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A new route to substituted cyclic allylic amines via the reductive alkylation of
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P-alkoxy aziridines using excess alkyllithium reagents is described.

Lithiated epoxides (oxiranyl anions) are now firmly estab-
lished as useful synthetic intermediatésin contrast,
harnessing the synthetic utility of the corresponding lithiated
aziridines has proved somewhat more problentatignd
this is particularly true for lithiated aziridines generated by
a-lithiation/deprotonation of aziridines that lack an anion-
stabilizing group’ As part of our ongoing studies into
reactions of lithiated aziridineswe recently reported the
secbutyllithium-mediated reductive alkylation dfl-tosyl
aziridinecis-1 to give cyclopentengin 76% yield (together
with p-toluenesulfonamide, TsNii(Scheme 15.

Scheme 1. Reductive Alkylation of an Aziridine
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The formation of cyclopenter2presumably proceeds via
lithiated aziridine3 and subsequent elimination of TsNLi
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from 4, itself generated from carbenoid insertion into the
C—Li bond of sechutyllithium. Although well-known for
epoxides;” we were surprised to find that this was the first
report of reductive alkylation of aziridines. To extend the
synthetic potential of lithiated aziridines and to further exploit
the reductive alkylation of aziridines, we now report the
conversion off-methoxy aziridines$ to substituted allylic
amines? (via 6) (Scheme 2). On the basis of the precedent
with epoxides’® we incorporated #-alkoxy group into the
aziridine5 so that it could undergo alkoxide elimination from
6 and not elimination of TsNLias in4 (Scheme 1). In this
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Scheme 2. Reductive Alkylation of-Alkoxy Aziridines
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way, the sulfonamide group is retained in the prodhitt

(via the keto aziriding$) can be utilized to produce single
diastereomers dfis-hydroxy aziridine®a—d. For reduction

of the keto aziridines, NaBHin MeOH gave complete
stereocontrol with the cyclopentenes, but high stereoselec-
tivity with the cyclohexenes necessitated the use of L-
selectride in THF at-78 °C. The highcis-selectivity of these
reductions is mirrored in nucleophilic additions to the
corresponding keto-epoxid€d and results from attack on
the least hindered=€0 faceand anti to the adjacent €0
bond. Finally, methylation using AQ and Mel gave the

Herein, we report the stereoselective synthesis of cyclic requireds-methoxy aziridinegis-10a—d (typical NaH/Mel

B-methoxy aziridinegis-5 and their reductive alkylation to
substituted allylic amineg.

Our route to cyclopentene and cyclohexghenethoxy
aziridines cis-10a—d started with allylic alcohols8a—d,

conditions were much less successful).

The relative stereochemistry of hydroxy aziridirgzsand
9c was established unequivocally using an aza-Payne rear-
rangement® Only thetrans-hydroxy aziridines will undergo

prepared by Luche reduction of the enones. Aziridination a base-mediated conversion into an amino epoxide. Thus,

of 8a—d using phenyltrimethylammonium tribromide (PTAB)
and Chloramine-T gave hydroxy aziridine®a—d in high
yields (78-90%) and with a satisfactory degree ois
selectivity (Scheme 3).

Scheme 3. Synthesis of3-Methoxy Aziridinescis-10a—d
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upon reaction with KHMDStrans9a (n = 0) gave epoxide
trans-11laandtrans-9c (n = 1) gave knowt epoxidetrans

11c (Scheme 4). The relative stereochemistry of hydroxy
aziridines9b and 9d was assigned by analogy.

Scheme 4. Aza-Payne Rearrangementtodns-9a and 9c
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With -methoxy aziridinesis-10a—d in hand, we were
now ready to study their reductive alkylation using excess
alkyllithiums. Our typical protocol involved reaction of the
B-methoxy aziridine with 2.5 equiv of alkyllithium in ED
at —78 °C for 5 min followed by warming to room
temperature over 1 h. In this wa§;methoxy aziridinegis-
10a—d were converted into substituted allylic aminEz—
15in 6—67% yield (Scheme 5).

Two general conclusions can be made on the basis of these
preliminary results. First of all, cyclopentene aziridines
appear to be more susceptible to reductive alkylation and

The cis-selectivity of the aziridination presumably arises 1,5 they generally give higher yields of allylic amines (e.g.,
from preferential bromination on the less hindered face of 155 yand13a—c. 53-67% yield). This is consistent with

the alkene (opposite to the hydroxyl group); similar stereo- o previous findings on the rearrangement of aziridines to
selectivity has been noted in an expanding number of relateda"y"C amines usingsecbutyllithium and ()-sparteing:5

examplest1? Aziridines cis- andtrans-9a—d can be sepa-
rated by chromatography to give 468% isolated yields of
cis-9a—d. Alternatively, an oxidationreduction sequence
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Scheme 5. Reductive Alkylation of3-Methoxy Aziridines
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dotop  otoverth - ¢ By @7 intermediacy of the carbent8.18 However, the 1,2-alkyl
shift was not observed witltis-3-methoxy epoxide$,
analogous to the aziridines studied here. In addition, we did
OMe R Yield (%) not isolate any enamides from aziridingis-10a—c.
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® , R © manifolds occur. Future work will focus on optimizing
2.5 eq RLi, Et,O . L. .
NTSW@NHTS + reaction conditions so that products of typ® (reductive
T warm o Tt over 1 h NHTs alkylation) and16 (1,2-alkyl shift) can each be obtained in
cis-10d 15a-d 16 high yields.
R Yield (%) Yield (%)
a CHasies o i Acknowledgment. We thank the EPSRC and Glaxo-
c  SBu 32 o7 SmithKline for a CASE award (to C.M.R.), the EPSRC for
d Me 6 13 aDTA award (to S.C.C.), The University of York Innovation

and Research Priming Fund for a grant (to J.P.K.), and Prof
D. Craig (Imperial College London) for discussions relating
Second, the best alkyllithium reagent for reductive alkylation to the aza-Payne rearrangement.
is trimethylsilylmethyllithium (e.g..12a 67%; 13a 67%);
14a, 67%; 158 47%), and the worst is methyllithium. Supporting Information Available: Representative ex-
Unfortunately, we have been unable to prepare methoxy perimental procedures for the preparationct$10d and
aziridinestrans-10a—d by methylation (under a range of 12a-d, 13a—c, 14a—d, and15a—d/16 and full characteriza-
conditions), and this has so far precluded a study of their tion data and copies dH NMR and*3C NMR spectra of
reductive alkylation. cis-9d, cis-10d, 12a—d, 13a—c, 14a—d, 15a—d, and16. This
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of the same byproduct, enamidé (13—27% yield). The
regiochemistry of enamidé&6 was confirmed by NOESY
experiments, and it must be formed by a skeletal rearrange- (17) The isolation of an ene-sulfonamide from the reactiomdbsy!
ment process. Our suggested mechanism for the formatiorfyoarertneaznine wisecbuylinn and ) sparne has e
of 16'is outlined in Scheme 6. Thus, initial lithiation occurs g4 662. However, isolation of the ene-sulfonamide could not be reproduced
to give 17, but reductive alkylation ofLl7 by the second by the same group; see ref 3d. _
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