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The reconstruction of new carbon skeletons after C�C bond
cleavage, which leads to the rapid and selective synthesis of
novel organic molecules that cannot be obtained by the
simple combination of traditional synthetic methods,[1] is an
important goal of many recent studies in atom-economical
organic, organometallic, and industrial chemistry.[2] In our
recent report on the unusual ruthenium-catalyzed coupling of
cyclobutenediones with alkenes[3] and the ruthenium-cata-
lyzed synthesis of pyranopyrandiones by ring-opening car-
bonylation of cyclopropenones,[4] we demonstrated the
explicit cleavage of C�C bonds leading to the reconstruction
of new carbon skeletons. Since ruthenacycles, which would be
obtained by direct oxidative addition of strained cyclic
substrates such as cyclobutenediones and cyclopropenones
to low-valent ruthenium species, are postulated to be key
intermediates, we next turned our attention to the reactivity
of a similarly strained cyclic compound, cyclobutenone,
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toward ruthenium and other transition-metal complexes.
Particular attention has been focused on the thermal reac-
tivity of cyclobutenones bearing alkynyl, alkenyl, aryl, and
allenyl substituents at the 4-position because of their potential
application to the synthesis of ring-expanded compounds.[5]

On the other hand, 4-nonsubstituted cyclobutenones are
relatively stable, and only the pioneering work by Liebeskind
and co-workers on the transition-metal-complex-catalyzed
synthesis of phenols from 4-nonsubstituted cyclobutenones
and alkynes has been reported.[6,7] This methodology is quite
attractive, since transition-metal vinylketene complexes have
been postulated to be important intermediates in reactions
leading to a variety of organic ring products, such as phenols,
naphthols, cyclohexadienones, cyclopentenones, lactams,
furans, a-pyrones, and 2-furanones.[8] After many trials, we
developed a novel stereoselective synthesis of 2-pyranones by
the ring-opening dimerization of cyclobutenones catalyzed by
ruthenium and rhodium complexes. In addition, a rhodium
complex, [{RhCl(CO)2}2], showed high catalytic activity in the
decarbonylative and/or direct coupling of cyclobutenones
with alkenes by C�C bond cleavage. These results indicate
that the present reactions likely involve both h4-vinylketene
and metallacyclopentenone intermediates.

Treatment of cyclobutenones 1 with 5-mol%
[{RuCl2(CO)3}2] in toluene at 110 8C for 12 h gave novel
dimerization products, 6-alkenyl-2-pyranones 2, in high yields
with good Z selectivity (see Equation (1)) . In the present
reaction, the starting cyclobutenones 1 were completely
consumed, and the only products detected by GLC were the
corresponding (E)- and (Z)-6-alkenyl-2-pyranones 2.

First, the catalytic activity of several ruthenium complexes
was examined in the dimerization of 1b to 2b. Among the
catalysts examined, [{RuCl2(CO)3}2] showed the highest
catalytic activity (2b, 81%), and RuCl3·3H2O showed mod-
erate catalytic activity (2b, 31%). In both reactions, the E/Z
ratio of the 6-alkenyl group in 2b was 22/78. Other ruthenium
complexes such as [Ru3(CO)12], [RuCl2(PPh3)3],
[RuH2(PPh3)4], and [(h5-C5Me5)RuCl(1,5-cyclooctadiene)],
were totally ineffective. No 2-pyranone 2b was obtained
with several other transition-metal complexes, such as
[RhCl(PPh3)3], RhCl3·3H2O, [Pd(PPh3)4], and [Ni(cod)2].
Surprisingly, only [{RhCl(CO)2}2] showed high catalytic
activity in the synthesis of 2b from 1b, and changing the
[{RuCl2(CO)3}2] catalyst to the [{RhCl(CO)2}2] catalyst led to
a sharp reversal of stereoselectivity to give (E)-6-alkenyl-2-
pyranone ((E)-2b) as the sole product in 75% yield [Eq. (1)].

The use of an appropriate solvent is critically important
for the success of the present reaction. In the [{RuCl2(CO)3}2]-

catalyzed dimerization of 1b to 2b, toluene gave the best
result. No 2b was obtained in solvents, such as THF, 1,4-
dioxane, N-methylpiperidine, DMF, and acetonitrile, partly
due to their ability to coordinate with the active catalyst
species. A similar critical solvent effect was also observed in
the [{RhCl(CO)2}2]-catalyzed dimerization of 1b to 2b.

Furthermore, [{RhCl(CO)2}2]-catalyzed decarbonylative
coupling and direct coupling of cyclobutenones with 2-
norbornene 3a have been developed [Eq. (2)].

Under an argon atmosphere, decarbonylative coupling
proceeded smoothly to give cyclopentenes 4 in high yields,
while under 30 atm of carbon monoxide, direct coupling with
3a gave cyclohexenones 5 in high yields. Use of 13CO gave the
corresponding 13C-labeled cyclohexenone [13C]-5b
[Eq. (3)],[9] which strongly suggests that the decarbonylation
of a rhodacyclopentenone and/or a rhodacycloheptenone is
facile, but reversible. Under carbon monoxide pressure,
subsequent reductive elimination from a stabilized rhodacy-
cloheptenone predominantly occurs to give cyclohexenones 5
(see below).

