Reductive Alkylation of β -Alkoxy Aziridines: New Route to Substituted Allylic Amines

LETTERS 2004 Vol. 6, No. 26 4817–4819

ORGANIC

Clare M. Rosser,[†] Susannah C. Coote,[†] Jonathan P. Kirby,[†] Peter O'Brien,^{*,†} and Darren Caine[‡]

Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K., and GlaxoSmithKline Pharmaceuticals, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.

paob1@york.ac.uk

Received September 6, 2004

A new route to substituted cyclic allylic amines via the reductive alkylation of β -alkoxy aziridines using excess alkyllithium reagents is described.

Lithiated epoxides (oxiranyl anions) are now firmly established as useful synthetic intermediates.^{1,2} In contrast, harnessing the synthetic utility of the corresponding lithiated aziridines has proved somewhat more problematic,^{1a,d} and this is particularly true for lithiated aziridines generated by α -lithiation/deprotonation of aziridines that lack an anionstabilizing group.³ As part of our ongoing studies into reactions of lithiated aziridines,⁴ we recently reported the *sec*-butyllithium-mediated reductive alkylation of *N*-tosyl aziridine *cis*-**1** to give cyclopentene **2** in 76% yield (together with *p*-toluenesulfonamide, TsNH₂) (Scheme 1).⁵

The formation of cyclopentene 2 presumably proceeds via lithiated aziridine 3 and subsequent elimination of $TsNLi_2$

[†] University of York.

10.1021/oI048201I CCC: \$27.50 © 2004 American Chemical Society Published on Web 11/19/2004

from **4**, itself generated from carbenoid insertion into the C–Li bond of *sec*-butyllithium. Although well-known for epoxides,^{6,7} we were surprised to find that this was the first report of reductive alkylation of aziridines. To extend the synthetic potential of lithiated aziridines and to further exploit the reductive alkylation of aziridines, we now report the conversion of β -methoxy aziridines **5** to substituted allylic amines **7** (via **6**) (Scheme 2). On the basis of the precedent with epoxides,^{8,9} we incorporated a β -alkoxy group into the aziridine **5** so that it could undergo alkoxide elimination from **6** and not elimination of TsNLi₂ as in **4** (Scheme 1). In this

(8) Dechoux, L.; Doris, E.; Mioskowski, C. Chem. Commun. 1996, 549.

[‡] GlaxoSmithKline.

^{(1) (}a) Satoh, T. *Chem. Rev.* **1996**, *96*, 3303. (b) Doris, E.; Dechoux, L.; Mioskowski, C. *Synlett* **1998**, 337. (c) Hodgson, D. M. Gras, E. *Synthesis* **2002**, 1625. (d) For a special issue of *Tetrahedron* on oxiranyl and aziridinyl anions, see: *Tetrahedron* **2003**, 9693–9847.

⁽²⁾ For recent examples, see: (a) Capriati, V.; Florio, S.; Luisi, R.; Nuzzo, I. *J. Org. Chem.* **2004**, *69*, 3330. (b) Hodgson, D. M.; Paruch, E. *Tetrahedron* **2004**, *60*, 5185.

^{(3) (}a) Beak, P.; Wu, S.; Yum, E. K.; Jun, Y. M. J. Org. Chem. **1994**, 59, 276. (b) Yamauchi, Y.; Kawate, T.; Katagiri, T.; Uneyama, K. *Tetrahedron* **2003**, 59, 9839. (c) Vedejs, E.; Bhanu Prasad, A. S.; Kendall, J. T.; Russel, J. S. *Tetrahedron* **2003**, 59, 9849. (d) Müller, P.; Riegert, D.; Bernardinelli, G. *Helv. Chim. Acta* **2004**, 87, 227.

⁽⁴⁾ O'Brien, P.; Rosser, C. M.; Caine, D. Tetrahedron Lett. 2003, 44, 6613.

⁽⁵⁾ O'Brien, P.; Rosser, C. M.; Caine, D. *Tetrahedron* 2003, *59*, 9779.
(6) (a) Crandall, J. K.; Lin, L.-H. C. *J. Am. Chem. Soc.* 1967, *89*, 4526.

 ⁽b) Crandall, J. K.; Lin, L.-H. C. J. Am. Chem. Soc. 1967, 89, 4527.
 (7) Doris, E.; Dechoux, L.; Mioskowski, C. Tetrahedron Lett. 1994, 35,

⁽⁷⁾ Dons, E., Dechoux, E., Mioskowski, C. *Tetranearon Lett.* **1994**, *55*, 7943.

way, the sulfonamide group is retained in the product 7.¹⁰ Herein, we report the stereoselective synthesis of cyclic β -methoxy aziridines *cis*-**5** and their reductive alkylation to substituted allylic amines 7.

