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ABSTRACT: We report a cationic intermolecular cyclization
between simple alkenes and alkynes catalyzed by AgSbF, with
great selectivity, involving alkyl C—H bond cleavage. This
methodology could supply important multisubstituted cyclo-
pentene scaffolds. The remarkable tolerance of functional groups
in the reaction allows great possibility for further transformations.
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he cationic cyclization reactions of alkenes and alkynes
are powerful methods to prepare various carbocycles.'
These types of reactions are normally initiated by proton
(involving Lewis or Brensted acids) or carbocation species
(generated in situ) and terminated at 7-bonds as electrophilic
substitution. In contrast, it was relatively rare for the alkyl C—
H bond to trap the carbocation, let alone with great selectivity.
When enynes, polyolefins, or polyacetylenes are used as the
substrates, polycyclic products could be generated via intra-
molecular processes, and these types of reactions are applied to
synthesize many complex natural products.”~* Although these
methods are very effective, there is a critical challenge for the
intermolecular cyclization between the alkenes and alkynes,
because the intrinsic electrophilic properties of these substrates
would result in self-dimerization or oligomerization. Another
inevitable problem is the control of regioselectivity, in
particular, when unsymmetric alkenes or alkynes are involved.
Although many efforts have been made in this part, most
successful cases are accomplished via the combination of
special substrates and a cationic center, such as using allylic
alcohols, propargyl alcohols, or acetals as the substrates.” In
2010, Echavarren and co-workers reported a gold(I)-catalyzed
intermolecular [2 + 2] cycloaddition of terminal alkynes with
alkenes leading to cyclobutenes.’ Inspired by this elegant work,
as well as our recent success in electrophilic activation of
simple alkynes,” we hypothesized that initiation of this process
by other catalysts might alter the reaction outcome and/or
barrier. Remarkably, a suitable Lewis acid AgSbF4 could
catalyze the cationic intermolecular cyclization between simple
alkenes and alkynes with great selectivity, involving alkyl C—H
bond cleavage and yielding entirely different products and
multisubstituted cyclopentene derivatives (see Scheme 1).
Recently, several other groups and our group reported
intramolecular cationic cyclization reactions of alkenes and
alkynes promoted by super acid through the formation of a C—
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Scheme 1. Silver-Catalyzed Efficient Cyclization of Alkenes
and Alkynes to Five-Membered Carbocycles
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C bond converted at the alkyl C—H bond.”*® These reactions
could supply even polycyclic carbocyles in one step from rather
simple starting materials. Here, we envisioned an economic
and straightforward synthesis of cyclopentene derivatives with
one alkene and one alkyne as the substrates. Treating the
mixture of alkyne 1a and alkene 2a with the super acid TfOH
could generate the desired product 3aa in 40% yield (see
Scheme 2, entry 1). However, the contaminant of generated
alkene dimer made the mixture inseparable, and the conversion
ratio of alkyne la was merely 60%. The use of Tf,NH led to
lower efficiency (Scheme 2, entry 2), but HSbF catalyst could
produce the desired product 3aa in 70% yield, despite some
isomers in ~15% yield (Scheme 2, entry 3). The Lewis acid
AgSbF, then was tested, surprisingly giving desired product
3aa in 90% yield, meanwhile the dimerization of 2a was
suppressed efficiently (Scheme 2, entry 4). The success of the
catalyst AgSbF, was assumably attributed to the balance
between the affinity of the Ag ion with alkynes versus
alkenes.”'" The utilization of other silver salts or other solvents
instead of CHCI; was not successful to give the desired
product (Scheme 2, entries 5—16). And the co-catalyst
PPh;AuCl/AgSbF, was capable of catalyzing the reaction but
resulted in slightly diminished yield (Scheme 2, entry 17).
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Scheme 2. Condition Optimization of Construction of Five-
Membered Carbocycles with 1a and 2a

