Contents lists available at SciVerse ScienceDirect

**Bioorganic & Medicinal Chemistry Letters** 

journal homepage: www.elsevier.com/locate/bmcl



# Structure–activity relationship studies of S1P agonists with a dihydronaphthalene scaffold

Haruto Kurata<sup>a,\*</sup>, Kensuke Kusumi<sup>a</sup>, Kazuhiro Otsuki<sup>a</sup>, Ryo Suzuki<sup>a</sup>, Masakuni Kurono<sup>a</sup>, Natsuko Tokuda<sup>a</sup>, Yuka Takada<sup>b</sup>, Hiroki Shioya<sup>b</sup>, Hirotaka Mizuno<sup>b</sup>, Takaki Komiya<sup>b</sup>, Takeji Ono<sup>b</sup>, Hiroshi Hagiya<sup>b</sup>, Masashi Minami<sup>b</sup>, Shinji Nakade<sup>b</sup>, Hiromu Habashita<sup>a,\*</sup>

<sup>a</sup> Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
<sup>b</sup> Exploratory Research Laboratories, Ono Pharmaceutical Co., Ltd, 17-2 Wadai Tsukuba, Ibaragi 300-4247, Japan

#### ARTICLE INFO

Article history: Received 21 September 2011 Revised 10 November 2011 Accepted 14 November 2011 Available online 20 November 2011

Keywords: S1P agonist Immunomodulator Dihydronaphthalene

#### ABSTRACT

Structure–activity relationship (SAR) of sphingosine–1-phosphate receptor agonists with a dihydronaphthalene scaffold was investigated. Compound **1** was modified to improve  $S1P_1$  agonistic activity and in vivo peripheral lymphocyte lowering (PLL) activity without impairing selectivity over  $S1P_3$  agonistic activity. A detailed SAR study of the terminal lipophilic part revealed that the introduction of substituents on the propylene linker and the terminal benzene ring influences in vitro and PLL activities. Compound **6n** bearing a (*S*)-methyl group at the 2-position on the propylene linker and chlorine at the *para*–position on the terminal benzene ring showed potent hS1P<sub>1</sub> agonistic activity with excellent selectivity over hS1P<sub>3</sub> and in vivo PLL activity in mice.

© 2011 Elsevier Ltd. All rights reserved.

Sphingosine-1-phosphate (S1P) exerts a variety of biological activities including vascular maturation and cell survival.<sup>1</sup> S1P is the natural ligand of a specific family of G-protein coupled receptors known as S1P<sub>1-5</sub>. A significant achievement in the S1P research field was published in 2002 by Lynch and co-workers. They reported that FTY720 (Fingolimod, Fig. 1), which was developed as a novel immunomodulator<sup>2</sup> and was recently approved in several countries for the treatment of multiple sclerosis, is metabolized across species to a monophosphate ester, which can activate four S1P receptors  $(S1P_{1,3-5})$  to sequester lymphocytes from circulation to a secondary lymph tissue compartment.<sup>3</sup> It was also reported that S1P<sub>1</sub> is essential for lymphocyte recirculation since S1P1 modulates egress from thymus and peripheral lymphoid organs.<sup>4</sup> On the other hand, in rodents, S1P<sub>3</sub> agonism is not related to lymphocyte recirculation but instead is linked to bradycardia.<sup>5</sup> Asymptomatic bradycardia was also observed in clinical studies with FTY720.<sup>6</sup> Hence agonists with selectivity for S1P<sub>1</sub> over S1P<sub>3</sub> are desired. Herein, we report our efforts to identify orally active S1P1 agonists which are selective over S1P3 with good oral bioavailability in rats.

In a previous report,<sup>7</sup> we described the identification of dihydronaphthalene derivative **1** as a potential scaffold with good  $S1P_1$  agonist activity, selectivity over  $S1P_3$  and in vivo efficacy. Oral administration of **1** in mice induced peripheral lymphocyte lowering (PLL) with a 50% effective dose (ED<sub>50</sub>) of 0.16 mg/kg at 4 h and 1.9 mg/kg at 24 h after oral dosing (Fig. 2).<sup>8</sup> Therefore, we decided to investigate the structure–activity relationship around **1** to improve the S1P<sub>1</sub> agonistic activity and in vivo efficacy without impairing selectivity over S1P<sub>3</sub>.