Our route to cyclopentene and cyclohexene β -methoxy aziridines *cis*-**10a**-**d** started with allylic alcohols **8a**-**d**, prepared by Luche reduction of the enones. Aziridination of **8a**-**d** using phenyltrimethylammonium tribromide (PTAB) and Chloramine-T¹¹ gave hydroxy aziridines **9a**-**d** in high yields (78–90%) and with a satisfactory degree of *cis* selectivity (Scheme 3).

The *cis*-selectivity of the aziridination presumably arises from preferential bromination on the less hindered face of the alkene (opposite to the hydroxyl group); similar stereoselectivity has been noted in an expanding number of related examples.^{11,12} Aziridines *cis*- and *trans*-**9a**-**d** can be separated by chromatography to give 44–68% isolated yields of *cis*-**9a**-**d**. Alternatively, an oxidation–reduction sequence

4818

(via the keto aziridines¹³) can be utilized to produce single diastereomers of *cis*-hydroxy aziridines **9a**–**d**. For reduction of the keto aziridines, NaBH₄ in MeOH gave complete stereocontrol with the cyclopentenes, but high stereoselectivity with the cyclohexenes necessitated the use of L-selectride in THF at -78 °C. The high *cis*-selectivity of these reductions is mirrored in nucleophilic additions to the corresponding keto-epoxides^{8,14} and results from attack on the least hindered C=O face *and* anti to the adjacent C–O bond. Finally, methylation using Ag₂O and MeI gave the required β -methoxy aziridines *cis*-**10a**–**d** (typical NaH/MeI conditions were much less successful).

The relative stereochemistry of hydroxy aziridines **9a** and **9c** was established unequivocally using an aza-Payne rearrangement.¹⁵ Only the *trans*-hydroxy aziridines will undergo a base-mediated conversion into an amino epoxide. Thus, upon reaction with KHMDS, *trans*-**9a** (n = 0) gave epoxide *trans*-**11a** and *trans*-**9c** (n = 1) gave known¹⁶ epoxide *trans*-**11c** (Scheme 4). The relative stereochemistry of hydroxy aziridines **9b** and **9d** was assigned by analogy.

With β -methoxy aziridines *cis*-**10a**-**d** in hand, we were now ready to study their reductive alkylation using excess alkyllithiums. Our typical protocol involved reaction of the β -methoxy aziridine with 2.5 equiv of alkyllithium in Et₂O at -78 °C for 5 min followed by warming to room temperature over 1 h. In this way, β -methoxy aziridines *cis*-**10a**-**d** were converted into substituted allylic amines **12**-**15** in 6-67% yield (Scheme 5).

Two general conclusions can be made on the basis of these preliminary results. First of all, cyclopentene aziridines appear to be more susceptible to reductive alkylation and thus they generally give higher yields of allylic amines (e.g., **12a,b** and **13a–c**, 53–67% yield). This is consistent with our previous findings on the rearrangement of aziridines to allylic amines using *sec*-butyllithium and (–)-sparteine.^{4,5}

^{(9) (}a) Hodgson, D. M.; Stent, M. A. H.; Wilson, F. X. Org. Lett. **2001**, 3, 3401. (b) Hodgson, D. M.; Stent, M. A. H.; Wilson, F. X. Synthesis **2002**, 1445. (c) Hodgson, D. M.; Maxwell, C. R.; Miles, T. J.; Paruch, E.; Matthews, I. R.; Witherington, J. Tetrahedron **2004**, 60, 3611.

⁽¹⁰⁾ A similar strategy using dihydrofuran aziridine and aziridines of acyclic allylic ethers has recently been disclosed: Hodgson, D. M.; Stefane, B.; Miles, T. J.; Witherington, J. *Chem. Commun.* **2004**, 2234.

⁽¹¹⁾ Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. **1998**, 120, 6844.

^{(12) (}a) Caine, D.; O'Brien, P.; Rosser, C. M. Org. Lett. 2002, 4, 1923.
(b) Schmitt, A. C.; Smith, C. M.; Voight, E. A.; O'Doherty, G. A. Heterocycles 2003, 62, 635. (c) Armstrong, A.; Cumming, G. R.; Pike, K. Chem. Commun. 2004, 812.

⁽¹³⁾ Related *N*-alkyl and *N*-CO₂Et keto aziridines have been prepared using other routes. See: (a) Fioravanti, S.; Pellacani, L.; Tabanella, S.; Tardella, P. A. *Tetrahedron* **2003**, *54*, 14105. (b) Barros, M. T.; Maycock, C. D.; Ventura, M. R. *Tetrahedron Lett.* **2002**, *43*, 4329.

