Tetrahedron 69 (2013) 3991-3999

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Regioselective and reductive cleavage of allyl ethers by NaBH₄-HOAc

Zi-Ping Lin^a, Fung Fuh Wong^a, Yen-Bo Chen^a, Chun-Hung Lin^b, Min-Tsang Hsieh^c, Jin-Cherng Lien^a, Yin-Hsuan Chou^a, Hui-Chang Lin^{a,*}

^a Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
 ^b Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nan-Kang, Taipei 11529, Taiwan
 ^c Chinese Medicinal Research and Development Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan

ARTICLE INFO

Article history: Received 29 November 2012 Received in revised form 20 February 2013 Accepted 5 March 2013 Available online 15 March 2013

Keywords: β-Enaminal Reductive cleavage Sodium borohydride Regioselectivity Formylglycal

ABSTRACT

 β -Enaminals were successfully synthesized in good to excellent yields by the reaction of *C*2-formylglycals with primary amines. Subsequent reaction with NaBH₄ in HOAc led to unexpected reductive cleavage of allyl ether, i.e., the hydrodealkoxylation took place to produce the corresponding 3-deoxy- β -enaminals. In contrast, the reaction of β -enaminals with Zn/HOAc performed H4-elimination to afford a diene product. The result was attributed to the formation of a common eneiminium ion intermediate, and the different reduction reactivity.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

β-Enaminals are enamines that are conjugated with aldehyde. They have been shown to be useful in synthetic chemistry. For example, (*E*)-(3*R*,4*R*,5*R*)-1-benzylanimo-2-formyl-5-hydroxy-3,4,6-tri-O-benzyl-hex-1-ene (compound **9**) can be protected and reduced to give compound **1** that served as a key precursor in the synthesis of noeuromycin **2**, a potent inhibitor of α- and β-glucosidases discovered by Bols and co-workers¹ (see Fig. 1). As a matter of fact, β-enaminals are versatile synthetic building blocks and have been extensively investigated for preparation of various important molecules,^{3–9} including pyrrole,² pyridine,³ pyrazole,⁴ isoxazole,⁵ isothiazole,⁶ benzo[g]quinoline,⁷ benzo[f]quinoline,⁷ and quinoline,⁸

Several methods were developed previously to prepare β enaminal, such as the condensation reaction of malondialdehyde with amine,⁷ the hydrolysis of 2-methyl-1-phenylamino-3phenylimino-1-propene,⁸ the pyrolysis of Meldrum's acid derivatives,⁹ Michael addition of β -ethoxyacrolein and *p*-toluidine,¹⁰ the condensation reaction of malondialdehyde and amino acid derivatives,¹¹ the iodotrichlorosilane-induced reactions of aromatic aldehydes with acrylonitrile,¹² and the amination of propargyl aldehyde.¹³ To the best of our knowledge, there is no report to derive

Fig. 1. Enamine 9 serves as a key intermediate in the synthesis of noeuromycin (2).

from C-2-formylglycal. Herein we reported one-step conversion from C2-formylglycals to β -enaminals. Interestingly further treatment of β -enaminals with NaBH₄ in HOAc or Zn/HOAc did not reduce the double bond or aldehyde. Instead, regioselective reduction

Tetrahedror

^{*} Corresponding author. Tel.: +886 4 22053366x5612; fax: +886 4 22078083; e-mail addresses: lhc550005@yahoo.com.tw, huichang@mail.cmu.edu.tw (H.-C. Lin).

was observed to remove the allyl ether to generate a common eneiminium ion intermediate, followed by either reduction or H4elimination to produce the corresponding 3-deoxy- β -enaminals or dienes, respectively.

2. Results and discussion

C-2-Formylglycals **3–6** that had been prepared by Vilsmeier-Haack reactions¹⁴ of D-glucals or D-galactals were subjected to Michael addition¹⁵ with 1.1 equiv of primary amines (including benzylamine, *n*-butylamine, and *n*-octylamine) in MeOH for 10 min. The products, β -enaminals **7–17**, were obtained in 87–95% with high selectivity (ratio of *E*/*Z*-isomers: $85:15 \sim 93:7$, Table 1). The major products were determined as the (E)-isomers according to the resonance of the enamine hydrogen (NH). The chemical shift of the (Z)-isomer (δ 10.5) was more downfield than that of (E)isomer (δ 7.15) because only the former isomer is able to form the intramolecular hydrogen bonding between the NH and the carbonyl oxygen. The structures of (E)- β -enaminals were additionally characterized by ¹H and ¹³C NMR, DEPT, COSY and other spectroscopic methods. For example, compound **9** possessed a characteristic broad resonance at δ 7.15 in correspondence with the amino proton, and a doublet resonance at δ 6.88 (*I*=13.6 Hz) that correlates with the alkene proton at C_1 . In the corresponding ^{13}C NMR

Table 1

The Michael addition of C-2-formylglycals **3–6** with primary amines

Substrate	Compounds 3–6			Product	Compo	Compounds 7–17 ^a		
	\mathbb{R}^1	R ²	R ³	R ⁴		R ⁵	Yields (%)	(<i>E</i> / <i>Z</i>) ^b
3	OBn	Н	OBn	OBn	7	n-Oct	87	89:11
3	OBn	Н	OBn	OBn	8	n-Bu	95	91:9
3	OBn	Н	OBn	OBn	9	Bn	91	93:7
4	OMe	Н	OMe	OMe	10	n-Oct	91	90:10
4	OMe	Н	OMe	OMe	11	Bn	91	93:7
5	OPent	Н	OPent	OPent	12	n-Oct	93	91:9
5	OPent	Н	OPent	OPent	13	n-Bu	92	90:10
5	OPent	Н	OPent	OPent	14	Bn	90	92:8
6	Н	OBn	OBn	OBn	15	n-Oct	87	87:13
6	Н	OBn	OBn	OBn	16	n-Bu	90	85:15
6	Н	OBn	OBn	OBn	17	Bn	91	88:12

^a The reactions were carried out with primary amines.

^b The *E*-isomer is the major product. The ratio of E/Z-isomers (in the range of 85:15~93:7) was determined by ¹H NMR integration.

spectrum, δ 158.9 and 110.0 were assigned to C1 and C2 of β -enaminal **9**, respectively.

