

Nucleosides and Nucleotides

ISSN: 0732-8311 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/lncn19

6-Chloroxanthosine, a Useful Intermediate for the Efficient Syntheses of [6-¹⁵N]-Isoguanosine, Isoinosine and Other Purine Nucleoside Analogues

L. De Napoli , A. Messere , D. Montesarchio , G. Piccialli & M. Varra

To cite this article: L. De Napoli , A. Messere , D. Montesarchio , G. Piccialli & M. Varra (1997) 6-Chloroxanthosine, a Useful Intermediate for the Efficient Syntheses of [6-¹⁵N]-Isoguanosine, Isoinosine and Other Purine Nucleoside Analogues, Nucleosides and Nucleotides, 16:1-2, 183-191, DOI: <u>10.1080/07328319708002532</u>

To link to this article: http://dx.doi.org/10.1080/07328319708002532

Published online: 20 Aug 2006.

_	_
Г	
	4
	<u> </u>

Submit your article to this journal \square

Article views: 15

View related articles 🗹

Citing articles: 3 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lncn20

6-CHLOROXANTHOSINE, A USEFUL INTERMEDIATE FOR THE EFFICIENT SYNTHESES OF [6-¹⁵N]-ISOGUANOSINE, ISOINOSINE AND OTHER PURINE NUCLEOSIDE ANALOGUES

L. De Napoli*, A. Messere, D. Montesarchio, G. Piccialli and M. Varra

Dipartimento di Chimica Organica e Biologica, Università di Napoli "Federico II", Via Mezzocannone 16, I-80134 Napoli, Italy

ABSTRACT. 6-Chloroxanthosine 1, when activated towards nucleophilic displacement at the 6-C position by conversion into the corresponding 3-N-(2,4-dinitrophenyl) derivative 4, reacted with aq. 15 NH₃ to afford [6- 15 N]-isoguanosine 3b in 81 % overall yield. Catalytic hydrogenation (Pd/C) of 1 led in 60 % yield to isoinosine 8; alternatively, this could be obtained in 88 % overall yield through alkaline hydrolysis of triphenylphosphonium salt 6, synthesized from 1 by reaction with PPh₃. The reactivity of 1 was further explored by treating it with primary and secondary amines: the 6-N propylamino and the 6-N piperidinyl derivatives (5a and 5b, respectively) could thus both be prepared in more than 90 % yield.

In the course of our studies on the synthesis of purine nucleoside analogues¹⁻³ we have proposed an easy and one step procedure to 6-chloroxanthosine (1) which was used in the preparation of isoguanosine^{2,4} (3a). In this paper, we have further explored the reactivity of 1 in a number of functional group transformations resulting in efficient routes to synthesize [6- 15 N]-isoguanosine (3b), isoinosine (8) and other base modified nucleosides.

The synthesis of ¹⁵N-labelled nucleosides is of considerable interest because of their high potential, after incorporation in an oligonucleotide chain, as probes in NMR studies aimed at the elucidation of nucleic acids structures and nucleic acid-protein interactions. Recently, several papers dealing with the synthesis of 15N-labelled nucleosides have appeared in the literature 5-8. In the case of guanosine, adenosine and cytidine, the introduction of the ¹⁵N atom in the exocyclic amino function is not troublesome, generally requiring only a nucleophilic displacement with ¹⁵NH₃ or other ¹⁵N reagents on the appropriate activated nucleoside bases⁵⁻⁸. In the case of isoguanosine, however, a direct conversion of chloride 1 into isoguanosine 3a by treatment with aq. ammonia (10 M) was unsuccessful (only 20 % of the target compound could be recovered even after 3 days at 55 °C)^{2,9}. Using more dilute aqueous NH₃ solution lower yields were obtained. This is particularly detrimental when ¹⁵NH₃, as commercially available 3.3 M solution, has to be used. The synthetic pathway previously described² to obtain **3a** in high yields required the preparation of the 6-pyridinyl derivative 2, which, when treated with ammonia or amines, led to the target compound 3a through a nucleophilic attack of the reagent on the pyridinium α carbons, followed by opening of the ring (Zincke reaction)¹⁰⁻¹². In these cases, the exocyclic amino group of isoguanosine is generated by the nitrogen atom of the pyridinium residue. The preparation of labelled [6-15N]-isoguanosine could be accomplished in this manner, but only by reacting 2 with expensive ¹⁵N-labelled pyridine.