^{(14) (}a) Sepúlveda, J.; Soto, S.; Mestres, R. Bull. Soc. Chim. Fr. 1983,
233. (b) Sepúlveda, J.; Soriano, C.; Mestres, R.; Sendra, J. Bull. Soc. Chim.
Fr. 1983, 241. (c) Sepúlveda, J.; Soriano, C.; Roquet-Jalmar, J.; Mestres,
R.; Riego, J. Bull. Soc. Chim. Fr. 1987, 189.

^{(15) (}a) Ibuka, T.; Nakai, K.; Habashita, H.; Hotta, Y.; Otaka, A.; Tamamura, H.; Fujii, N.; Chounan, Y.; Yamamoto, Y. *J. Org. Chem.* **1995**, *60*, 2044. (b) Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. *J. Org. Chem.* **2002**, *67*, 8726.

^{(16) (}a) O'Brien, P.; Childs, A. C.; Ensor, G.; Hill, C. L. Kirby, J. P.; Dearden, M. J.; Oxenford, S.; Rosser, C. M. *Org. Lett.* **2003**, *5*, 4955. (b) Bäckvall, J.-E.; Oshima, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem. **1979**, *44*, 1953.

Second, the best alkyllithium reagent for reductive alkylation is trimethylsilylmethyllithium (e.g., **12a**, 67%; **13a**, 67%; **14a**, 67%; **15a**, 47%), and the worst is methyllithium. Unfortunately, we have been unable to prepare methoxy aziridines *trans*-**10a**-**d** by methylation (under a range of conditions), and this has so far precluded a study of their reductive alkylation.

On careful inspection of the product mixtures generated from β -methoxy aziridine *cis*-**10d**, we noticed the formation of the same byproduct, enamide **16** (13–27% yield). The regiochemistry of enamide **16** was confirmed by NOESY experiments, and it must be formed by a skeletal rearrangement process. Our suggested mechanism for the formation of **16**¹⁷ is outlined in Scheme 6. Thus, initial lithiation occurs to give **17**, but reductive alkylation of **17** by the second alkyllithium (to give **6**, see Scheme 2) is competitive with α -elimination (to give carbene **18**) and subsequent 1,2-methyl

shift (to give **16**). Such a 1,2-alkyl shift is well-established for alkoxy epoxides¹⁸ and, in Et₂O, may have a more concerted mechanism, i.e., from **17** \rightarrow **16**, without the intermediacy of the carbene **18**.^{18a} However, the 1,2-alkyl shift was not observed with *cis*- β -methoxy epoxides,⁸ analogous to the aziridines studied here. In addition, we did not isolate any enamides from aziridines *cis*-**10a**-**c**.

In summary, a new route to cyclic substituted allylic amines 12-15 via the reductive alkylation of β -methoxy aziridines has been established. Furthermore, as shown by the reactions of aziridine *cis*-10d and in contrast to the corresponding β -methoxy epoxides, two different reaction manifolds occur. Future work will focus on optimizing reaction conditions so that products of type 15 (reductive alkylation) and 16 (1,2-alkyl shift) can each be obtained in high yields.

Acknowledgment. We thank the EPSRC and Glaxo-SmithKline for a CASE award (to C.M.R.), the EPSRC for a DTA award (to S.C.C.), The University of York Innovation and Research Priming Fund for a grant (to J.P.K.), and Prof D. Craig (Imperial College London) for discussions relating to the aza-Payne rearrangement.

Supporting Information Available: Representative experimental procedures for the preparation of *cis*-10d and 12a-d, 13a-c, 14a-d, and 15a-d/16 and full characterization data and copies of ¹H NMR and ¹³C NMR spectra of *cis*-9d, *cis*-10d, 12a-d, 13a-c, 14a-d, 15a-d, and 16. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048201L

⁽¹⁷⁾ The isolation of an ene-sulfonamide from the reaction of *N*-tosyl cyclohexeneaziridine with *sec*-butyllithium and (–)-sparteine has been described previously. See: Müller, P.; Nury, P. *Helv. Chim. Acta* **2001**, *84*, 662. However, isolation of the ene-sulfonamide could not be reproduced by the same group; see ref 3d.

 ^{(18) (}a) Doris, E.; Dechoux, L.; Mioskowski, C. J. Am. Chem. Soc. 1995,
 117, 12700. (b) Doris, E.; Mioskowski, C.; Dechoux, L.; Agami, C. J. Org.
 Chem. 1998, 63, 3808.