H
Cat.10 mol% @—
40°C, 24 h,N
2 Ph Ph

Ph———Ph +
1a 2a,2eq. 3aa
Entry Cat. Solvent Yield?
1 TfOH CHCl3 40%
2 THNH CHCl, 10%
3 HSbFg CHCl; 70%
4 AgSbFg CHCI,4 90% (83%")
5 AgNTf, CHCl, 0
6 AgOTf CHCl3 0
7 AgBF, CHCl, 0
8 AgNO; CHCl, 0
9 AgOAc CHCl, 0
10 AgF CHCl3 0
11 AgPFg CHCl, 0
12 AgSbFg DCE 0
13 AgSbFg DCM 0
14 AgSbFg cCly 0
15 AgSbFg MePh 0
16 AgSbFg 1,4-Dioxane 0
176 Pi;gﬁ‘é" DCE 78%
18 PPhs;AuCI DCE 0
19 AgSbFg (5 mo%) CHCl3 73%
20 AgSbFg (2.5 mo%) CHCI3 <5%

“Determined by 'H NMR versus an internal stardard. “Isolated yield.
“Reaction conditions: PPh;AuCl/AgSbF, (S mol %/6 mol %), 60 °C.

However, alone PPh;AuCl catalyst failed to initiate the process
(Scheme 2, entry 18). Lower catalyst loading led to decreased
yields and conversion rate (Scheme 2, entries 19 and 20).

Because of the importance of cyclopentenes,'" the reactions
were extended with more substrates (Scheme 3). First, a range
of alkynes with various substitutents were tested in the
reactions. As shown in Scheme 3, diaryl acetylenes 1b—1e with
the F-, Br-, Me-, and MeO-groups on the phenyl rings all
proceeded smoothly under standard conditions to give
products 3ba—3ea in good yields. The use of unsymmetric
diaryl acetylenes 1f—1h afforded the corresponding products
3fa—3ha with great regioselectivity (>50:1), probably because
the generated carbocation center near the electron-rich phenyl
is more stable. Remarkably, aryl-alkyl acetylenes 1i—11 also
worked well in the cyclization reactions with 2a to give
products 3ia—3la. To our surprise, halogen atoms (including
Cl, Br, and I) on the alkyl groups (1i, 1k, and 11) all tolerated
this AgSbF¢-catalyzed reaction. Finally, bromo-phenyl acety-
lene 1m also fit this AgSbF-catalyzed cyclization reaction to
form 3ma, albeit in slightly low yield. The residence of the
halogen atoms in the products left the possibility for further
useful transformations.

Next, a variety of alkenes were evaluated with symmetric or
unsymmetric acetylenes for this AgSbF-catalyzed cyclization
(Scheme 4). Many commercially available alkenes 2b—2i with
2, 3, and 4-substituents were tested with tolane 1a. The use of
different alkenes 2c and 2a gave the same product 3aa,
indicating the carbocationic process of this reaction, as well as
2e and 2f. When 2h was employed, the double bond in the
product was shifted to the cyclohexyl ring, probably due to the
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Scheme 3. Reaction Scope of Alkynes with 2a

AgSbFg 10 mol% Ar
Ar——R + _—
H CHCl3, 24 h R
1b-1m 2a 3ba-3ma
F Br Me
F Br Me
3ba, 82% 3ca, 67% 3da, 86%
MeO Q @ Q 0
MeO % o
OMe
3ea, 60% 3fa, 42% 3ga, 49%
o4 -
O PH I
P
3ha, 46% 3ia, 78% 3ja, 70%
PH Br PH : :C' PH éB,
3ka, 64% 3la, 60% 3ma, 40%