In order to render the 6-C of 1 more reactive towards aq. ammonia we introduced into the heterocyclic ring a strong electron-withdrawing group, such as 2,4-dinitrophenyl. The efficacy of such a substituent in rendering the purine base moiety more prone to nucleophilic attack had already been tested in previous work³ in which the 1-N-(2-nitrophenyl) derivative of inosine was shown to react with ¹⁵N-ammonia on the purine 2-C, giving [1-¹⁵N]-inosine in good yields. In the case of chloride 1, the reaction with 2,4-dinitrochlorobenzene in DMF solution (1.5 h, 80 °C) afforded derivative 4 in 95 % yield. On the other hand, when 1 was treated with 4-nitrochloro- (or fluoro-) benzene, under the same reaction conditions, the corresponding 3-N-(4-nitrophenyl) nucleoside could not be obtained. As expected, 4 reacted satisfactorily with ¹⁵NH₃ (aq., 3.3 M), yielding [6-15N]-isoguanosine (3b), which was purified by reversed phase HPLC (85 % yield of isolated product). The isolation from the reaction mixtures of [1-¹⁵N]-2,4-dinitroaniline in 1:1 ratio with respect to 3b confirmed that the formation of isoguanosine 3b resulted from a nucleophilic attack of the ammonia on the purine 6-C, followed by a fast, analogous reaction on the 1-C of the 2,4-dinitrophenyl ring.

2,4 DNCB = 2,4 dinitrochlorobenzene Ar = 2,4 dinitrophenyl

While unreactive towards aq. ammonia, 1 gave in high yields 6-Nalkylisoguanosine derivatives by treatment with amines. Either primary amines, such as *n*-propylamine, or secondary amines, such as piperidine, reacted smoothly (neat, 2.5 h, 50 °C) with substrate 1, giving respectively 5a (91 %) and 5b (93 %). The same products could be obtained, as expected, more rapidly and in almost quantitative yields, starting from compound 4.

6-Chloroxanthosine 1 was recognized as a useful precursor of the rare isoinosine 8, a fluorescent nucleoside whose interest is related to its ability to form base pairs with all the four common nucleosides in duplex oligonucleotide structures 13. The previously reported syntheses of 814 are based on the ribosylation of 2-hydroxypurine or on the deamination of 9-(B-D-ribofuranosyl)-2aminopurine. However, the reduction of halogenated purines is a well known method^{15,16} for introducing a C-H bond in the purine ring. We reasoned therefore that the reduction of 1 could result in a straightforward and unprecedented synthesis of isoinosine. When 1 underwent a catalytic hydrogenation with Pd/C in EtOH, only very low yields of isoinosine, in its triacetylated form (7), were observed, even after prolonged treatments. The reaction was optimized using water as solvent in the presence of MgO (1 eq, 8 h, r.t.) and, after deacetylation, isoinosine 8 could be obtained in 60 % overall yield. An alternative route was tested, which proved to be more efficient. 1 was first converted, by reaction with triphenylphosphine in benzene, into phosphonium salt 6 (93 % yield), which was successively hydrolyzed in alkaline conditions¹⁷ (NH₄OH, 4 h, 50 °C, 95 % yield after purification), thus affording, through cleavage of the C-P bond, 8 in 88 % overall yield.

Unless otherwise stated, all the synthesized compounds were purified by silica gel chromatography (experimental).