Originally our plan was to reduce the double bond or/and the aldehyde. Palmieri and co-workers¹⁶ successfully reduced β -enamino ketones to γ -amino alcohol by using NaBH₄ in HOAc. To our surprise, the same reaction turned out to be a different outcome in our hand. Rather than obtain the expected γ -amino alcohol **18**. *N*-octvl-3-deoxv- β -enaminal **19** was found to be the resulting product, as shown in Scheme 1. Apparently the borohydride functioned to result in the reductive cleavage of allyl ether. To search for the optimal conditions, several organic solvents were studied, including CH₂Cl₂, THF, MeOH, acetonitrile (MeCN), and HOAc (entries 1-5 of Table 2). Except for HOAc, no reaction was found in these organic solvents. The result supported the idea that acidic condition is critical to the reductive cleavage. Our focus was then shifted to the use of borohydride. (*E*)-(3R,4R,5R)- β -Enaminal **7** in HOAc was treated with 1.0 equiv of NaBH₄, NaCNBH₃ or Na(OAc)₃BH at room temperature for 10 min (see entries 5-7 of Table 2). The use of NaBH₄ gave the highest isolated yield of product **19** (90%).

Reductive cleavage of allylic oxygen-containing functional groups was widely used in organic synthesis,^{17–32} including allyl ether,^{17–25} allyl ester,^{26–29} allyl alcohol,^{30,31} or allyl carbonate.³² A number of catalytic reagents were investigated, such as Pd–C/HCO₂NH₄,¹⁷ Pd(dppe)Cl₂/LiBHEt₃,¹⁸ CeCl₃·7H₂O–Nal,¹⁹ NaBH₄/l₂,²⁰ Pd(PPh₃)₄/NaBH₄,²¹ polymethylhydrosiloxane–ZnCl₂/Pd(PPh₃)₄,²² Sml₂/H₂O/amine,²³ NaBH₄/RuCl₃,²⁴ NaBH₄/NiCl₂/MeOH,²⁵ Pd(0)/Ph₂SiH₂/ZnCl₂,²⁶ FeCl₃·6H₂O,²⁷ Ti(O-*i*-Pr)₄/TMSCl/Mg or Ti(O-*i*-Pr)₄/MgBr₂/Mg,²⁸ PdCl₂,²⁹ Et₃SiH/TFA,³⁰ H₃[PW₁₂O₄₀]·nH₂O/Et₃SiH,³¹ and Pd₂(dba)₃/Bu₃P.³² Nevertheless, a few methods were reported to reductively cleave allyl ethers from β-enamino carbonyl compounds.^{30a,34}

Furthermore, seven (*E*)-(3*R*,4*R*,5*R*)- β -enaminals (**8**–**14**) were examined under the same condition. Exclusive regioselectivity was observed, i.e., the 3-alkoxy ether was reductively removed to give the desired products (**20**–**26**) in 87–94% yields (see Table 3). The product structures were rigorously determined by using ¹H and ¹³C NMR, DEPT, COSY and other spectroscopic methods. For example, the ¹H NMR spectrum of *N*-benzyl-1,2,3-trideoxy- β -enaminal (**21**) showed the characteristic signals, including the resonances of the NH at δ 6.74–6.68 (*m*), H3a at δ 2.28 (dd), and H3b at δ 2.50 (dd). In the corresponding ¹³C NMR spectrum, δ 160.2, 110.8, and 24.2 were assigned for C1–C3 of **21**, respectively.

Meanwhile, (E/Z)-(3R,4S,5R)- β -enaminals **15–17** (that are 4-epimers of compounds **7–9**, respectively) were examined under the same reaction condition (i.e., the treatment with NaBH₄ in HOAc at room temperature for 10 min). In addition to the desirable 3-deoxy products **27–29** in 72–85% yields (Table 4), we observed the formation of the diene side products **30–32** in 5–22% yields, respectively, which is realized to occur via H4-elimination.

 Table 2

 Different solvents used in the regioselective hydrodebenzyloxylations^a

Entry	Solvent	Reducing agent	Yield of 19 ^b (%)
1	MeOH	NaBH ₄	0
2	CH ₂ Cl ₂	NaBH4	0
3	THF	NaBH ₄	0
4	MeCN	NaBH ₄	0
5	HOAc	NaBH ₄	90
6	HOAc	NaCNBH ₃	88
7	HOAc	Na(OAc) ₃ BH	11

^a The reactions were the same as shown in Scheme 1 except that different solvents and borohydrides were examined here.

^b Isolated yields.

Table 3

Regioselective hydrodealkoxylations of β -enaminals 8.–14

Substrate	Compounds 8–14				Compounds 20–26 ^{a,b}		
	R ¹	R ²	R ³	\mathbb{R}^4	Product	Yields (%)	
8	OBn	OBn	OBn	n-Bu	20	89	
9	OBn	OBn	OBn	Bn	21	90	
10	OMe	OMe	OMe	n-Oct	22	87	
11	OMe	OMe	OMe	Bn	23	87	
12	OPent	OPent	OPent	n-Oct	24	94	
13	OPent	OPent	OPent	n-Bu	25	88	
14	OPent	OPent	Opent	Bn	26	92	

^a Isolated yields.

^b All the products were determined to be (*E*)-isomers.

Table 4

Subs

15 16

17

Regioselective hydrodebenzyloxylation of β-enaminals 15–17

Interestingly the dienes **30–32** became the sole products in 92–94% yields if the reactions occurred in the presence of HOAc only and the reaction time (of β -enaminals **7–9** or **15–17**) was prolonged from the original 10 min to 1.5 or 4 h (Scheme 2). Compounds **30–32** were further acetylated to produce **33–35** in all 95% yields, respectively, for the purpose of easy product characterization.

