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Ni-Catalyzed Conversion of Enol Triflates to Alkenyl Halides 
 Julie L. Hofstra†, Kelsey E. Poremba†, Alex M. Shimozono†, and Sarah E. Reisman* 

 

Abstract: A Ni-catalyzed halogenation of enol triflates was 
developed that enables the synthesis of a broad range of alkenyl 
iodides, bromides, and chlorides under mild reaction conditions. 
The reaction utilizes inexpensive, bench stable Ni(OAc)2·4H2O as 
a pre-catalyst and proceeds at room temperature in the presence 
of sub-stoichiometric Zn and either cod or DMAP. 

Alkenyl halides are versatile functional groups that can be 
used in a variety of carbon–carbon and carbon–heteroatom 
bond-forming reactions. For example, alkenyl halides are 
commonly used as substrates in transition metal-catalyzed 
cross-coupling reactions1 or are converted via metal-halogen 
exchange to nucleophiles for 1,2-additions to carbonyl 
compounds (Scheme 1). 2  Furthermore, the alkenyl halide 
moiety appears in some natural products and bioactive 
molecules. 3  Whereas acyclic alkenyl halides are easily 
prepared from the corresponding alkynes4 or aldehydes,5 most 
cyclic alkenyl halides are synthesized from the corresponding 
ketones. A commonly employed method is the Barton alkenyl 
halide synthesis (and variations thereof),6,7, 8 which proceeds 
through an intermediate hydrazone. These reactions are 
notoriously capricious: the formation of the requisite hydrazone 
can be challenging on sterically encumbered substrates and 
the halogenation step often produces mixtures of alkenyl 
halide isomers or dihalide side products.9  

As a result, enol triflates, which can be prepared directly 
from cyclic ketones under either kinetic or thermodynamic 
control, have emerged as attractive “pseudohalides” for 
transition metal-catalyzed cross-coupling processes. 
Unfortunately, enol triflates cannot be directly converted to the 
corresponding alkenyllithium or alkenylmagnesium species 
commonly employed in 1,2-addition reactions. In cases where 
the Barton alkenyl halide synthesis is poor yielding, a multistep 
alternative is frequently employed: 1) conversion of the ketone 
to enol triflate, 2) conversion of the triflate to the stannane, and 
3) conversion of the stannane to the halide. 10  Direct, mild 
methods to convert enol triflates to alkenyl halides, without 
proceeding through organostannane intermediates, can 
streamline the preparation of these valuable synthons. 

Indeed, Buchwald has reported a Pd-catalyzed reaction to 
convert alkenyl triflates to alkenyl bromides and chlorides;11,12 
however, there are no examples of alkenyl iodide formation, 
and the reaction requires an expensive ligand, temperatures 
greater than 100 °C, and additives such as fluoride salts or 
iBu3Al. These additives limit the functional group compatibility 
of the transformation, particularly with commonly used groups 
such as silyl ethers. More recently, Hayashi reported a Ru-
catalyzed method to convert enol triflates to iodides, bromides, 
or chlorides that proceeds at ambient temperature; however, 
the requisite ruthenium catalyst is not commercially available 
and limited examples of alkenyl iodide formation are 
reported.13  

  

Scheme 1. Synthesis and utility of alkenyl halides. 

During our investigations of Ni-catalyzed asymmetric 
reductive coupling reactions of alkenyl bromides, 14  we 
observed an off-pathway halide exchange process that 
generated alkenyl chlorides and iodides. Whereas Ni-
catalyzed aryl15 and alkenyl halide exchange processes have 
been previously reported and extensively investigated,15b,16 
development of the corresponding reactions of enol triflates 
have been limited to a single report describing bromination of 
dihydropyranyl enol triflates.17,18a Having observed promising 
reactivity with enol triflates in our investigation of asymmetric 
reductive coupling reactions, 19  we hypothesized that an 
appropriate Ni catalyst and inexpensive halide salts might 
enable the direct conversion of enol triflates to alkenyl halides 
under mild conditions. In this communication, we report the 
development of a Ni-catalyzed triflate-halide exchange (triflex) 
reaction, which provides access to alkenyl iodides, bromides, 
and chlorides in good to excellent yields (Scheme 1). 
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Table 1. Optimization of reaction conditions.[a] 

 

Entry Deviation from Standard 
Conditions 

Yield 2a 
(%)[b] 