The structures of all the cited compounds were confirmed by spectroscopic data (1 H and 13 C NMR, FAB MS and UV), which agreed, for the known products, with the literature values. Particularly, in the case of 4, the position of the 2,4-dinitrophenyl group was proved by selective nOe experiments, which showed a nOe effect between the anomeric proton and the 3-H of the phenyl ring. This evidence indicated 4 to be the most plausible structure, where the protons at issue, by inspection of molecular models, are within nOe proximity, while excluding the alternative regioisomer having the 2,4-dinitrophenyl ring linked to the 1-N purine atom.

EXPERIMENTAL

General. TLC plates (Merck, silica gel 60, F254) were developed in solvent systems: A [CHCl3-MeOH (97:3, v/v)]; B [butan-1-ol-acetic acid-water (60:15:25, v/v)]; C [CHCl₃-MeOH (9:1, v/v)]; D [CHCl₃-MeOH (8:2, v/v)]. HPLC analyses were carried out on a Lichrosorb RP-18 column (Merck, 7 µm, 250-10). Column chromatographies were performed on silica gel (Merck, Kieselgel 60, 0.063-0.200 mm). PPh₃ was dried under reduced pressure at 50 °C for 15 h. The ¹H and ¹³C NMR spectra were recorded on a Bruker WM 270 instrument (270 MHz); J values are given in Hz. FAB mass spectra (positive) were determined on a ZAB 2SE spectrometer. High resolution mass data were recorded on a VG 70-250S spectrometer. UV spectra were taken on a Perkin-Elmer lambda 7 spectrophotometer. Melting points were determined on a Reichert Thermovar apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter at 25° C and are quoted in 10⁻¹ deg cm² g⁻¹.

3-N-(2,4-dinitrophenyl)-6-chloro-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-

2,3-dihydropurin-2-one 4.- A mixture of 300 mg (0.7 mmol) of 1, 350 mg (1.7 mmol) of 2,4-dinitrochlorobenzene and 240 mg (1.7 mmol) of K2CO3 was suspended in anhydrous DMF (2.5 ml) at 80 °C under stirring for 1.5 h. After cooling, the mixture was filtered and the solid washed with CHCl₃. The filtrate and washings, concentrated under reduced pressure, were purified on a silica gel column eluting with increasing amounts of MeOH in CHCl₃ (from 0 to 6 %) to give pure chloride 4 (395 mg, 95 %), Rf 0.5 (system A); m.p. 81-83 °C (from CHCl₃/MeOH); $[\alpha]_D$ -1.3 (c 0.06 in CHCl₃); λ_{max} (CHCl₃)/nm 276 (21500) and 242 (18400); MS (FAB) m/z 595 (MH⁺), 471 and 259; HRMS (EI) m/z 594.0747 $(M^+, C_{22}H_{19}ClN_6O_{12} \text{ requires 594.0749}); \delta_H (CDCl_3): 8.98 (1H, d, J = 2.7, 3-$ H dinitrophenyl); 8.57 (1H, dd, J = 2.7 and 9.0, 5-H dinitrophenyl); 8.21 (1H, s, 8-H); 7.63 (1H, d, J = 9.0, 6-H dinitrophenyl); 6.03 (1H, d, J = 4.7, 1'-H); 5.75 (1H, dd, J = 4.7 and 5.1, 2'-H); 5.25 (1H, dd, J = 5.1 and 5.1, 3'-H); 4.38 (1H, m, 4'-H); 4.18 (2H, m, 5'-H₂); 2.08, 2.07 and 2.05 (3H each, s, Ac); δ_{C} (CDCl₃): 169.9, 169.2, 169.0 (3 CH3CO); 158.1 (2-C); 152.7, 152.3 (6-C and 4-C); 143.6 (8-C); 131.7 (5-C); 149.8, 144.7, 141.5 (3 C dinitrophenyl); 129.3, 126.3, 121.8 (3 CH dinitrophenyl); 86.8 (1'-C); 79.7 (4'-C); 72.3 (3'-C); 69.9 (2'-C); 62.5 (5'-C); 20.3, 20.1 and 20.1 (3 CH₃CO).