A plausible mechanism is proposed to explain the regioselectivity (Scheme 3). In the initial stage, the nitrogen of the enamine moiety is expected to be protonated under acidic condition. The proton likely translocates to the oxygen of the C3-benzyl ether via [1,5]-shift, in concert with C3-debenzyloxylation and the formation of eneiminium ion (i.e., compound **38** is the intermediate). The intermediate can be subjected to either reduction by NaBH₄ to produce 3-deoxy- β -enaminals (**29**), or H4-elimination to afford the diene product (**32**). Apparently, the former reaction is favored in the competition. It is interesting that under the same condition only the reduction products were obtained in the reactions of β enaminals **7–14** (see Table 3).

Watson and co-workers were able to reduce the C–C double bond of β -enamino ketones by using Zn/HOAc.³³ The procedure was utilized to reduce the β -enaminal **8**, but the desirable product (**39**) did not form, neither did 3-deoxy- β -enaminal (**19**). Instead, a diene product (**31**) was obtained in 82% yield after 4 h reaction at room temperature. When compound **19** was subjected to the same treatment (Zn/HOAc at room temperature), a cyclized/eliminated product (**41**) was obtained in 50% yield, plus 45% unreacted starting material. Together with the aforementioned studies with NaBH₄ in HOAc, our results supported the idea that the two reactions (NaBH₄ in HOAc and Zn/HOAc) likely occur via the same initial stage to give a common intermediate, i.e., the protonation and subsequent proton translocation leading to formation of an eneiminium ion (as shown

31 (22)

32 (5)

	BnO 6 5 4 3 2 0Bn CHO 15-17	HOAc rt, 10'	Bn0 + Bn0 OBn CHO 27-29	OBn CHO 30-32	
trate	Compounds	15–17	Reduction product		Elimination product
	R		Yields ^{a,b} (%)		Yields ^a (%)
	n-Oct		27 (75)		30 (19)

28 (72)

29 (85)

^a Isolated yields.

^b The reduction products were determined to be all (E)-isomers.

n-Bu

Bn

Mechanism:

in Scheme 3). Nevertheless, the reducing power of Zn is lower than that of borohydride, which explains the reason why the reduction is much slower than H4-elimination in the reaction of Zn/HOAc. The elimination thus became exclusive to give a diene product. Moreover, when 3-deoxy- β -enaminal **19** reacted with Zn/HOAc, the intramolecular cyclization appeared to be predominant as compared to any possible reaction. Even in the absence of Zn, the reaction of **19** still resulted in the same product (**41**) in 55% yield at room temperature for 24 h, and in 96% at 80 °C for 20 min (Scheme 4).

Likewise, other 3-deoxy- β -enaminals (**19–23** and **27–29**) all underwent the same intramolecular cyclization/elimination to generate 3-deoxy-*C*-2-formylglycals **41–43** in 95–97% yields (Table 5).

In conclusion, in addition to preparing β -enaminals by Michael addition of C2-formylglycal with primary amines, we discovered the unprecedented reduction of β -enaminals by using NaBH₄/ HOAc, i.e., C3-allyl ether was removed. The formation of eneiminium ion intermediate was thus proposed, which also explained the different outcome of the Zn/HOAc reaction. The

Table 5

3-Deoxy-C-2-formylglycals obtained via consecutive cyclization and elimination of 3-deoxy-enaminals

Substrate	Compounds 19–23 , 27–29				Compounds 41–43 ^a		
	\mathbb{R}^1	R ²	R ³	R ⁴	Product	Yields (%)	
19	OBn	Н	OBn	n-Oct	41	96	
20	OBn	Н	OBn	n-Bu	41	95	
21	OBn	Н	OBn	Bn	41	97	
22	OMe	Н	OMe	n-Oct	42	95	
23	OMe	Н	OMe	Bn	42	96	
27	Н	OBn	OBn	n-Oct	43	97	
28	Н	OBn	OBn	n-Bu	43	96	
29	Н	OBn	OBn	Bn	43	97	

^a Isolated yields.

treatment of $\beta\text{-enaminals}$ with Zn/HOAc generated a diene product.

3. Experimental section

3.1. General procedure

All purchased chemicals were of reagent grade. All reactions were carried out under a nitrogen atmosphere and monitored by TLC analysis (layer thickness: 250 µm). Column chromatography was carried out with silica gel 60 (70–230 mesh for gravity column, or 230-400 mesh for flash column). Commercially available reagents were directly used without further purification unless otherwise noted. Dichloromethane, ethyl acetate, hexanes, and methanol were purchased from Mallinckrodt Chemical Co. The following compounds were purchased from Acros Chemical Co, including benzylamine, n-butylamine, n-octylamine, tri-O-acetyl-D-glucal, tri-O-acetyl-D-galactal, benzyl bromide, methyl iodide, npentyl iodide, phosphoryl chloride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, tetrahydrofuran, dichloromethane, acetonitrile, acetic acid, methanol. Proton NMR spectra were recorded at a Bruker spectrometer (400 or 500 MHz) with CDCl₃ ($\delta_{\rm H}$ 7.24) and DMSO- d_6 ($\delta_{\rm H}$ 2.50) as the internal standard; ¹³C NMR spectra were recorded at 100 or 125 MHz with CDCl₃ [$\delta_{\rm C}$ 77.0 (central line of a triplet)]. Splitting patterns are shown by the abbreviations, such as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet).

3.2. Standard procedure for Michael addition of C-2formylglycals to prepare β -enaminal derivatives (7–17)

To a solution of C-2-formylglycals (**3–6**) (1.0 equiv) in MeOH (2 mL) was added primary amine (1.0 equiv). The resulting solution was stirred at room temperature for 10 min, concentrated under reduced pressure, and re-dissolved in CH₂Cl₂ (50 mL). The solution was washed with H₂O (20 mL×2), brine (20 mL×2), and concentrated under reduced pressure. The dry residue was purified by silica gel column chromatography with EtOAc/Hex (7:10) to give β -enaminals (**7–17**) in 80–96% yields.