Yield 2b 
(%)[b][c] 

Yield 2c 
(%)[b][c] 

1 None 87 92 90 

2 Ni(acac)2 14 85 90 

3 Ni(X)2 75 82 0[d] 

4 Ni(cod)2[e] 70 94 94 

5 DMA 12 0 0 

6 THF 82 69 40 

7 DMF 0 18 0 

8 MeCN 24 33 8 

9 -DMAP (I) / + DMAP (Br/Cl)  33 94 91 

10 ½ x  Ni(OAc)2•4H2O loading 90 96 94 

11 2 x Ni(OAc)2•4H2O loading 87 94 93 

[a] Reactions conducted in 1:3 DMA/THF (0.25M) under inert atmosphere 
on 0.1 mmol scale. [b] Determined by 1H NMR spectroscopy versus 1,2,4,5-
tetrachloronitrobenzene as an internal standard. [c] Products 2b and 2c 
were found to be volatile. [d] NiCl2 was insoluble under these conditions. [e] 
No Zn or additional cod were added. 

Our reaction development began with enol triflate 1a, 
prepared in one step from menthone, with the goal of 
identifying general conditions that could provide the alkenyl 
iodide, bromide, or chloride simply by changing the halide salt. 
Initial optimization efforts using Ni(cod)2 as a catalyst revealed 
that a mixed DMA/THF solvent system and short reaction times 
were optimal, and that bidentate ligands (phosphine, amine, 
and pyridine) inhibited the reaction.20 Informed by these results, 
we screened a variety of Ni(II) pre-catalysts in combination with 
Zn0 and cod and ultimately found that Ni(OAc)•4H2O afforded 
promising yields across all three reactions. Whereas the 
alkenyl bromides and chlorides could be obtained in good 
yields in 16 h using 5 mol % Ni(OAc2)•4H2O and 10 mol % cod 
(Method B), the iodination proceeded in modest yield under 
these conditions (Table 1, entry 9). In an effort to improve the 
yield of the iodination, an additive screen was conducted. This 
study revealed that use of 20 mol% DMAP, in conjunction with 
higher catalyst loadings, (10 mol % Ni(OAc)4, 10 mol% cod) 
improved the yield of 2a. Since similar yields of 2b and 2c are 
formed in the presence and absence of DMAP (Table 1, entry 
9), this additive was omitted for the standard bromination and 
chlorination conditions (Method B). The precise role of DMAP 
in the iodination remains unclear; our hypothesis is that it 

coordinates ZnI2 salts that are generated as part of the initial 
Ni(II) reduction. 21, 22, 23 This is consistent with the observation 
that addition of exogenous ZnI2 inhibits the reaction, but that 
reactivity can be restored by addition of DMAP.20 Although 2a 
could be obtained in good yield with 5 mol % Ni (Table 1, entry 
10), incomplete conversions were obtained for many 
substrates when the scope of the iodination was investigated. 
Increasing the Ni loading to 10 mol % generally improved the 
conversion and allowed shorter reaction times, which was 
necessary to minimize the formation of reduction product 
(Method A).24 

Having identified satisfactory reaction conditions, the 
substrate scope of the Ni-catalyzed halogenation reaction was 
investigated (Table 2). The halide exchange was found to be 
compatible with a variety of common functional groups, 
including amines (4), carbamates (5, 13), pyridines (20), 
alkenes (12), dienes (10, 14), esters (19), ketals (6, 14), and 
enones (11). Chemoselective halogenation of alkenyl triflates 
was observed in preference to aryl triflates (15, 20), aryl 
chlorides (9, 21), and aryl boronates (22); however, 
competitive halide exchange was observed in the presence of 
aryl bromides and iodides.20 

Although the Ni-catalyzed halogenation exhibits good 
functional group tolerance, the iodination, bromination, and 
chlorination did not perform equally well. The iodination 
conditions (Method A) proved optimal for roughly half of the 
substrates. In cases where iodination was sluggish (6, 8, 10, 
11, 13-16), longer reaction times and 5.0 equiv NaI improved 
conversions; however, the improved reactivity was often 
accompanied by increased amounts of protodetriflation (or 
protodehalogenation, approximately 5-10% yield), and the 
alkene could be difficult to chromatographically separate from 
the alkenyl iodides (8a, 10a, 11a, 13a, 15a). For a subset of 
these substrates (10, 11, 13), the competing reduction was 
eliminated by use of Ni(cod)2 in conjunction with the enol 
nonaflate, which afforded access to the pure alkenyl iodides.18 