[6-¹⁵N]-isoguanosine 3b.- Compound 4 (100 mg, 0.17 mmol) was treated with 1 ml of aq. $^{15}NH_3$ (3.3 N, 99 % ^{15}N) and the mixture was heated at 50 °C for 12 h under stirring. The resulting solution was evaporated under reduced pressure and the residue, dissolved in water, was purified by HPLC on a reversed-phase C₁₈

column eluted with increasing amounts of MeOH in water from 20 to 100%. Fractions eluted with 50 % MeOH gave [6-¹⁵N]-isoguanosine **3b** (41 mg, 0.14 mmol, 85 %); fractions eluted with 90 % MeOH gave [1-¹⁵N]-2,4-dinitroaniline (26 mg, 0.14 mmol), identified by ¹H and ¹³C NMR. δ_C (CD₃OD): 151.4 (d, $J_{C-15N} = 18.3, 1$ -C); 137.9; 131.9; 130.6; 124.7; 120.7.

3b, R_f 0.3 (system B); m.p. 236-240 °C (from MeOH); $[\alpha]_D$ -66 (c 0.020 in water); λ_{max} (water)/nm 292 (10500) and 246 (8600); HRMS (FAB) m/z 285.0967 (MH⁺. C₁₀H₁₄¹⁴N₄¹⁵NO₅ requires 285.0965); δ_H (DMSO-d₆): 7.94 (1H, s, 8-H); 7.25 (2H, d, $J_{H-15_N} = 89.0$, ¹⁵NH₂); 5.64 (1H, d, J = 5.7, 1'-H); 4.51 (1H, br dd, J = 5.7 and 5.5, 2'-H); 4.08 (1H, br m, 3'-H); 3.93 (1H, m, 4'-H); 3.58 (2H, ddd, J = 12.2, 2.2, 2.2, 5'-H₂); δ_C (DMSO-d₆): 155.5 (d, $J_{C-15_N} = 18.6$, 6-C); 155.4 (2-C); 152.9 (4-C); 138.4 (8-C); 109.4 (5-C); 87.7 (1'-C); 86.0 (4'-C); 73.0 (2'-C); 70.8 (3'-C); 61.8 (5'-C). Anal. calcd. for C₁₀H₁₃¹⁴N₄¹⁵NO₅·0.5H₂O: C 40.96; H 4.81; N 24.23. Found: C 41.01; H 4.90; N 24.27.

P-[2-Oxo-9-(2',3',5'-tri-O-acetyl-β-D-ribofuranosyl)-2,3-dihydropurin-6-yl]-

triphenylphosphonium chloride 6.- Compound 1 (214 mg, 0.5 mmol) was treated in benzene (5 ml) with 196 mg (0.75 mmol) of triphenylphosphine and the solution was kept at reflux for 4 h. Then the mixture was dried under reduced pressure and purified on a silica gel column eluted with increasing amounts of MeOH in CHCl₃ (up to 7%) to afford pure phosphonium salt 6 (305 mg, 93 %), $R_f 0.5$ (system C); m.p. 141-144 °C (from benzene/CHCl₃); $[\alpha]_D 0.6$ (c 0.03 in CHCl₃); λ_{max} (CHCl₃)/nm 381 (6000) and 241 (17000); HRMS (FAB) m/z 655.1962 ([M-Cl⁻]⁺. C₃₄H₃₂N₄O₈P requires 655.1958); δ_H (CDCl₃): 7.80-7.35 (16H, complex signals, phosphonium and 8-H); 6.36 (1H, d, J = 5.4, 1'-H); 5.56 (1H, dd, J = 5.5 and 5.4, 2'-H); 5.43 (1H, dd, J = 5.5 and 5.1, 3'-H); 4.33 (3H, m, J)3'-H and 5'-H₂); 2.11, 2.07 and 2.03 (3H each, s, Ac); 8_C (CDCl₃): 169.7, 169.1, 169.0 (3 CH₃<u>C</u>O); 165.6 (d, J_{C-P} = 4.1, 2-C), 156.6 (d, J_{C-P} = 1.4, 4-C), 141.3 (d, $J_{C-P} = 110.7$, 6-C), 137.7 (8-C), 134.4 (d, $J_{C-P} = 9.3$, phenyl ortho C), 134.2 (phenyl para C), 129.2 (d, $J_{C-P} = 12.9$, phenyl meta C), 126.4 (d, $J_{C-P} = 25.0$, 5-C), 118.0 (d, $J_{C-P} = 87.3$, phenyl 1-C), 83.6 (1'-C); 79.10 (4'-C); 72.7 (3'-C); 70.2 (2'-C); 62.7 (5'-C); 20.3, 20.0 and 20.0 (3 CH₃CO).