3.2.1. (E)-(3R,4R,5R)-2-Formyl-5-hydroxy-1-n-octylamino-3,4,6-tri-O-benzyl-hex-1-ene (7). Pale yellow solid; mp 62–63 °C; IR (CHCl₃) 2926, 1651, 1597, 1207, 1064 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.85

(1H, s, CHO), 7.28-7.10 (15H, m, ArH), 6.79-6.77 (1H, m, NH), 6.74 (1H, d, J_{1.NH}=14.0 Hz, H1), 4.96 (1H, d, J_{3.4}=2.4 Hz, H3), 4.49 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.46 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.43 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.36 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.29 (1H, d, *J*_{a,b}=11.2 Hz, *CH*₂*Ph*), 4.25 (1H, d, *J*_{a,b}=11.2 Hz, *CH*₂*Ph*), 4.03 (1H, br s, H5), 3.60 (1H, dd, $J_{4,3}$ =2.4 Hz, $J_{4,5}$ =7.2 Hz, H4), 3.57–3.55 (2H, m, H6), 2.87-2.77 (3H, m, H1', OH), 1.21-1.04 (12H, m, H2', H3', H4', H5', H6', H7'), 0.80 (3H, t, *J*=6.8 Hz, H8'); ¹³C NMR (CDCl₃, 100 MHz) δ 187.55, 159.31, 138.15, 137.87, 137.55, 128.35, 128.34, 128.30, 128.29, 128.22, 128.21, 128.14, 128.13, 127.95, 127.94, 127.90, 127.89, 127.80, 127.67, 127.59, 108.96, 81.89, 74.60, 74.29, 73.38, 71.16, 71.15, 70.18, 49.22, 31.69, 30.58, 29.02, 29.01, 26.41, 22.56, 14.06; LRMS (FAB) m/z (rel intens) 574 (M⁺+1, 2), 302 (28), 210 (19), 91 (100), 54 (22); HRMS (FAB) m/z calcd for C₃₆H₄₈NO₅ (M⁺+1) 574.3527, found 574.3525. Anal. Calcd for C₃₆H₄₇NO₅; C: 75.36; H: 8.26. Found: C: 75.38; H: 8.30.

3.2.2. (E)-(3R,4R,5R)-1-n-Butylamino-2-formyl-5-hydroxy-3,4,6-tri-O-benzyl-hex-1-ene (8). Pale yellow solid; mp 78–79 °C; IR (CHCl₃) 2926, 1616, 1595, 1211, 1062 cm $^{-1}$; ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (1H, s, CHO), 7.32-7.16 (15H, m, ArH), 6.78 (2H, br s, NH, H1), 5.02 (1H, d, J_{3,4}=2.0 Hz, H3), 4.55 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.52 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.48 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.42 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.35 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.31 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.08 (1H, br s, H5), 3.65 (1H, dd, J_{4,3}=2.0 Hz, J_{4.5}=7.2 Hz, H4), 3.63-3.61 (2H, m, H6), 2.89-2.86 (2H, m, H1'), 1.24–1.10 (4H, m, H2', H3'), 0.76 (3H, t, J=7.2 Hz, H4'); ¹³C NMR (CDCl₃, 100 MHz) & 187.55, 159.25, 138.29, 137.98, 137.65, 128.38, 128.37, 128.34, 128.33, 128.27, 128.26, 128.18, 128.17, 127.98, 127.97, 127.92, 127.91, 127.83, 127.69, 127.61, 109.19, 82.05, 74.78, 74.33, 73.45, 71.31, 71.26, 70.34, 48.89, 32.62, 19.60, 13.51; LRMS (FAB) m/z (rel intens) 518 (M⁺+1, 11), 246 (67), 154 (38), 136 (13), 91 (100); HRMS (FAB) m/z calcd for $C_{32}H_{40}NO_5$ (M⁺+1) 518.2901, found 518.2918. Anal. Calcd for C₃₂H₃₉NO₅; C: 74.25; H: 7.59. Found: C: 74.31; H: 7.64.

3.2.3. (E)-(3R,4R,5R)-1-Benzylamino-2-formyl-5-hydroxy-3,4,6-tri-Obenzyl-hex-1-ene (9). Pale yellow oil; IR (CHCl₃) 2924, 1676, 1598, 1207, 1064 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (1H, s, CHO), 7.31–6.99 (21H, m, ArH, NH), 6.88 (1H, d, J_{1,NH}=13.6 Hz, H1), 5.01 (1H, br s, H3), 4.54 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.50 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.46 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.40 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.30 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.24 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.06-4.00 (2H, m, H5, CH₂Ph), 3.90 (1H, dd, *J*=4.0 Hz, *J*_{a,b}=14.8 Hz, *CH*₂*Ph*), 3.65 (1H, dd, *J*_{4,3}=1.2 Hz, *J*_{4,5}=6.8 Hz, H4), 3.60-3.59 (2H, m, H6), 2.91 (1H, br s, OH); ¹³C NMR (CDCl₃, 50 MHz) δ 187.89, 158.91, 138.21, 137.89, 137.34, 137.00, 128.81, 128.80, 128.37, 128.36, 128.35, 128.34, 128.33, 128.32, 128.31, 128.01, 128.00, 127.91, 127.90, 127.89, 127.75, 127.74, 127.67, 127.66, 127.38, 127.37, 110.06, 82.01, 74.77, 74.33, 73.40, 71.43, 71.20, 70.18, 52.70; LRMS (FAB) *m*/*z* (rel intens) 552 (M⁺+1, 4), 136 (10), 105 (14), 91 (100); HRMS (FAB) m/z calcd for C₃₅H₃₈NO₅ (M⁺+1) 552.2744, found 552.2760. Anal. Calcd for C₃₅H₃₇NO₅; C: 76.20; H: 6.76. Found: C: 76.23; H: 6.84.