lesser steric hindrence in the product 3ah. And, interestingly,
the two neighboring H atoms on the five-membered ring were
transconfigured. The shift of the double bond was also found
in the formation of 3ai. When cyclic substrates 2j and 2k were
used, spirocycles were easily produced. When phenyl-cyclo-
hexene 2I reacted with 1a, indene product was generated via
C—C bonds formed on the phenyl ring. Interestingly, when
alkene 2i reacted with terminal alkynes 1n, 1o, and 1p, all the
reactions produced cyclopentenes with shifted double bonds.
This may be due to the higher stability of the formed tertiary
carbocation, in comparison to a secondary carbocation. The
reaction of alkyne le and alkene 2m with long alkyl chain
could proceed smoothly with good regioselectivity, leading to
the five-membered ring product 3em, instead of any larger-ring
derivatives. When using proton initiator (TfOH or Tf,NH) for
the reaction of le and 2m, there was no desired cyclopentene
product; instead, isomers of alkene 2m with the double bond
shifted to internal were produced. Therefore, AgSbF,
possessed unique advantages, compared to proton catalysts.
Excitingly, this skeleton widely occurs in many biologically
active com}z)ounds, natural products, and natural productlike
molecules.'” Thus, we examined the possibility of modification
of these new products. To our delight, the bromoethyl product
3ka could be easily transformed via substitution by an azido
group (to compound 4), thiocyano group (to compound S), or
elimination by KOH (to compound 6). Moreover, the bromo
product 3ma could be performed with the Sonogashira or
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Scheme 4. Reaction Scope of Various Alkenes with 1

AgSbF5 10 mol%

Ar———R + Alkene Cyclopentenes
CHCl3, 24 h
1a,1e,1n-1p 2b-2m 3
:<?< o t\) HQ\ 5
Ph Ph Ph
2b 3ab, 71% 2c 3aa, 72%
L a L}
Ph
ph N Ph
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Ph
Ph
2g 3ag, 48%
H
X phI?L
Ph
2h 3ah, 63% 2i 3ai, 58%
H
e~ O
RT H Phi
Ph
R =4-Br, 3ni, 45%
2i R =2-Cl, 30i, 62% 2j 3aj, 50%
R = 2-Br, 3pi, 65%
7\/@ %
H Ph Ph
Ph Ph
2k 3ak, 30% 3ak’, 33%
Ph O
@ W Q OMe
OMe
2l 3al, 90% 2m

AgSbFg: 3em (58%)
TFOH or Tf,NH: NP

Suzuki coupling reaction to give products 7a and 7b."” Finally,
the product 3ca could be irradiated to give fused phenanthrene
8. The structure of 8 was unequivocally confirmed by XRD
analysis as well (see Figure 1, Cambridge Crystallographic
Data Centre No. CCDC-1584141).

Mechanistically, it is noteworthy to discover the great
selectivity between simple alkenes and alkynes in the presence
of AgSbFj catalyst. We were curious about the trigger mode of
AgSbF catalyst. Thus, monitoring the reaction of la with 2a
under S mol % and 10 mol % AgSbF, by GC analysis showed
that the formation of cyclopentene 3aa under 10 mol %
AgSbF¢ loading is obviously faster than the reaction with 5
mol AgSbFq (see Figure S1 in the Supporting Information). So
the catalyst loading is very crucial for this transformation. At
the same time, there was a dramatic rate increase after 2 h
under both conditions. The slow conversion ratio (<20%)
within the first 2 h suggests that this reaction requires a long
initiation process. Controlled experiments then were con-
ducted [see Scheme S, eqs 1—4]. Surprisingly, even within 0.5
h, the reaction can reach beyond 60% yield (>70% conversion)
[Scheme S, eqs 1 and 3], and is in sharp contrast to the
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Figure 1. Products derivatization and structure determination of 8
from 3ca.
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Scheme 5. Controlled Experiments for the Catalyst Role