Compounds were synthesized as shown in Schemes 1–4. Compound **6a** was prepared by a linear synthetic procedure as described in a previous report.<sup>7</sup> 6-Hydroxytetralone **2** was treated with 3-phenylpropyl bromide in the presence of potassium carbonate in DMF to yield 6-(3-phenylpropyloxy)tetralone **3a** in 94% yield. The methyl group was incorporated using a methyl Grignard reagent to the ketone **3a** to yield tetrahydronaphthalenole **4**. Treat-



Figure 1. Structure of FTY720 (Fingolimod) and major metabolite.



Figure 2. Structure and pharmacological profiles of dihydronaphthalene derivative 1.

<sup>\*</sup> Corresponding authors. Tel.: +81 75 961 1151; fax: +81 75 962 9314. *E-mail address*: h.kurata@ono.co.jp (H. Kurata).



Scheme 1. Reagents: (a) Ph(CH<sub>2</sub>)<sub>3</sub>Br, K<sub>2</sub>CO<sub>3</sub>, DMF; (b) MeMgBr/Et<sub>2</sub>O, THF; (c) POCl<sub>3</sub>, DMF, CH<sub>2</sub>Cl<sub>2</sub>; (d) (i) 3-azetidine carboxylic acid, NaOH (powder), HC(OMe)<sub>3</sub>, MeOH, THF; (ii) NaBH<sub>4</sub>; (e) HCl-aq, THF.

ment of alcohol **4** with Vilsmeier reagent generated by POCl<sub>3</sub> in DMF yielded dihydronaphthalene-2-carboaldehyde **5a** via dehydration in situ in 42% yield from **3a**.<sup>9</sup> Aldehyde **5a** was treated with 3-azetidine carboxylic acid **9** in the presence of NaOH powder and methyl orthoformate. The resulting iminium salt was reduced in situ by sodium borohydride to yield the amino acid,<sup>10</sup> which was subsequently treated with HCl-aq to be prepared as the HCl salt **6a** in 46% yield (Scheme 1).

Compounds **6c–6n** were prepared by a convergent synthetic procedure using phenol-aldehyde **8** as a key intermediate. First, intermediate **8** was prepared by modifying the method of Scheme 1. 6-Benzyloxy tetralone **3b** was obtained by a similar procedure to **3a** in 87% yield. The methyl group at 1-position of dihydronaphthalene was incorporated by addition of a methyl Grignard reagent followed by dehydration with aqueous HCl to yield 6-benzyloxy dihydronaphthalene **7** in 38% yield. The benzyl group of compound **5b**, which was obtained in 62% yield from **7** by a similar procedure to aldehyde **5a**, was removed in TFA in the presence of thioanisole to yield the key intermediate **8** in 59% yield (Scheme 2).

The phenylpropyl moiety was incorporated into the phenol part of the key intermediate **8** by Mitsunobu reaction with the corresponding alcohol **12c–12n** to yield aldehydes **5c–5n** in 27% to quantitative yield. Finally, the amino acid moiety was incorporated by two procedures. Compounds **6c–6i** were obtained from **5c–5i** by a similar procedure to **6a** in 34–58% yield. Compounds **5j–5n** were treated with 3-azetidine carboxylic acid methyl ester hydrochloride **10** in the presence of sodium triacetoxyborohydride to yield the corresponding 3-azetidine carboxylates in 37–94% yield, which were converted by saponification to amino acids **6j–6n** in 42–89% yield (Scheme 3).

Since only 4-phenylbutan-2-ol **12h** was commercially available, the remaining corresponding alcohols **12c–12g** and **12i–12n** were



Scheme 3. Synthesis of 6c–6n. Reagents: (a) the corresponding alcohol 12c–12n, DEAD (for 12c and 12e) or TMAD (for 12d and 12f–12n), PPh<sub>3</sub>, THF; (b) 3-azetidine carboxylic acid 9, NaOH (powder), MeOH, THF, HC(OMe)<sub>3</sub>; (ii) NaBH<sub>4</sub>; (c) HCl-aq, THF; (d) 3-azetidine carboxylic acid methyl ester 10, NaBH(OAC)<sub>3</sub>, Et<sub>3</sub>N/THF (for 5j and 5n) or AcOH/DMF (for 5k–5m); (e) NaOH-aq, MeOH; (f) SOCl<sub>2</sub>, MeOH.