3.2.4. (*E*)-(3*R*,4*R*,5*R*)-2-Formyl-5-hydroxy-1-n-octylamino-3,4,6-tri-O-methyl-hex-1-ene (**10**). Pale yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 8.87 (1H, s, CHO), 6.87–6.79 (2H, m, H1, NH), 4.67 (1H, d, J_{3,4}=2.0 Hz, H3), 3.89–3.86 (1H, m, H5), 3.49–3.47 (2H, m, H6), 3.33 (3H, s, OCH₃), 3.31 (3H, s, OCH₃), 3.22 (1H, dd, J_{4,3}=2.0 Hz, J_{4,5}=7.0 Hz, H4), 3.19–3.14 (6H, m, OCH₃, OH, H1'), 1.53–1.47 (2H, m, H2'), 1.30–1.16 (10H, m, H3', H4', H5', H6', H7'), 0.81 (3H, t, J=6.5 Hz, H8'); ¹³C NMR (CDCl₃, 125 MHz) δ 187.80, 159.13, 109.05, 83.88, 76.17, 73.64, 69.93, 59.92, 58.99, 56.61, 49.43, 31.68, 31.21, 29.11, 29.10, 26.39, 22.55, 14.00; LRMS (EI) *m/z* (rel intens) 345 (M⁺, 1), 266 (13), 250 (33), 226 (100), 208 (19); HRMS (EI) *m/z* calcd for $C_{18}H_{35}NO_5\ (M^+)$ 345.2515, found 345.2522. Anal. Calcd for $C_{18}H_{35}NO_5;$ C: 62.58; H: 10.21. Found: C: 62.63; H: 10.24.

3.2.5. (*E*)-(3*R*,4*R*,5*R*)-1-*Benzylamino-2-formyl-5-hydroxy-3,4,6-tri-O-methyl-hex-1-ene* (**11**). Pale yellow solid; mp 105–106 °C; IR (CHCl₃) 2931, 1651, 1593, 1211, 1089 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.91 (1H, s, CHO), 7.32–7.20 (6H, m, ArH, NH), 6.93 (1H, d, *J*_{1,NH}=13.6 Hz, H1), 4.68 (1H, br s, H3), 4.36 (2H, d, *J*=6.4 Hz, CH₂Ph), 3.89–3.86 (1H, m, H5), 3.49–3.44 (2H, m, H6), 3.32 (3H, s, OCH₃), 3.23–3.18 (7H, m, H4, OCH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 188.15, 158.92, 137.51, 128.82, 128.81, 127.93, 127.17, 127.16, 109.88, 83.63, 76.14, 73.53, 69.71, 59.79, 58.95, 56.69, 52.99; LRMS (FAB) *m/z* (rel intens) 324 (M⁺+1, 25), 292 (38), 218 (36), 204 (82), 91 (100); HRMS (FAB) *m/z* calcd for C₁₇H₂₆NO₅ (M⁺+1) 324.1805, found 324.1798. Anal. Calcd for C₁₇H₂₅NO₅; C: 63.14; H: 7.79. Found: C: 63.18; H: 7.85.

3.2.6. (*E*)-(3*R*,4*R*,5*R*)-2-Formyl-5-hydroxy-1-n-octylamino-3,4,6-tri-O-pentyl-hex-1-ene (**12**). Pale yellow oil; IR (CHCl₃) 2927, 1656, 1606, 1222, 1089 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.83 (1H, s, CHO), 6.94–6.91 (1H, m, NH), 6.77 (1H, d, $J_{1,NH}$ =13.5 Hz, H1), 4.76 (1H, br s, H3), 3.89 (1H, br s, H5), 3.50 (2H, br s, H6), 3.44–3.04 (9H, m, OCH₂, H4, H1'), 2.91 (1H, d, *J*=7.0 Hz, OH), 1.51–1.37 (8H, m, CH₂, H2'), 1.24–1.21 (22H, m, CH₂, H3', H4', H5', H6', H7'), 0.81–0.80 (12H, m, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 187.61, 159.24, 110.05, 82.19, 75.07, 72.66, 71.80, 71.53, 70.22, 69.54, 49.33, 31.73, 31.10, 30.02, 29.49, 29.32, 29.18, 29.14, 28.39, 28.30, 28.21, 26.57, 22.57, 22.54, 22.51, 22.48, 13.98, 13.97, 13.96, 13.95; LRMS (EI) *m/z* (rel intens) 513 (M⁺, 1), 306 (82), 282 (80), 224 (51), 196 (62), 71 (100); HRMS (EI) *m/z* calcd for C₃₀H₅₉NO₅; C: 70.13; H: 11.57. Found: C: 70.14; H: 11.59.

3.2.7. (*E*)-(3*R*,4*R*,5*R*)-1-*n*-Butylamino-2-formyl-5-hydroxy-3,4,6-tri-O-pentyl-hex-1-ene (**13**). Pale yellow oil; IR (CHCl₃) 2931, 1651, 1606, 1211, 1091 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.83 (1H, s, CHO), 6.96–6.91 (1H, m, NH), 6.77 (1H, d, $J_{1,NH}$ =14.0 Hz, H1), 4.76 (1H, d, $J_{3,4}$ =2.0 Hz, H3), 3.90–3.87 (1H, m, H5), 3.51–3.50 (2H, m, H6), 3.44–3.06 (9H, m, OCH₂, H4, H1'), 2.93 (1H, br s, OH), 1.56–1.15 (22H, m, CH₂, H2', H3'), 0.89–0.80 (12H, m, CH₃, H4'); ¹³C NMR (CDCl₃, 125 MHz) δ 187.61, 159.26, 110.06, 82.18, 75.06, 72.67, 71.80, 71.53, 70.21, 69.54, 49.00, 33.12, 30.01, 29.47, 29.31, 28.38, 28.29, 28.19, 22.52, 22.49, 22.48, 19.70, 13.97, 13.96, 13.94, 13.59; LRMS (EI) *m/z* (rel intens) 457 (M⁺, 1), 266 (24), 250 (57), 239 (30), 226 (100), 168 (47); HRMS (EI) *m/z* calcd for C₂₆H₅₁NO₅ (M⁺) 457.3767, found 457.3762. Anal. Calcd for C₂₆H₅₁NO₅; C: 68.23; H: 11.23. Found: C: 68.27; H: 11.25.