Considering all of our findings and evidence reported by
Liebeskind and co-workers,[6] the most plausible mechanism
for the ring-opening dimerization of cyclobutenones is
illustrated in Scheme 1. The initial step might consist of
regioselective ring-opening of cyclobutenone 1 by an active
metal center to give an h4-vinylketene intermediate 6, which
rapidly reacts with another molecule of metal-bound vinyl-
ketene according to a hetero-Diels–Alder reaction. Succes-
sive isomerization of 7 would give the corresponding 2-
pyranone 2.[10] No interconversion between (Z)-2 and (E)-2
was observed in the presence or absence of Ru and Rh
catalysts.

On the other hand, in the presence of 2-norbornene (3a),
the highly exo-selective coordination ability of 3a[11] leads to
the formation of a rhodacyclopentenone intermediate 9 from
6 via 8,[6d] and subsequent stereoselective insertion of 3a into
a rhodium�carbon bond in 9 would give a rhodacyclohepte-
none intermediate 10. Under an argon atmosphere, this
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rhodacycloheptenone 10 is easily decarbonylated to a rhoda-
cyclohexene intermediate 11, and subsequent reductive
elimination gives the corresponding cyclopentene 4. Even
under carbon monoxide pressure, this decarbonylation pro-
cess of 10 to 11 is facile, however, it is reversible (see above).
Rapid reductive elimination from the stabilized 10 by carbon
monoxide occurs to give the corresponding cyclohexenone 5
(Scheme 2).

An alternative pathway for the formation of cyclohex-
enone 5 by a direct stereoselective Diels–Alder reaction of h4-
vinylketene rhodium intermediate 6 with 2-norbornene (3a)
is also possible, however, this mechanism cannot explain the
decarbonylative coupling of cyclobutenone with 3a under an
argon atmosphere.

In conclusion, we have developed a novel ruthenium- and
rhodium-catalyzed ring-opening dimerization of cyclobute-
nones to give 2-pyranones. The application of a rhodium
catalyst to decarbonylative and direct coupling reactions of
cyclobutenones with 2-norbornene is also successful and gives
stereoselectively cyclopentenes and cyclohexenones, respec-
tively.

Experimental Section
Cyclobutenones 1a–d were prepared by a general two-step method
based on the [2+2] cycloaddition of alkynes with dichloroketene, and
the reductive dechlorination of the generated 4,4-dichlorocyclobute-
nones by zinc dust in the presence of tetramethylethylenediamine,
ethanol, and acetic acid.[12]

Representative procedure for the synthesis of (E)-2b from 1b
catalyzed by [{RhCl(CO)2}2]: A mixture of 2,3-dipropylcyclobut-2-en-
1-one (1b) (152 mg, 1.0 mmol), [{RhCl(CO)2}2] (19.4 mg,
0.050 mmol), and toluene (2.0 mL) was placed in a 20-mL Pyrex
flask equipped with a magnetic stirring bar under a flow of argon. The
reaction was carried out at 110 8C for 12 h with stirring. After the
reaction mixture was cooled, the product, 6-((1E)-2-methyl-1-pro-
pylpent-1-enyl)-3,4-dipropylpyran-2-one ((E)-2b), was isolated by
Kugelrohr distillation as a pale yellow oil (228 mg, 0.75 mmol; 75%
yield); b.p. 170–1808C (1.0 mmHg, Kugelrohr); IR (neat): ñ= 1562,
1635 (C=C), 1712 cm�1 (C=O); 1H NMR (400 MHz, CDCl3, 25 8C):
d= 0.88 (t, J= 7.32 Hz, 3H), 0.94 (t, J= 7.32 Hz, 3H), 0.98 (t, J=
7.32 Hz, 3H), 0.99 (t, J= 7.32 Hz, 3H), 1.30–1.36 (m, 2H), 1.43–1.61
(m, 6H), 1.76 (s, 3H), 2.11(t, J= 7.81 Hz, 2H), 2.29 (t, J= 7.81 Hz,
2H), 2.41 (t, J= 7.81 Hz, 2H), 2.46 (t, J= 7.81 Hz, 2H), 5.83 ppm (s,
1H); 13C NMR (100 MHz, CDCl3, 25 8C): d= 14.0, 14.0, 14.2, 14.3 20.5
21.3 22.1 22.1, 22.5 28.6, 32.4, 34.5 36.4, 108.3, 122.3, 128.6, 139.2 153.2,
159.3, 164.3 ppm; MS (EI, 70 eV): m/z : 304 [M+]; elemental analysis
(%) calcd for C20H32O2: C 78.90, H 10.59; found: C 78.80, H 10.55.
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Scheme 1. Possible mechanism for the formation of 2-pyranones 2.

Scheme 2. Possible mechanism for the formation of cyclopentenes 4
and cyclohexenones 5.
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