Isoinosine 8.

From chloride 1. A mixture of 1 (160 mg, 0.37 mmol) and MgO (14 mg, 0.37 mmol) in H_2O (15 ml) was hydrogenated in the presence of 10 % Pd/C (150 mg) at atmospheric pressure and at r. t. After 8 h the mixture was filtered, dried and then purified on a silica gel column eluted with increasing amounts of MeOH in

CHCl₃ (up to 5 %) thus furnishing pure 2',3',5'-tri-O-acetylisoinosine 7, which, treated with conc. NH₄OH (4 ml, 4 h, 50 °C), was then lyophilized twice to afford pure isoinosine 8 (60 mg, 60 %).

From phosphonium salt 6. Compound 6 (200 mg, 0.31 mmol) was treated with conc. NH₄OH (4 ml) at 50 °C for 4 h. The mixture was filtered, dried under reduced pressure and then purified by HPLC on a reversed phase C_{18} column, eluted with increasing amounts of MeOH in water from 0 to 100 %. Fractions eluted with 58 % MeOH gave pure isoinosine 8 (79 mg, 95 %).

7, R_f 0.40 (system C); m.p. 98-101 °C (from MeOH); $[\alpha]_D$ 33.7 (c 0.02 in CHCl₃); λ_{max} (CHCl₃)/nm 324 (2800) and 241 (2600); MS (FAB) m/z 395 (MH⁺), 259; HRMS (EI) m/z 394.1119 (M⁺. C₁₆H₁₈N₄O₈ requires 394.1125); δ_H (CDCl₃): 8.31 (1H, s, 6-H); 8.04 (1H, s, 8-H); 6.19 (1H, d, J = 5.8, 1'-H); 5.69 (1H, dd, J = 5.8 and 5.5, 2'-H); 5.03 (1H, dd, J = 5.5 and 5.3, 3'-H); 4.41 (3H, m, 4'-H and 5'-H₂); 2.17, 2.15 and 2.08 (3H each, s, Ac); δ_C (CDCl₃): 170.1, 169.5, 169.4 (3 CH₃CO); 159.5, 158.3 (2-C and 4-C); 144.2 (8-C); 138.2 (6-C); 124.4 (5-C); 84.5 (1'-C); 80.1 (4'-C); 73.0 (3'-C); 70.4 (2'-C); 63.0 (5'-C); 20.7, 20.4 and 20.3 (3 <u>C</u>H₃CO).