3.2.8. (*E*)-(3*R*,4*R*,5*R*)-1-*Benzylamino-2-formyl-5-hydroxy-3,4,6-tri-Opentyl-hex-1-ene* (**14**). Pale yellow oil; IR (CHCl₃) 2927, 1647, 1602, 1205, 1089 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.96 (1H, s, CHO), 7.40–7.27 (6H, m, ArH, NH), 6.97 (1H, d, *J*_{1,NH}=13.2 Hz, H1), 4.84 (1H, br s, H3), 4.44 (1H, dd, *J*=4.4, 14.8 Hz, *CH*₂*Ph*), 4.36 (1H, dd, *J*=7.2 Hz, *J*_{a,b}=14.8 Hz, *CH*₂*Ph*), 3.95 (1H, br s, H5), 3.58–3.57 (2H, m, H6), 3.49–3.27 (7H, m, H4, OCH₂), 2.97 (1H, br s, OH), 1.61–1.15 (18H, m, CH₂), 0.92–0.83 (9H, m, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 187.98, 158.83, 137.31, 128.88, 128.87, 128.06, 127.42, 127.41, 111.01, 82.14, 75.12, 72.68, 71.76, 71.53, 70.15, 69.69, 53.03, 29.94, 29.31, 29.30, 28.29, 28.22, 28.21, 22.51, 22.47, 22.43, 14.01, 13.96, 13.90; LRMS (EI) *m/z* (rel intens) 491 (M⁺, 1), 236 (18), 212 (15), 91 (100); HRMS (EI) *m/z* calcd for C₂₉H₄₉NO₅ (M⁺) 491.3611, found 491.3618. Anal. Calcd for C₂₉H₄₉NO₅; C: 70.84; H: 10.04. Found: C: 70.88; H: 10.07.

3.2.9. (*E*)-(3*R*,4*S*,5*R*)-2-Formyl-5-hydroxy-1-*n*-octylamino-3,4,6-tri-O-benzyl-hex-1-ene (**15**). Pale yellow oil; IR (CHCl₃) 2924, 1654, 1602, 1207, 1062 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.84 (1H, s, CHO), 7.29–7.18 (15H, m, ArH), 7.05–7.01 (1H, m, NH), 6.73 (1H, d, $J_{1,\text{NH}}$ =14.0 Hz, H1), 4.89 (1H, d, $J_{3,4}$ =3.5 Hz, H3), 4.64 (1H, d, $\begin{array}{l} J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 4.60 (1H, d, J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 4.44 (1H, d, J_{a,b} = 12.0 \text{ Hz}, CH_2Ph), 4.40 (1H, d, J_{a,b} = 12.0 \text{ Hz}, CH_2Ph), 4.35 (1H, d, J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 4.35 (1H, d, J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 4.35 (1H, d, J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 4.28 (1H, d, J_{a,b} = 11.0 \text{ Hz}, CH_2Ph), 3.84 (1H, dd, J_{4,3} = 4.5 \text{ Hz}, J_{4,5} = 4.5 \text{ Hz}, \text{H4}), 3.70 (1H, \text{ br s}, \text{H5}), 3.49 - 3.45 (2H, m, \text{H6}), 2.89 - 2.85 (2H, m, \text{H1'}), 1.23 - 1.02 (12H, m, \text{H2'}, \text{H3'}, \text{H4'}, \text{H5'}, \text{H6'}, \text{H7'}), 0.81 (3H, t, J = 7.0 \text{ Hz}, \text{H8'}); \ \ 1^{3}\text{C} \text{ NMR} (\text{CDCl}_3, 125 \text{ MHz}) \\ \delta 187.97, 159.52, 138.18, 138.17, 138.09, 128.55, 128.54, 128.38, 128.37, 128.36, 128.32, 128.31, 128.30, 127.85, 127.84, 127.83, 127.73, 127.72, 127.62, 127.58, 108.03, 81.63, 74.83, 74.51, 73.36, 71.08, 71.03, 70.71, 49.50, 31.72, 30.61, 29.07, 29.05, 26.36, 22.58, 14.04; LRMS (EI)$ *m/z*(rel intens) 573 (M⁺, 1), 326 (10), 224 (30), 108 (42), 91 (100); HRMS (EI)*m/z* $calcd for C₃₆H₄₇NO₅ (M⁺) 573.3454, found 573.3448. Anal. Calcd for C₃₆H₄₇NO₅; C: 75.36; H: 8.26. Found: C: 75.38; H: 8.27. \\ \end{array}$

3.2.10. (E)-(3R,4S,5R)-1-n-Butylamino-2-formyl-5-hydroxy-3,4,6-tri-O-benzyl-hex-1-ene (16). Pale yellow oil; IR (CHCl₃) 2927, 1613, 1597, 1213, 1061 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.84 (1H, s, CHO), 7.34-7.16 (15H, m, ArH), 7.05-7.01 (1H, m, NH), 6.73 (1H, d, J_{1,NH}=14.0 Hz, H1), 4.89 (1H, d, J_{3,4}=3.5 Hz, H3), 4.64 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.60 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.44 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.40 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.35 (1H, d, *J*_{a,b}=11.5 Hz, *CH*₂*Ph*), 4.29 (1H, d, *J*_{a,b}=11.5 Hz, *CH*₂*Ph*), 3.84 (1H, dd, J_{4.3}=4.5 Hz, J_{4.5}=4.5 Hz, H4), 3.71–3.68 (1H, m, H5), 3.49–3.45 (2H, m, H6), 2.90-2.86 (2H, m, H1'), 1.13-1.03 (4H, m, H2', H3'), 0.72 (3H, t, J=7.0 Hz, H4'); ¹³C NMR (CDCl₃, 125 MHz) δ 187.97, 159.55, 138.18, 138.16, 138.08, 128.56, 128.55, 128.38, 128.37, 128.36, 128.31, 128.30, 128.29, 127.88, 127.83, 127.82, 127.76, 127.75, 127.62, 127.58, 108.07, 81.62, 74.84, 74.15, 73.35, 71.10, 71.03, 70.72, 49.16, 32.59, 19.49, 13.50; LRMS (FAB) m/z (rel intens) 518 (M⁺+1, 11), 246 (67), 154 (38), 136 (13), 91 (100); HRMS (FAB) m/z calcd for $C_{32}H_{40}NO_5$ (M⁺+1) 518.2901, found 518.2918. Anal. Calcd for C₃₂H₃₉NO₅; C: 74.25; H: 7.59. Found: C: 74.31; H: 7.64.

