Organic & Biomolecular Chemistry

View Article Online

COMMUNICATION

Check for updates

Cite this: Org. Biomol. Chem., 2018, **16**, 9143

Received 1st October 2018, Accepted 8th November 2018 DOI: 10.1039/c8ob02450b

rsc.li/obc

A new synthetic route to 5,6,11,12-tetraarylethynyltetracenes†

Kei Kitamura,^a Kenta Asahina,^a Yusaku Nagai,^a Keshu Zhang,^a Shogo Nomura,^b Katsunori Tanaka ^{b,c} and Toshiyuki Hamura ^{*}

A new synthetic route to 5,6,11,12-tetrakis(arylethynyl)tetracenes, π -extended rubrenes, was developed *via* [4 + 2] cycloadditions of dialkynylisobenzofuran and 1,4-naphthoquinone. Introduction of arylethynyl groups by double nucleophilic additions to tetracenequinone gave sterically congested (arylethynyl)tetracenes after reductive aromatization. The photophysical properties of the newly prepared π -conjugated molecules are also evaluated.

We previously reported a preparation of 5,6,11,12-tetraarylethynyltetracene 1, a new class of π -extended rubrenes, *via* [4 + 2] cycloaddition of dialkynylnaphthalyne 2 and dialkynylisobenzofuran 3 (Scheme 1).^{1,2} In this reaction, two alkynyl groups on the naphthalyne 2 can lower the LUMO energy, allowing the practical construction of the sterically overcrowded structure through their efficient HOMO–LUMO interaction.

This approach, however, has a problem in that the yield of the aromatization $(4 \rightarrow 1)$ is low or moderate owing to the unexpected reactivities derived from the closely located *peri*-ethynyl groups in epoxytetracene 4 under the acidic conditions.³

To solve this problem, we focused on developing a new synthetic route to π -extended rubrene **1** using dialkynylisobenzofuran **3** as a reactive platform.^{4,5} Our second approach consists of four-step syntheses, which is depicted in Scheme 2.⁶ In the first step, the [4 + 2] cycloaddition of dialkynylisobenzofuran **3** and 1,4-naphthoquinone (5) gives the cycloadduct **6**, which is converted to the tetracenequinone 7 by aromatization (step 2). Subsequent introduction of two alkynyl groups by double nucleophilic additions of alkynyl anions (step 3), and reductive aromatization of the resulting diol **8** would produce the target compound **1** (step 4). Along these lines, we now report an efficient synthetic access to π -extended rubrenes possessing various arylethynyl groups at the *peri*-positions. Moreover, photophysical properties of the newly prepared poly-ethynylated tetracenes are evaluated. Also described is the application of the parent compound **1a** to a cellular imaging agent.

Scheme 3 shows the [4 + 2] cycloaddition of dialkynylisobenzofuran. Upon mixing of isobenzofuran 3a and naphthoquinone 5 (CH₂Cl₂, r.t.), a new spot corresponding to the cycloadduct 6a was observed by TLC. Further reaction at the same temperature, however, did not completely consume the start-

Scheme 1 The first syntheses of π -extended rubrenes **1** via [4 + 2] cycloaddition of naphthalyne and isobenzofuran.

Scheme 2 New synthetic route to π -extended rubrenes 1.

^aDepartment of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan. E-mail: thamura@kwansei.ac.jp

^bBiofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

^cBiofunctional Chemistry Laboratory, Kazan Federal University,

¹⁸ Kremlvovskava street. Kazan 420008. Russia

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c8ob02450b

Scheme 3 [4 + 2] cycloaddition between isobenzofuran 3a and 1,4-naphthoquinone (5).

Fig. 1 [4 + 2] cycloaddition between isobenzofuran 3a and 1,4-naphthoquinone (5) monitored by NMR. (a) A: 5 min, B: 2 h, C: 7 h, D: 15 h.

ing materials **3a** and **5**, indicating their equilibrium with the cycloadduct **6a**. Indeed, ¹H NMR analysis revealed that the cycloadduct **6a** including *endo-* and *exo-*isomers was readily formed after dissolving the isobenzofuran **3a** and naphthoquinone **5** in $CDCl_3$ at room temperature (see A in Fig. 1). After 7 h, the ratio of **3a**, **5**, *exo-***6a**, and *endo-***6a** almost became constant (see D in Fig. 1). The stereochemistry of the *exo-***6a** and *endo-***6a** was tentatively assigned by consideration of the chemical shift of each methine proton.⁷