8, R_f 0.36 (system B); TLC, UV data identical with authentic material¹³; m.p. > 200 °C decomp. (from MeOH); $[\alpha]_D$ 20 (c 0.04 in water); HRMS (FAB) m/z 269.0889 (MH⁺. C₁₀H₁₃N₄O₅ requires 269.0886); δ_H (D₂O): 8.46 (1H, s, 6-H); 8.37 (1H, s, 8-H); 5.92 (1H, d, J = 5.6, 1'-H); 4.72 (1H, dd, J = 5.6 and 5.6, 2'-H); 4.39 (1H, dd, J = 5.6 and 5.4, 3'-H); 4.20 (1H, m, 4'-H); 3.83 (2H, ddd, J = 7.0, 3.0 and 3.3, 5'-H₂); δ_C (D₂O, 1,4-dioxane as internal reference, δ_C 67.4): 159.6, 159.0 (2-C and 4-C); 147.8 (8-C); 140.5 (6-C); 125.3 (5-C); 88.7 (1'-C); 86.3 (4'-C); 74.2 (3'-C); 71.2 (2'-C); 62.1 (5'-C).

6-(N-propylamino)-9-(β-D-ribofuranosyl)-2,3-dihydropurin-2-one 5a.

Compound 1 (100 mg, 0.23 mmol) was treated with propylamine (1.5 ml, 18 mmol) at 50 °C for 2.5 h. The resulting solution was dried under reduced pressure and purified on 3 silica gel plates (20x20 cm, 0.5 mm, Merck), developed in eluent system D. The band at R_f 0.2, scratched from the plates and eluted with CHCl₃/MeOH (1:1, v/v) afforded compound **5a** (66 mg, 91 %); m.p. 106-109 °C (from CHCl₃/MeOH); $[\alpha]_D$ -34.3 (c 0.038 in MeOH); λ_{max} (CH₃OH)/nm 276 (13400) and 249 (12200); HRMS (FAB) m/z 326.1468 (MH⁺. C₁₃H₂₀N₅O₅ requires 326.1464); δ_H (CD₃OD): 7.91 (1H, s, 8-H); 5.79 (1H, d, J = 6.2, 1'-H); 4.57 (1H, br t, 2'-H); 4.29 (1H, dd, J = 3.5 and 2.5, 3'-H); 4.15 (1H, m, 4'-H); 3.82 (2H, ddd, J = 9.0, 2.0 and 1.0, 5'-H₂); 3.50 (2H, br t, NH-C<u>H₂</u>); 1.70 (2H, m, CH₂CH₂CH₃); 1.00 (3H, t, J = 7.4, CH₂CH₂CH₃); δ_C (CD₃OD): 159.8, 153.7,

152.1 (2-C, 4-C and 6-C); 139.6 (8-C); 120.0 (5-C); 91.2 (1'-C); 88.2 (4'-C); 75.7 (3'-C); 72.9 (2'-C); 63.4 (1'-C); 42.7 (NHCH₂); 22.2 (CH₂CH₂CH₃); 11.7 (CH₃).

6-(N-piperidinyl)-9-(β-D-ribofuranosyl)-2,3-dihydropurin-2-one 5b.

Compound 1 (100 mg, 0.23 mmol) was reacted with piperidine (1.5 ml, 15 mmol) and the reaction mixture treated following the same procedure reported for 5a, thus obtaining 5b (76 mg, 93 %), R_f 0.35 (system D); m.p. 174-176 °C (from CHCl₃); $[\alpha]_D$ -43.0 (c 0.036 in MeOH); λ_{max} (MeOH)/nm 280 (13000) and 257 (12300); MS (FAB) m/z 352 (MH⁺) and 277; HRMS (FAB) m/z 352.1622 (MH⁺. C₁₅H₂₂N₅O₅ requires 352.1621); δ_H (CD₃OD): 7.84 (1H, s, 8-H); 5.78 (1H, d, *J* = 6.7, 1'-H); 4.51 (1H, dd, *J* = 6.7 and 5.3, 2'-H); 4.26 (1H, dd, *J* = 5.3 and 2.3, 3'-H); 4.16 (5H, m, 4'-H and piperidinyl α H₂); 3.82 (2H, ddd, *J* = 8.3, 2.4 and 1.3, 5'-H₂); 1.72 (6H, m, piperidinyl β and γ H₂); δ_C (pyridine-d₅): 162.2, 154.9, 152.8 (2-C, 4-C and 6-C); 136.8 (8-C); 116.7 (5-C); 90.7 (1'-C); 87.6 (4'-C); 75.3 (3'-C); 72.3 (2'-C); 62.9 (5'-C); 46.4 (2 α CH₂); 26.4 (2 β CH₂); 25.0 (γ CH₂).