prepared as shown in Scheme 4. 3-Phenylpropanoic acids **11c–11g** were treated with a BH<sub>3</sub> THF complex to yield alcohols **12c–12g** in 57% to quantitative yield. Ethyl ester **13** was treated with LiAlH<sub>4</sub> to yield alcohols **12i** in 94% yield. Evans' chiral oxazolidinone auxiliary<sup>11</sup> **15S** was treated with *n*-BuLi followed by acid chloride **14j** to yield 3'-acyloxazolidinone **16j** (4'-S) in quantitative yield, which was treated with sodium hexamethyldisilazane (NaHMDS) followed by *p*-fluorobenzyl bromide to yield 2-benzylated-3'-acyloxazolidinone **17j** (2-*R*, 4'-S) in 56% yield as a single diastereomer. Compound **17j** was treated with LiBH<sub>4</sub> to yield alcohol **12j** as an optically pure form in 86% yield. Other alcohols **12k–12n** were also prepared by a similar procedure to **12j** (Scheme 4).

First, the effect of introducing a fluorine substituent on the terminal phenyl ring of **6a** was investigated through the in vitro and in vivo activity. While introducing fluorine at the *meta* (**6d**) or *ortho* (**6e**) position on the terminal phenyl ring showed comparable in vitro activity, **6c** bearing a fluorine atom at the *para*-position showed an improved S1P<sub>1</sub> agonistic activity. Then, the in vivo PLL activity of **6c–6e** was examined. At 4 h after oral administration, compounds **6c–6e** showed improved activity by 3- to 7-fold compared to **6a** and at 24 h after oral administration they showed 3- to 8-fold better activity than **1** (Table 1).

Next, the effect of a methyl group on the alkylene linker between the aromatic rings of **6a** was investigated. Whereas **6h** bearing a methyl group at the 1-position of the alkylene linker showed modest  $S1P_1$  activity, **6f** or **6g** bearing a methyl group at the 2- or 3-position improved  $S1P_1$  agonistic activity by fivefold. Additionally, their selectivity over  $S1P_3$  was improved by approximately



Scheme 2. Synthesis of the key intermediate 8. Reagents: (a) benzyl bromide, potassium carbonate, acetone; (b) MeMgBr/Et<sub>2</sub>O, THF; (c) EtOAc, HCl-aq; (d) POCl<sub>3</sub>, DMF; (e) TFA, PhSMe.



Scheme 4. Synthesis of 12c-12g and 12i-12n. Reagents: (a) BH<sub>3</sub>:THF complex, THF; (b) LiAlH<sub>4</sub>, THF; (c) *n*-BuLi, THF (for **14j** and **14m**) or DCC, DMAP, CH<sub>2</sub>Cl<sub>2</sub> (for 141); (d) p-fluorobenzyl bromide (for 17j-17m) or p-chlorobenzyl bromide (for 17n), NaHMDS, THF; (e) LiBH<sub>4</sub>, THF.

20-fold (6a vs 6f or 6g). In terms of the in vivo PLL activity, 6g showed an improved in vivo PLL efficacy by twofold (**6a** vs **6g**) at 4 h after oral administration. 6i with two methyl groups at the 2position showed less  $S1P_1$  agonistic activity than **6g** (Table 2).

Substitution of a fluorine atom at the *para*-position on the terminal phenyl ring was effective for improving in vitro S1P<sub>1</sub> agonist activity as well as in vivo efficacy. Introduction of a methyl group at the 2-position on the alkylene linker was effective for improving selectivity over S1P<sub>3</sub>. Therefore, based on these data, introduction of both a fluorine atom at the *para*-position on the terminal phenyl ring and a methyl group at the 2-position on the alkylene linker was investigated. As expected, 6j and 6k showed better selectivity

#### Table 2

The influence of a methyl group(s) on the alkylene linker between the aromatic rings on S1P1, S1P3 agonistic activities and in vivo efficacy