The bromination and chlorination reactions were generally 
more efficient and robust. For most substrates, complete 
conversions were achieved with 5 mol% Ni and without the 
need for DMAP, although addition of DMAP improved the 
yields for substrates where incomplete conversion was 
observed with only cod (14-16). In addition, for 1-arylvinyl 
triflates (19-22, Table 2) the use of Ni(cod)2 (Method C) 
provided cleaner reaction profiles for the bromination and 
iodination reactions.25 To demonstrate the scalability of the 
reaction, bromide 13b was prepared in 95% yield on 1 mmol 
scale using a benchtop setup (13b). 

At this time, the mechanism of the reaction remains unclear. 
Preliminary investigations of the iodination using Ni(cod)2 as 
the catalyst revealed that the reaction of 1a exhibits an 
induction period at low [Ni] (e.g. 0.5 mol %, 1 mol %, see 
Scheme 2a).26 Plotting Vmax vs. [Ni] revealed that the reaction 
has a positive-order dependence on [Ni] that negatively 
deviates from first order at higher [Ni], suggesting the formation 
of dimeric (or higher order) off-cycle species at higher [Ni].27 
No change in the rate of iodination of 1a is observed when the 
amount of NaI is increased beyond 1 equiv, however the rate  

1a
Me

OTf

Me

Me

Me

X

Me

Me

2a, X = I
2b, X = Br
2c, X = Cl

Method A
Ni(OAc)2•4H2O (10 mol %)

Zn (20 mol %), cod (20 mol%)
DMAP (20 mol%), NaI (1.5 equiv.)
1:3 DMA/THF (0.25M), 23 °C, 6h

or
Method B

Ni(OAc)2·4H2O (5 mol%)
Zn (10 mol%), cod (10 mol%)

LiBr or LiCl (1.5 equiv)
1:3 DMA/THF (0.25M), 23 °C, 16h
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Table 2. Scope of alkenyl halides.[a] 

 

 

[a] Reactions conducted under inert atmosphere on 0.3 mmol scale. Isolated 
yields. Yields in parentheses were determined by 1H NMR spectroscopy 
versus 1,2,4,5-tetrachloronitrobenzene as an internal standard. [b] 5 equiv 
NaI was used in the absence of cod, 36 h reaction time. [c] Enol nonaflate 
was employed instead of enol triflate. [d] Method C: Ni(cod)2 (10 mol %), 
MX (1.5 equiv), 25% DMA/THF (0.25M), 23 °C, 16 h. [e] 1 mmol scale, 
benchtop protocol. [f] DMAP (10 mol %) was used instead of cod. [g] 

Reaction was conducted on 0.2 mmol scale. [h] Reaction was conducted at 
0.125 M due to poor solubility of enol triflate.  

dependence on [1a] was more complex.20 One possibility is  
that the induction period is required to form an active NiI 
catalyst. During the reaction, a signal is present in the EPR 
spectrum that is consistent with a NiI-X species. However, 
quantification of this signal determined that it was only 2% of 
the total [Ni], and additional experiments to identify the resting 
state of the catalyst have been inconclusive. 

A crossover experiment was designed to evaluate the 
reversibility of triflate-halide exchange: treatment of a 1:1 
mixture of 24-OTf and 25-Br with Ni(cod)2 (10 mol %) in 1:3 
DMA/THF at 23 °C resulted in complete recovery of 24-OTf 
and 25-Br, without detection of crossover products 25-OTf or 
24-Br (Scheme 2b). Addition of 0.1 or 1.0 equiv LiBr resulted 
in conversion of 24-OTf to 24-Br in 10% and 90% yield, 
respectively;28,29 no 25-OTf was detected at any point in either 
reaction. Monitoring the reaction by 1H NMR spectroscopy 
confirms that no oxidative addition of 24-OTf occurs in the 
absence of halide salt. Subjection of alkenyl iodide 25-I to 
Ni(cod)2 (10 mol %) and metal triflate salts (e.g. NaOTf) did not 
result in enol triflate formation (Scheme 2c).30 Taken together, 
these experiments suggest that oxidative addition of the 
alkenyl triflate is irreversible, or that halide exchange for triflate  

Scheme 2. Mechanistic investigation.[a] 