ACKNOWLEDGEMENTS

We are grateful to CNR and MURST for grants in support of these investigations and to the "Centro di Metodologie Chimico-Fisiche dell' Universita' di Napoli Federico II" for NMR facilities. A. M. thanks "Istituto Superiore di Sanità" for a fellowship "Borse di Studio AIDS-Italia". The authors are also indebted to Rita Carolla for competent technical assistance.

REFERENCES AND NOTES

- De Napoli L; Messere A.; Montesarchio D.; Piccialli G.; Santacroce C.; Varra M.; J. Chem. Soc., Perkin Trans. 1, 1994, 923-926.
- De Napoli L.; Montesarchio D.; Piccialli G.; Santacroce C.; Varra M.; J. Chem. Soc., Perkin Trans. 1, 1995, 15-18.
- De Napoli L.; Messere A.; Montesarchio D.; Piccialli G.; J. Org. Chem., 1995, 60, 2251-2253.
- a) Davoll J.; J. Am. Chem. Soc., 1951, 73, 3174-3176. b) Vorbrüggen H.; Krolikiewicz K.; Liebigs Ann. Chem. 1976, 745-761. c) Chern J.W.; Lee H.Y.; Huang M.; Shish F.J.; Tetrahedron Lett. 1987, 28, 2151-2154.
 d) Divakar K. J.; Mottahedeh m.; Reese C.B.; Sanghvi Y. S.; Swift K.A.D.; J. Chem. Soc., Perkin Trans. 1, 1991, 771-774.
- 5) Pagano A.R.; Lajewski W. M.; Jones R.A.; J. Am. Chem. Soc., 1995, 117, 11669-11672.

6-CHLOROXANTHOSINE

- 6) Gao X.; Jones R.A.; J. Am. Chem. Soc., 1987, 109, 1275-1278.
- Acedo M.; Fàbrega C.; Avino A.; Goodman M.; Fagan P.; Wemmer D.; Eritja R.; Nucleic Acids Res., 1994, 22, 2982-2989.
- Kamaike K.; Takahashi M.; Utsugi K.; Tomizuka K.; Ishido Y.; Tetrahedron Lett., 1995, 36, 91-94;
- Similar results were found also in different reaction conditions; even treatments with NH₃ in CHCl₃, satd. soln., produced only traces of the target compound isoguanosine;
- 10) Zincke T.; Liebigs Ann. Chem., 1903, 330, 361-374.
- 11) Krohnke F.; Angew. Chem., 1963, 75, 317-329.
- 12) Lira E.P.; J. Heterocycl. Chem., 1972, 9, 713-716.
- 13) Topal M.D.; Fresco J.R.; Nature, 1976, 263, 289-293.
- 14) Holy' A.; Collect. Czech. Chem. Comm., 1979, 44, 2846-2853.
- 15) Iwamoto R.H.; Acton E.M.; Goodman L.; J. Am. Chem. Soc., 1962, 27, 3949-3953.
- Seela F.; Chen Y.; Bindig U.; Kazimierczuk Z.; *Helv. Chim. Acta*, 1994, 77, 194-202.
- 17) Cristau H.J.; Plénat F. in *The chemistry of organophosphorus compounds*. *Vol. 3: Phosphonium salts, ylides and phosphoranes*, Hartley F.R. Ed., Patai S. Series, Wiley-Interscience, Chichester, England, 1994, pp.111-138.

Received September 5, 1996 Accepted December 13, 1996