**-0** 

| R <sup>O</sup> CH <sub>3</sub> CO <sub>2</sub> H |                          |                                             |                   |                                                 |  |  |
|--------------------------------------------------|--------------------------|---------------------------------------------|-------------------|-------------------------------------------------|--|--|
| Compound                                         | R                        | Ca assay <sup>a</sup> EC <sub>50</sub> (nM) |                   | Mouse PLL <sup>b</sup> ED <sub>50</sub> (mg/kg) |  |  |
|                                                  |                          | hS1P <sub>1</sub>                           | hS1P <sub>3</sub> | po 4 h                                          |  |  |
| 6f                                               | <b>□</b> <sup>3</sup> →* | 0.60                                        | 22,000            | >0.3 <sup>c</sup>                               |  |  |
| 6g                                               | 2*                       | 0.66                                        | 20,800            | 0.19                                            |  |  |
| 6h                                               | ↓                        | 20                                          | 14,000            | N.T.                                            |  |  |
| 6i                                               |                          | 20                                          | >30,000           | N.T.                                            |  |  |

<sup>a,b</sup> See Table 1.

<sup>c</sup> Decreased by 20% at 0.3 mg/kg.

over S1P<sub>3</sub> activity than **6c**. Additionally, **6k** with the S-configuration showed twofold better S1P<sub>1</sub> activity, selectivity over S1P<sub>3</sub> and in vivo PLL activity than **6** with the *R*-configuration.

With an aim to further improve the activity and selectivity, we tested other substituents at the 2-position on the alkylene linker. Although the selectivity over S1P<sub>3</sub> was improved by introducing a more bulky substituent, the S1P<sub>1</sub> activity became weaker as the substituent became bulkier (6k, 6l and 6m).

Finally, another substituent at the *para*-position on the terminal phenyl ring was investigated. 6n bearing a chlorine atom improved in vivo efficacy compared to **6k** by twofold without impairing selectivity over S1P3 activity. 6n showed efficacy at a dose of 0.095 mg/kg at 24 h after oral administration and 15,000-fold selectivity for S1P<sub>1</sub> over S1P<sub>3</sub> agonistic activity in the in vitro assay (Table 3).

We examined the pharmacokinetic profiles of representative compounds **6c**. **6k** and **6n** in rats. These three compounds showed good oral exposure and long half life. The results are summarized in Table 4 (the pharmacokinetic profile of compound 1 was also reported in a previous paper<sup>7b</sup>). Compared to compound **1**, **6c** and **6n** showed longer half-lives  $(T_{1/2})$  and higher plasma concentrations at 24 h after oral dosing. This suggests that introducing a fluorine or chlorine atom on the terminal phenyl ring may be beneficial for the prevention of oxidative metabolism resulting in more potent in vivo PLL activity.

#### Table 1

The influence of the substitution of a fluorine atom on the terminal phenyl ring on S1P<sub>1</sub>, S1P<sub>3</sub> agonistic activities and in vivo efficacy

| Compound | R      | Ca assay <sup>a</sup> EC <sub>50</sub> (nM) |                   | Mouse PLL <sup>b</sup> ED <sub>50</sub> (mg/kg) |         |  |
|----------|--------|---------------------------------------------|-------------------|-------------------------------------------------|---------|--|
|          |        | hS1P <sub>1</sub>                           | hS1P <sub>3</sub> | po 4 h                                          | po 24 h |  |
| 6a       | *      | 3.0                                         | 5000              | 0.40                                            | N.T.    |  |
| 6c       | F*     | 0.84                                        | 3200              | 0.055                                           | 0.25    |  |
| 6d       | F ***  | 4.0                                         | 3900              | 0.15                                            | 0.69    |  |
| 6e       | F<br>* | 2.7                                         | 2900              | 0.13                                            | 0.75    |  |

<sup>a</sup> Agonistic activity was evaluated by measuring intracellular Ca<sup>2+</sup> concentration stimulation in Chinese Hamster Ovary (CHO) cells stably expressing human S1P<sub>1</sub> or S1P<sub>3</sub> receptors respectively.

<sup>b</sup> Peripheral Lymphocyte Lowering; Individual data points for dose-titrations were the average percentage decrease of peripheral blood lymphocyte counts in *n* = 5 animals versus control (n = 5) 4 h or 24 h after oral administration of the test compound (N.T. = not tested).