3.2.11. (E)-(3R,4S,5R)-1-Benzylamino-2-formyl-5-hydroxy-3,4,6-tri-O-benzyl-hex-1-ene (17). Pale yellow oil; IR (CHCl₃) 2918, 1654, 1600, 1207, 1066 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.87 (1H, s, CHO), 7.39–7.35 (1H, m, NH), 7.29–6.94 (20H, m, ArH), 6.83 (1H, d, $J_{1,\text{NH}}$ =13.5 Hz, H1), 4.89 (1H, br s, H3), 4.62 (1H, d, $J_{a,b}$ =11.0 Hz, CH₂Ph), 4.59 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.43 (1H, d, J_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.39 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.34 (1H, d, *J*_{a,b}=11.5 Hz, CH₂Ph), 4.27 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.05–4.03 (2H, m, CH₂Ph), 3.86 (1H, dd, J_{4,3}=4.5 Hz, J_{4,5}=4.5 Hz, H4), 3.73-3.70 (1H, m, H5), 3.48 (2H, d, J=5.0 Hz, H6); ¹³C NMR (CDCl₃, 125 MHz) δ 188.34, 159.39, 138.16, 137.96, 137.92, 137.27, 128.81, 128.80, 128.51, 128.50, 128.39, 128.38, 128.37, 128.33, 128.32, 128.31, 128.30, 127.88, 127.87, 127.86, 127.80, 127.79, 127.61, 127.60, 127.07, 127.06, 109.16, 81.63, 74.94, 73.38, 73.37, 71.08, 70.93, 70.89, 52.73; LRMS (EI) m/z (rel intens) 551 (M⁺, 1), 304 (15), 202 (7), 107 (7), 91 (100); HRMS (EI) m/ *z* calcd for C₃₅H₃₇NO₅ (M⁺) 551.2672, found 551.2661. Anal. Calcd for C₃₅H₃₇NO₅; C: 76.20; H: 6.76. Found: C: 76.24; H: 6.79.

3.3. Standard procedure for regioselective reductive cleavage of allyl ethers to prepare 1,2,3-trideoxy-2-formyl-hex-1-ene derivatives (19–29)

To a solution of β -enaminal (**7**–**17**) (1.0 equiv) in acetic acid (2 mL) was added sodium borohydride (1.0 equiv). The resulting solution was stirred at room temperature for 10 min, concentrated under reduced pressure, and re-dissolved in CH₂Cl₂ (50 mL). The mixture was washed with H₂O (20 mL×2), brine (20 mL×2), and concentrated under reduced pressure. The dry residue was purified by silica gel column chromatography with EtOAc/Hex (3:4) to give 1,2,3-trideoxy-2-formyl-hex-1-enes (**19–29**) in 72–94% yields.

3.3.1. (*E*)-(4*R*,5*R*)-1,2,3-Trideoxy-2-formyl-5-hydroxy-1-n-octylanimo-4,6-di-O-benzyl-hex-1-ene (**19**). Pale yellow oil; $[\alpha]_D^{55} + 7.3$ (c 0.74, CHCl₃); IR (CHCl₃) 2924, 1649, 1591, 1269, 1072 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.81 (1H, s, CHO), 7.32–7.17 (10H, m, ArH), 6.79 (1H, d, J_{1.NH}=13.6 Hz, H1), 6.30-6.24 (1H, m, NH), 4.57 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.50 (1H, d, *J*_{a,b}=11.2 Hz, *CH*₂*Ph*), 4.47 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.46 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.17 (1H, br s, OH), 3.75–3.71 (1H, m, H4), 3.66 (1H, dd, *J*_{6a,5}=2.8 Hz, *J*_{6a,6b}=9.6 Hz, H6a), 3.58 (1H, dd, *J*_{6b,5}=4.8 Hz, *J*_{6b,6a}=9.6 Hz, H6b), 3.49–3.46 (1H, m, H5), 2.88–2.82 (2H, m, H1'), 2.76 (1H, dd, J_{3a.4}=4.0 Hz, J_{3a,3b}=15.2 Hz, H3a), 2.36 (1H, dd, J_{3b,4}=3.2 Hz, J_{3b,3a}=15.2 Hz, H3b), 1.23-1.02 (12H, m, H2', H3', H4', H5', H6', H7'), 0.82 (3H, t, J=6.8 Hz, H8'); ¹³C NMR (CDCl₃, 100 MHz) δ 189.57, 160.60, 138.03, 137.98, 128.54, 128.53, 128.32, 128.31, 128.22, 128.21, 127.99, 127.98, 127.97, 127.62, 109.72, 80.25, 73.50, 73.17, 70.95, 70.73, 48.82, 31.69, 30.58, 29.07, 29.02, 26.30, 24.33, 22.58, 14.07; LRMS (FAB) m/z (rel intens) 468 (M⁺+1, 28), 196 (25), 109 (29), 91 (94), 55 (100); HRMS (FAB) *m*/*z* calcd for C₂₉H₄₂NO₄ (M⁺+1) 468.3108, found 468.3115. Anal. Calcd for C₂₉H₄₁NO₄; C: 74.48; H: 8.84. Found: C: 74.52; H: 8.87.

3.3.2. (E)-(4R,5R)-1-n-Butylanimo-1,2,3-trideoxy-2-formyl-5hydroxy-4,6-di-O-benzyl-hex-1-ene (**20**). Pale yellow oil; $[\alpha]_D^{25}$ +5.1 (*c* 1.26, CHCl₃); IR (CHCl₃) 2927, 1651, 1593, 1215, 1072 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.81 (1H, s, CHO), 7.27–7.17 (10H, m, ArH), 6.78 (1H, d, J_{1.NH}=13.6 Hz, H1), 6.27-6.24 (1H, m, NH), 4.56 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.51 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.47 (2H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.72-3.68 (1H, m, H4), 3.66 (1H, dd, J_{6a,5}=2.8 Hz, J_{6a,6b}=10.0 Hz, H6a), 3.57 (1H, dd, J_{6b,5}=4.8 Hz, J_{6b.6a}=10.0 Hz, H6b), 3.51–3.47 (1H, m, H5), 2.88–2.84 (2H, m, H1'), 2.73 (1H, dd, J_{3a,4}=4.0 Hz, J_{3a,3b}=14.8 Hz, H3a), 2.38 (1H, dd, J_{3b,4}=3.2 Hz, J_{3b,3a}=14.8 Hz, H3b), 1.11–1.06 (4H, m, H2', H3'), 0.75 (3H. t. *I*=6.8 Hz, H4'); ¹³C NMR (CDCl₃, 100 MHz) δ 189.49, 160.44, 138.11, 138.08, 128.50, 128.49, 128.31, 128.30, 128.20, 128.19, 127.97, 127.93, 127.92, 127.60, 109.94, 80.36, 73.52, 73.11, 71.09, 70.89, 48.47, 32.61, 24.30, 19.47, 13.51; LRMS (FAB) m/z (rel intens) 412 (M⁺+1, 36), 181 (9), 140 (36), 91 (100); HRMS (FAB) m/z calcd for C₂₅H₃₄NO₄ (M⁺+1) 412.2482, found 412.2500. Anal. Calcd for C₂₅H₃₃NO₄; C: 72.96; H: 8.08. Found: C: 72.99; H: 8.91.

