\right)=0.0558, R_{\mathrm{w}}\left(F^{2}\right.$, all data $)=0.1386$ for 460 parameters and 6638 unique data. Programs: standard Bruker diffractometer control and integration software, and SHELXTL. ${ }^{14}$ CCDC reference number(s) 161624. See http://www.rsc.org/suppdata/p1/b1/b102224p/ for crystallographic files in .cif or other electronic format.

Acknowledgements

We thank the EPSRC and AstraZeneca Pharmaceuticals for funding this research.

References

1 C. E. Arris, F. T. Boyle, A. H. Calvert, N. J. Curtin, J. A. Endicott, E. F. Garman, A. E. Gibson, B. T. Golding, S. Grant, R. J. Griffin, P. Jewsbury, L. N. Johnson, A. M. Lawrie, D. R. Newell, M. E. M.

Noble, E. A. Sausville, R. Schultz and W. Yu, J. Med. Chem., 2000, 43, 2797.
2 W. F. De Azvedo, S. Leclerc, L. Meijer, M. Strnad and S.-H. Kim, Eur. J. Biochem., 1997, 243, 518.
3 U. Schulze-Gahmen, J. Brandson, H. D. Jones, D. O. Morgan, L. Meijer, J. Vesely and S.-H. Kim, Proteins: Struct., Funct., Genet., 1995, 22, 378.
4 F. G. Fischer and J. Roch, Liebigs Ann. Chem., 1951, 572, 217.

5 (a) H. W. Palst, Med. Klinik, 1959, 54, 257; (b) P. Luger and J. Roch, Acta Crystallogr. Sect, C: Cryst. Struct. Commun., 1983, 39, 1454; (c) J. L. Ambrus, I. Stadler, M. Kulaylat, A. Koreshi and S. Akhtar, J. Medicine, 1996, 27, 21.

6 K. Thomae GmbH, Br. Pat. 807,206, 1959 (Chem. Abstr., 1959, 53, 12317).

7 H. C. Barlow, K. J. Bowman, N. J. Curtin, A. H. Calvert, B. T.

Golding, B. Huang, P. J. Loughlin, D. R. Newell, P. G. Smith and R. J. Griffin, Bioorg. Med. Chem. Lett., 2000, 10, 585.

8 P. N. Rylander, Catalytic hydrogenation in organic synthesis, Academic Press, New York, 1979, 235.
9 K. Kigasawa, S. Shimizu, K. Ohkubo, S. Hayashida and K. Ohkubo, J. Pharm. Soc. Jpn., 1984, 104, 1191.

10 V. Rialet and L. Meijer, Anticancer Res., 1991, 11, 1581.
11 B. T. Golding, A. Mitchinson, W. Clegg, M. R. J. Elsegood and R. J. Griffin, J. Chem. Soc., Perkin Trans. 1, 1999, 349.
12 W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemicals, Butterworth Heinemann Press, Oxford, 4th edn., 1996.

13 W. Clegg, M. R. J. Elsegood, S. J. Teat, C. Redshaw and V. C. Gibson, J. Chem. Soc., Dalton Trans., 1998, 3037.
14 G. M. Sheldrick, SHELXTL manual, version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.

[^0]: \dagger The IUPAC name for orotic acid is 2,6-dioxo-1,2,3,6-tetrahydro pyrimidine-4-carboxylic acid

[^1]: 4-Benzylamino-2-chloro-6-(2-hydroxyethylamino)-8-piper-idinopyrimido[5,4-d]pyrimidine 10 di and 4-benzylamino-6-chloro-2-(2-hydroxyethylamino)-8-piperidinopyrimido[5,4-d]pyrimidine 10dii. Following standard procedure C; 4-benzyl-amino-2,6-dichloro-8-piperidinopyrimido[5,4-d]pyrimidine 9d $(0.09 \mathrm{~g}, 0.23 \mathrm{mmol})$, THF (6 ml) and ethanolamine $(1.50 \mathrm{ml})$ were stirred for 5 h . Purification by column chromatography using $40-50 \%$ ethyl acetate-petrol produced a mixture of the title compound as a crude yellow solid $(0.05 \mathrm{~g}, 56 \%) ; \delta_{\mathrm{H}} 1.73$ $\left(6 \mathrm{H}, \mathrm{br} \mathrm{s},-\left(\mathrm{CH}_{2}\right)_{3}-\right), 3.36-3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 3.57-3.60$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $4.36\left(4 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 4.67-4.75(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.85\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.31-7.45(5 \mathrm{H}$, $\mathrm{m}, \operatorname{Ar}-H), 8.36\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{ArCH}_{2} \mathrm{NH}\right) ; m / z 413\left(\mathrm{M}^{+}, 43 \%\right), 382$ (15), 106 (10), 91 (100), 84 (30).