#### Table 3

The influence of the absolute configuration of a methyl group and steric hindrance at the 2-position on the alkylene linker and substituents at the *para*-position on the terminal phenyl ring on S1P<sub>1</sub>, S1P<sub>3</sub> agonistic activities and in vivo efficacy



| Compound | R                                      | Ca assay <sup>a</sup> EC <sub>50</sub> (nM) |                     | Mouse PLL <sup>b</sup> ED <sub>50</sub> (mg/kg) |  |
|----------|----------------------------------------|---------------------------------------------|---------------------|-------------------------------------------------|--|
|          |                                        | hS1P <sub>1</sub>                           | hS1P <sub>3</sub>   | po 24 h                                         |  |
| 6j       | F<br>R<br>*                            | 0.85 <sup>d</sup>                           | 11,000 <sup>d</sup> | 0.55                                            |  |
| 6k       | F, s, *                                | $0.37^{\rm d}$                              | 9450 <sup>d</sup>   | 0.22                                            |  |
| 61       | F                                      | 1.1                                         | 29,300              | 0.77                                            |  |
| 6m       | F, , , , , , , , , , , , , , , , , , , | 4.5                                         | >30,000             | 0.68                                            |  |
| 6n       | Cl<br>S*                               | 0.55                                        | 8200                | 0.095                                           |  |

<sup>a,b</sup> See Table 1.

<sup>d</sup> Average of two assays.

## Table 4 Pharmacokinetic profiles of 1, 6c, 6k and 6n in rat<sup>a</sup> (1 mg/kg)

| Compound |          | $AUC_{inf}$ (µg h/mL)                                | Plasma concentration (ng/mL)  |               | CL <sub>tot</sub> (mL/min/kg) | $T_{1/2}$ (h)       | V <sub>ss</sub> (L/kg) | BA (%)          |
|----------|----------|------------------------------------------------------|-------------------------------|---------------|-------------------------------|---------------------|------------------------|-----------------|
|          |          |                                                      | C <sub>max</sub> <sup>b</sup> | 24 h          |                               |                     |                        |                 |
| 1        | iv<br>po | 4.4 (±1.2)<br>3.8 (±0.30)                            | _<br>181 (±33)                | _<br>53 (±11) | 4.0 (±1.0)<br>—               | 11 (±4)<br>17 (±9)  | 2.9 (±0.46)<br>—       | 85              |
| 6c       | iv<br>po | 5.4 (±0.81)<br>5.7 (±1.7)                            | _<br>159 (±79)                | -<br>88 (±34) | 3.2 (±0.5)                    | 21 (±2)<br>24 (±9)  | 5.3 (±0.49)<br>—       | 106             |
| 6k       | iv<br>po | 2.6 <sup>c</sup> (±0.33)<br>2.0 <sup>c</sup> (±0.22) | _<br>103 (±5)                 | _<br>69 (±19) | 4.0 (±0.6)                    | 19 (±2)<br>57 (±51) | 5.7 (±0.51)<br>—       | 75 <sup>c</sup> |
| 6n       | iv<br>po | 9.0 (±2.5)<br>5.5 (±1.1)                             | _<br>184 (±46)                | _<br>87 (±33) | 2.0 (±0.6)<br>—               | 27 (±6)<br>20 (±1)  | 3.9 (±0.48)<br>—       | 62              |

<sup>a</sup> Values are means of three experiments, standard deviation is given in parentheses.

<sup>b</sup>  $T_{\text{max}}$  for these four compounds are between 4.7 and 6.0 h.

<sup>c</sup> The data until 24 h was adopted.

In summary, we explored detailed structure–activity relationships (SAR) of substitutions on the alkylene linker and/or on the terminal phenyl ring on the activity of dihydronaphthalene derivatives with 3-phenylpropyloxy group at 6-position. These efforts identified the novel S1P<sub>1</sub> agonist **6n**, which showed sub-nanomolar hS1P<sub>1</sub> agonistic activity with excellent selectivity over hS1P<sub>3</sub> (15,000-fold), potent in vivo PLL activity in mice (ED<sub>50</sub> = 0.095 mg/kg at po 24 h) and a good pharmacokinetic profile. This study also unveiled that the introduction of a substituent at the 2-position on the propylene linker is highly beneficial for the improvement of selectivity over S1P<sub>3</sub>. This information should be useful for the consideration of the binding mode of these compounds with the S1P<sub>1</sub> or S1P<sub>3</sub> receptor.

### Acknowledgment

The authors thank Mr. T. Shono for his contribution in measuring the PK profile.