1a: 0.2 mmol
1a + AgSbFg CHCly 2a: 0.4 mmol 3aa W
40°C, 1h CHCl., 40°C 0.5 h: 66%
0.02 mmol 0.02 mmol 3 2h: 76%
1a: 0.2 mmol 3aa
CHCI 2a: 0.4 mmol
2a + AgSbFg . 3 0.5 h: 8% 2)
0.02mmol 0.02mmol #0°C 1 CHCI3, 40°C 10 h: 45%
1a: 0.2 mmol 3aa
CHCI :
1a + 2a + AgSbFg 4 3 2a: 0.4 mmol 0.5h:73% (3)
0.02mmol  0.02mmol  0.02mmol 40 ¢ 1N CHCl3, 40°C 2h: 82%
1a: 0.2 mmol 3aa
CHCI. 2a: 0.4 mmol
AgSbFe — 0.5 h: <5% (@
002mmol 407G CHCI 40°C  10h:<5%
1e
AgSbFg 10%
+ =
3 CHCl3, 60 °C,
55%
(S)-2m, 92% ee (R)-3em  OMe
TfOH or Tf,NH instead of AgSbFg : no product.
"
BB, \(\/
(R)-3em ——— (5)
w0
86%
HO OH

9, 80% ee

standard protocol (0.5 h, ~15% conversion). For the
pretreatment of AgSbF, with alkene 2a, the reaction rate
declined slightly, compared with the standard condition
[Scheme S, eq 2]. Whereas for the pretreatment of AgSbFy
in CHCl,, the catalyst could be deactivated and not be capable
of catalyzing the cyclization. Through these series of
experimental results, we proposed that this reaction was
induced by the action of AgSbF with alkynes, and the in-situ-
generated reactive intermediates could trigger the subsequent
cyclization with alkenes.

In addition, we made some attempts to shed more light on
the catalyst activation step. Chemical shift had changed
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obviously via '*C NMR spectra, compared with the alone
alkyne 1d in CDCl;, which revealed the dynamic coordination
between 1d and AgSbF4 and the formed complex was not
stable (see Figure S2 in the Supporting Information)."*
Monitoring the reactions of la with 2a under different
substrates concentration via gas chromatography (GC)
analysis showed the relative rate of cyclopentene 3aa formation
with higher alkyne concentration was faster (see Figures S4
and SS in the Supporting Information); but no obvious
acceleration was observed with higher alkene concentration.
These results further proved the coordination between alkyne
and AgSbF4 was more favorable.

Furthermore, for a deep insight into the alkyl C—H cleavage
mechanism, (S)-2m was prepared and subjected to react with
le, thus enantioenriched product (R)-3em was synthesized
with some erosion of ee [Scheme 5, eq S]. The comparation of
its derivative 9 with simulating result suggested that the
enantiomer ratio was 90:10. This result implied that most of
the C-figuration was retained in the cyclization process and
suggested the alkyl C—H cleavage was very likely a concerted
process.

Based on the above controlled experiments, plausible
catalytic cycles are proposed in Scheme 6. In this reaction,

Scheme 6. Proposed Mechanism

Ph—==—Ph 1a
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the alkyne (exemplified by 1a) is very likely to coordinate with
a silver salt first,"" which serves as a template to further react
with the alkene (exemplified with 2a) (see Scheme 6). The
template effect enables the C—C bond formation between the
alkene and alkyne moiety rather than two alkenes. So when the
C—C bond is formed, a vinylic-silver species IV is generated
and it resembles a vinyl cation IV’.">” The subsequent key step
is the alkyl C—H cleavage, according7 to previous work by
Gaunt,"*? Metzger,'™* and our group,”” and the experiment
result of Scheme 5, eq 5, a concerted 1,5-hydride shift-
carbocation interception or a concerted C—H insertion is
preferred via transition state V, leading to intermediate VI. The
intermediate VI then can undergo elimination to give an alkyl
silver intermediate VII and an acid. Finally, the silver
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intermediate is quenched by the acid to give the product
and regenerates the catalyst AgSbF,.'®

In summary, we reported a novel cationic intermolecular
cyclization between the alkenes and alkynes catalyzed by
AgSbF,. The remarkable tolerance of functional groups in the
reaction allowed a great possibility for further transformations.
These findings encourage us finding more Ag-catalyzed new
reactions based on C—C bond formation on the inert C—H

bond.
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