After further study of this [4 + 2] cycloaddition, we were pleased to find that the solvent choice is crucial to produce the high yield of the cycloadduct **6a**: when the above-mentioned reaction was performed in toluene at 90 °C, the [4 + 2] cycloadduct **6a** gradually precipitated from the solution due to its low solubility in toluene, affording the essentially pure product **6a** almost in quantitative yield (Scheme 3). Interestingly, the *endo* isomer **6a** was solely produced under these conditions. By dissolving in CDCl₃ (25 °C, 26 h), the cycloadduct **6a** again underwent cycloreversion to give the dialkynylisobenzofuran **3a** and 1,4-naphthoquinone (**5**).⁸

Scheme 4 shows the conversion of the [4 + 2] cycloadduct **6a** to tetracenequinone **7a**. Upon heating of cycloadduct **6a** in the presence of TsOH at 60 °C, the cycloreversion occurred quickly, and the aromatized product **7a** was not obtained at all.^{9,10} On the other hand, treatment of the cycloadduct **6a** with LiI and DBU at low temperature $(CH_2Cl_2, 0 \ ^{\circ}C)^{11}$ underwent the clean aromatization without invoking the cycloreversion to give the tetracenequinone **7a** in 95% yield.

Scheme 4 Aromatization of cycloadduct 6a to tetracenequinone 7a.

Further transformation of the tetracenequinone 7**a** to π -extended rubrene 1**a** was achieved through double nucleophilic additions of phenylethynyllithium, followed by Sn^{II}mediated reductive aromatization (Scheme 5). Importantly, the nucleophilic addition of alkynyllithium to 7**a** occurred cleanly by warming the reaction mixture to room temperature, in spite of the high steric hindrance between incoming nucleophile and proximal alkynyl groups.

In a similar manner, the substituted derivatives **1b** and **1c**, having four *p*-tolylethynyl or (4-bromophenyl)ethynyl groups at both *peri*-positions, were efficiently synthesized by this fourstep sequence including the tetracenequinones **7b** and **7c** as key intermediates (Scheme 6).

It should be noted that the developed method has high synthetic potential in that the sterically congested derivative **1d**

Scheme 5 Transformation of tetracenequinone 7a to π -extended rubrene 1a.

Scheme 6 Preparation of π-extended rubrenes 1b-1d.

possessing four 2,6-xylylethynyl groups on the tetracene core was easily accessible in good yield. This is a sharp contrast from our previous method by acid-promoted aromatization of the epoxy tetracene **4d** (Ar: 2,6-xylyl), where the product **1d** was obtained in poor yield, and a sizable amount of furan (structure not shown) was produced.¹

To evaluate the photophysical properties, UV–Vis spectra of π -extended rubrenes **1a–1d** were measured in chloroform (Fig. 2). The π -extended rubrene **1a** has its absorption maximum at 640 nm, which was greatly red-shifted over 100 nm from that of the parent rubrene, indicating effective π -extension by the existence of four phenylethynyl groups on the tetracene core. The π -extended rubrenes **1b** and **1c** with *para*-substitution denoted the similar tendency of **1a**, whereas the absorption maximum of the sterically congested derivative **1d** was slightly blue-shifted (623 nm).

Fluorescence spectra were also measured in chloroform (Fig. 3). The π -extended rubrenes **1a–1d** showed a fluorescent maximum peaking at around 690 nm, which were excited at their absorption maximum. A larger Stokes shift was observed in **1d** (1620 cm⁻¹) compared to that of **1a** (1200 cm⁻¹). The absolute fluorescent quantum yields of these π -extended derivatives were nearly 10%, which were lower than that of the parent rubrene.

Fig. 2 UV–Vis absorption spectra of π -extended rubrenes **1a–1d**.

Fig. 3 Fluorescence spectra of π -extended rubrenes **1a**-1d.

Fig. 4 Fluorescence imaging of HeLaS3 cells by π-extended rubrene. The cells were treated with 100 μM of **1a** for 30 min at 37 °C and analyzed by fluorescence microscopy. Green channel: $\lambda_{em} = 620$ nm, $\lambda_{ex} = 700$ nm. Scale bar: 20 μm.

Finally, preliminary investigation of cellular imaging using π -extended rubrene was performed by treating the HeLa cells with **1a** for 30 min at 37 °C. Fluorescence signals from cells upon excitation at 620 nm indicate a future applicability of π -extended rubrene as a bioimaging probe (Fig. 4).

Conclusions

In conclusion, [4 + 2] cycloaddition of dialkynylisobenzofuran and 1,4-naphthoquinone allowed rapid construction of alkynylated tetracenequinones, which were amenable to transformation *en route* to tetrakis(arylethynyl)tetracenes. Further studies on the application of these attractive π -conjugated molecules to organic electronics materials and fluorescent probes are underway in our laboratories.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15H05840 in Middle Molecular Strategy and JST ACT-C Grant Number JPMJCR12YY, Japan.