 
[a] Reactions conducted under inert atmosphere on 0.2 mmol scale. [b] 
Determined by GC analysis versus undecane as an internal standard. 
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X
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X
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ClO

X

Ph

XX

O

O

6a (I):
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8a (I):
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8c (Cl):
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9a (I):
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9c (Cl):

TBSO
X

Me

N
Boc

X

X

Me
Me

Me

O

Me
X

10a (I):
10b (Br):
10c (Cl):

(70%)[b], 54%[c,d] 
84%
88%

(70%)[b], 53%[c,d] 

95%
93%

11a (I):
11b (Br):
11c (Cl):

91%
91%
83%

12a (I):
12b (Br):
12c (Cl):

(74%)[b], 53%[c,d] 
95%[e]

95%

13a (I):
13b (Br):
13c (Cl):

Me

Me

Me

X

H

TfO

XMe

H

H

HH

O
H

O
Me

Me
Me

Me

H

H

H
X

85%[b,g,h]

93%[f,g,h]

83%[f,g,h]

14a (I):
14b (Br):
14c (Cl):

(60%)[b]

95%[f,g]

90%[f,g]

15a (I):
15b (Br):
15c (Cl):

16a (I):
16b (Br):
16c (Cl):

62%[b]

78%[f]

75%[f]

X

NTfO

X

MeO2C

XX

Me
H

Me
Me

HH

H

89%
93%
95%

17a (I):
17b (Br):
17c (Cl):

90%
92%
88%

18a (I):
18b (Br):
18c (Cl):

64%[d]

90%[d]
19a (I):
19b (Br):

54%[d]

80%[d]
20a (I):
20b (Br):

X X

Cl

F
X

pinB

69%[d]

73%[d]
21a (I):
21b (Br):

68%[d]

64%[d]
22a (I):
22b (Br):

86%
88%
83%

23a (I):
23b (Br):
23c (Cl):

82%[b]

94%
88%

1 2–23

OTf X

Method A
Ni(OAc)2•4H2O (10 mol %)

Zn (20 mol %), cod (20 mol%)
DMAP (20 mol%), NaI (1.5 equiv.)
1:3 DMA/THF (0.25M), 23 °C, 6h

or
Method B

Ni(OAc)2·4H2O (5 mol%)
Zn (10 mol%), cod (10 mol%)

LiBr or LiCl (1.5 equiv)
1:3 DMA/THF (0.25M), 23 °C, 16h

OTf

iPr

Br

tBu

Ni(cod)2 (10 mol %)

25% DMA/THF
23 °C, 2 h

+

24-OTf
(1 equiv)

25-Br
(1 equiv)

OTf

tBu

Br

iPr

+

24-Br 25-OTf

no change
w/ LiBr (0.1 equiv)
w/ LiBr (1.0 equiv)

24-OTf (%)[b] 25-Br (%)[b] 24-Br (%)[b] 25-OTf (%)[b]

Ni(cod)2 (10 mol %)
NaOTf (1 equiv)

NaI (0 or 10 mol %)
25% DMA/THF 

23 °C, 2 h

100
90
0

100
100
100

0
10
90

0
0
0

(b) Crossover experiment.

(c) Attempt to observe halide-triflate exchange.
I

tBu

OTf

tBu

25-I 25-OTf
not observed

(a) Kinetic analysis.
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in the oxidative addition complex is rapid and irreversible. In 
either scenario, the fact that the enol triflate is irreversibly 
consumed enables the reaction to proceed in good yield to the 
respective alkenyl halides. This is in contrast to Ni-catalyzed 
halide exchange reactions, which are thermodynamically 
driven equilibrium processes.15b For example, after 2 h, an 
85:15 mixture of 25-Br:25-I is obtained for both the Ni-
catalyzed reactions of 25-Br with LiI, or 25-I with LiBr.20 

In conclusion, a mild Ni-catalyzed halogenation of alkenyl 
triflates has been developed. By modifying the halide salt, 
alkenyl iodides, bromides, or chlorides can be obtained using 
a simple, inexpensive catalyst system. These reactions 
proceed at room temperature, afford the alkenyl halides in 
good to excellent yields, and exhibit good functional group 
tolerance. 
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OTf X

X = I, Br or Cl

cat. Ni(OAc)2, Zn,
cod or DMAP

NaI, LiBr, or LiCl
25% DMA/THF, 23 °C

• simple catalyst
• mild conditions
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