#### **References and notes**

 (a) Lee, M.-J.; Thangada, S.; Claffey, K. P.; Ancellin, N.; Liu, C. H.; Kluk, M.; Volpi, M.; Sha'afi, R. I.; Hla, T. *Cell* **1999**, 99, 301; (b) Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, P. G.; Coso, O. A.; Gutkind, J. S.; Spiegel, S. *Nature* **1996**, 381, 800; (c) Marsolais, D.; Rosen, H. *Nat. Rev. Drug Disc.* **2009**, *8*, 297.

- Fujita, T.; Hirose, R.; Yoneta, M.; Sasaki, S.; Inoue, K.; Kiuchi, M.; Hirase, S.; Chiba, K.; Sakamoto, H.; Arita, M. J. Med. Chem. 1996, 39, 4451.
- (a) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.; Lynch, K. R. J. Biol. Chem. 2002, 277, 21453; (b) Brinkmann, V.; Billich, A.; Baumruker, T.; Heining, P.; Schmouder, R.; Francis, G.; Aradhye, S.; Burtin, P. Nat. Rev. Drug Disc. 2010, 9, 883.
- Matloubian, M.; Lo, C. G.; Cinamon, G.; Lesneski, M. J.; Xu, Y.; Brinkmann, V.; Allende, M. L.; Prola, R. L.; Cyster, J. G. Nature 2004, 427, 355.
- 5. (a) Forrest, M.; Sun, S.-Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.; Rosenbach, M.; Shei, G.-J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.; Mandala, S. J. Pharmacol. Exp. Ther. 2004, 309, 758; (b) Himmel, H. M.; Heringdorf, D. M. Z.; Graf, E.; Dobrev, D.; Kortner, A.; Schüler, S.; Jakobs, K. H.; Ravens, U. Mol. Pharmacol. 2000, 58, 449; (c) Koyrakh, L.; Roman, M. I.; Brinkmann, V.; Wickman, K. Am. J. Transplant. 2005, 5, 529; (d) Sanna, M. G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.-Y.; Peterson, M. S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. J. Biol. Chem. 2004, 279, 13839; (e) Hamada, M.; Nakamura, M.; Kuchi, M.; Marukawa, K.; Tomatsu, A.; Shimano, K.; Sato, N.; Sugahara, K.; Asayama, M.; Takagi, K.; Adachi, K. J. Med. Chem. 2010, 53, 3154.
- 6. (a) Tedesco-Silva, H.; Mourad, G.; Kahan, B. D.; Boira, J. G.; Weimar, W.; Mulgaonkar, S.; Nashan, B.; Madsen, S.; Charpentier, B.; Pellet, P.; Vanrenterghem, Y. *Transplantation* **2004**, *77*, 1826; (b) Budde, K.; Schmouder, R. L.; Brunkhorst, R.; Nashan, B.; Lücker, P. W.; Mayer, T.; Choudhury, S.; Skerjanec, A.; Kraus, G.; Neumayer, H. H. J. Am. Soc. Nephrol. **2002**, *13*, 1073.
- (a) Kurata, H.; Otsuki, K.; Kusumi, K.; Kurono, M.; Terakado, M.; Seko, T.; Mizuno, H.; Ono, T.; Hagiya, H.; Minami, M.; Nakade, S.; Habashita, H. Bioorg. Med. Chem. Lett. 2011, 21, 1390; (b) Kurata, H.; Kusumi, K.; Otsuki, K.; Suzuki,

R.; Kurono, M.; Takada, Y.; Shioya, H.; Komiya, T.; Mizuno, H.; Ono, T.; Hagiya, H.; Minami, M.; Nakade, S.; Habashita, H. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 3885.

- Sanada, Y.; Mizushima, T.; Kai, Y.; Nishimura, J.; Hagiya, H.; Kurata, H.; Mizuno, H.; Uejima, E.; Ito, T. *Plos One* **2011**, *6*, e23933.
- Reddy, M. P.; Rao, G. S. K. J. Org. Chem. **1981**, 46, 5371.
   Verardo, G.; Geatti, P.; Pol, E.; Giumanini, A. G. Can. J. Chem. **2002**, 80, 779.
   (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. **1981**, 103, 2127; (b)
- Evans, D. A.; Kim, A. S.; Matternich, R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921.