Notes and references

- (*a*) K. Kitamura, K. Asahina, Y. Nagai, H. Sugiyama, H. Uekusa and T. Hamura, *Chem. – Eur. J.*, 2018, 24, 14034– 14038; (*b*) T. Hamura, *Patent JP* 2016169213, 2016.
- 2 For related reviews, see: (a) M. M. Richter, Chem. Rev., 2004, 104, 3003–3036; (b) M. Bendikov, F. Wudl and D. F. Perepichka, Chem. Rev., 2004, 104, 4891–4946; (c) J. E. Anthony, Angew. Chem., 2008, 120, 460–492, (Angew. Chem., Int. Ed., 2008, 47, 452–483).
- 3 For related distorted π-crowded ethynylnaphthalene derivatives, see: (a) B. Bossenbroek, D. C. Sanders, H. M. Curry and H. Shechter, J. Am. Chem. Soc., 1969, 91, 371–379;

(b) H. A. Staab and J. Ipaktschi, *Chem. Ber.*, 1971, **104**, 1170–1181; (c) A. E. Jungk and G. M. J. Schmidt, *Chem. Ber.*, 1971, **104**, 3272–3288. See also: (d) R. A. Pascal, Jr., *Chem. Rev.*, 2006, **106**, 4809–4819.

- 4 (a) T. Hamura and R. Nakayama, *Chem. Lett.*, 2013, 42, 1013–1015; (b) K. Asahina, S. Matsuoka, R. Nakayama and T. Hamura, *Org. Biomol. Chem.*, 2014, 12, 9773–9776; (c) R. Kudo, K. Kitamura and T. Hamura, *Chem. Lett.*, 2017, 46, 25–28.
- 5 For our synthetic application of isobenzofurans to polyacene derivatives, see: (a) S. Eda and T. Hamura, *Molecules*, 2015, 20, 19449–19462; (b) R. Akita, K. Kawanishi and T. Hamura, *Org. Lett.*, 2015, 17, 3094–3097; (c) S. Eda, F. Eguchi, H. Haneda and T. Hamura, *Chem. Commun.*, 2015, 51, 5963–5966; (d) H. Haneda, S. Eda, M. Aratani and T. Hamura, *Org. Lett.*, 2014, 16, 286–289.
- 6 For syntheses of substituted rubrene derivatives, see:
 (a) A. S. Paraskar, A. R. Reddy, A. Patra, Y. H. Wijsboom,
 O. Gidron, L. J. W. Shimon, G. Leitus and M. Bendikov, *Chem. Eur. J.*, 2008, 14, 10639-10647; (b) J. Zhang,
 S. Sarrafpour, T. E. Haas, P. Müller and S. W. Thomas,
 J. Mater. Chem., 2012, 22, 6182-6189.
- 7 For a related [4 + 2] cycloaddition of diphenylisobenzofuran with 1,4-naphthoquinone, and structural characterization

of the *endo/exo*-cycloadducts, see: T. Wombacher, S. Foro and J. J. Schneider, *Eur. J. Org. Chem.*, 2016, 569–578. See also ref. 5*b* and 6.

- 8 The perfect *endo* selectivity observed in the [4 + 2] cycloaddition of isobenzofuran **3a** and naphthoquinone **5** is presumably due to the lower solubility of the *endo* cycloadduct **6a** in toluene than that of the *exo* cycloadduct **6a**. Therefore, the *endo* cycloadduct **6a** was selectively precipitated from the solution under the equilibrium between the starting materials and the cycloadducts. In a similar manner, the *endo* cycloadducts **6b–6d** were obtained as a single stereoisomer by precipitation owing to their poor solubility with EtOH or heptane. For details, see ESI.†
- 9 A similar approach for preparation of substituted rubrenes by using [4 + 2] cycloaddition of diarylisobenzofuran and naphthoquinone was developed, see: J. A. Dodge, J. D. Bain and A. R. Chamberlin, *J. Org. Chem.*, 1990, 55, 4190–4198.
- 10 Under the acidic conditions, dialkynylisobenzofuran **3a** was gradually decomposed, which promoted the cycloreversion of the cycloadduct **6a**.
- 11 For related base-induced aromatization, see: (a) R. Polley and M. Hanack, J. Org. Chem., 1995, 60, 8278–8282;
 (b) S.-H. Chan, C.-Y. Yick and H. N. C. Wong, Tetrahedron, 2002, 58, 9413–9422.