3.3.3. (E)-(4R,5R)-1-Benzylanimo-1,2,3-trideoxy-2-formyl-5-hydroxy-4,6-*di*-O-*benzyl*-*hex*-1-*ene* (**21**). Pale yellow oil; $[\alpha]_D^{25}$ +12.3 (*c* 0.62, CHCl₃); IR (CHCl₃) 2922, 1645, 1598, 1217, 1072 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.95 (1H, s, CHO), 7.38–7.06 (15H, m, ArH), 6.97 (1H, d, J_{1.NH}=13.6 Hz, H1), 6.74-6.68 (1H, m, NH), 4.64 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.58 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.55 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.53 (1H, d, J_{a,b}=11.2 Hz, CH₂Ph), 4.14 (2H, d, J=6.0 Hz, CH₂Ph), 3.83–3.79 (1H, m, H4), 3.74 (1H, dd, J_{6a.5}=2.8 Hz, J_{6a,6b}=9.6 Hz, H6a), 3.65 (1H, dd, J_{6b,5}=5.2 Hz, J_{6b,6a}=9.6 Hz, H6b), 3.61–3.57 (1H, m, H5), 2.82 (1H, dd, J_{3a,4}=4.0 Hz, J_{3a,3b}=14.8 Hz, H3a), 2.50 (1H, dd, J_{3b,4}=3.6 Hz, J_{3b,3a}=14.8 Hz, H3b); ¹³C NMR (CDCl₃, 100 MHz) δ 190.01, 160.25, 137.99, 137.88, 137.40, 128.79, 128.78, 128.56, 128.55, 128.35, 128.34, 128.24, 128.23, 127.99, 127.98, 127.97, 127.83, 127.67, 127.04, 127.03, 110.80, 80.10, 73.50, 73.08, 70.92, 70.75, 52.09, 24.23; LRMS (FAB) *m*/*z* (rel intens) 446 (M⁺+1, 79), 181 (24), 174 (71), 154 (95), 91 (100); HRMS (FAB) m/z calcd for C₂₈H₃₂NO₄ (M⁺+1) 446.2326, found 446.2325. Anal. Calcd for C₂₈H₃₁NO₄; C: 75.48; H: 7.01. Found: C: 75.51; H: 7.05.

3.3.4. (*E*)-(4*R*,5*R*)-1,2,3-*Trideoxy*-2-*formy*I-5-*hydroxy*-1-*n*-*octy*Ianimo-4,6-*di*-O-methyl-hex-1-ene (**22**). Pale yellow oil; $[\alpha]_{D}^{25}$ +37.8 (*c* 0.11, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 8.84 (1H, s, CHO), 6.87 (1H, d, J_{1,NH}=13.5 Hz, H1), 6.40–6.37 (1H, m, NH), 3.79 (1H, br s, OH), 3.49 (1H, dd, J_{6b,5}=2.5 Hz, J_{6a,6b}=9.5 Hz, H6a), 3.46–3.43 (1H, m, H5), 3.39 (1H, dd, J_{6b,5}=5.5 Hz, J_{6b,6a}=9.5 Hz, H6b), 3.36 (3H, s, OCH₃), 3.34–3.29 (4H, m, H4, OCH₃), 3.20–3.16 (2H, m, H1'), 2.62 (1H, dd, J_{3a,4}=4.5 Hz, J_{3a,3b}=15.0 Hz, H3a), 2.40 (1H, dd, J_{3b,4}=3.0 Hz, J_{3b,3a}=15.0 Hz, H3b), 2.27 (1H, dd, J_{3b,4}=8.0 Hz, J_{3b,3a}=14.0 Hz, H3b), 1.52–1.47 (2H, m, H2'), 1.24–1.21 (10H, m, H3', H4', H5', H6', H7'), 0.82 (3H, t, *J*=6.7 Hz, H8'); ¹³C NMR (CDCl₃, 125 MHz) δ 189.35, 160.39, 110.33, 82.34, 73.37, 70.75, 59.06, 58.27, 48.87, 31.68, 30.86, 29.09, 29.08, 26.39, 23.48, 22.54, 14.00; LRMS (EI) *m/z* (rel intens) 315 (M⁺, 1), 266 (10), 147 (24), 146 (100); HRMS (EI) *m/z* calcd for C₁₇H₃₃NO₄ (M⁺) 315.2403, found 315.2410. Anal. Calcd for C₁₇H₃₃NO₄; C: 64.73; H: 10.54. Found: C: 64.77; H: 10.58.

3.3.5. (*E*)-(4*R*,5*R*)-1-Benzylanimo-1,2,3-trideoxy-2-formyl-5-hydroxy-4,6-di-O-methyl-hex-1-ene (**23**). Pale yellow oil; $[\alpha]_D^{55}$ –1.0 (*c* 0.19, CHCl₃); IR (CHCl₃) 2922, 1693, 1606, 1217, 1091 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.90 (1H, s, CHO), 7.34–7.19 (5H, m, ArH), 6.97 (1H, d, *J*_{1,NH}=13.6 Hz, H1), 6.69–6.66 (1H, m, NH), 4.38 (1H, d, *J*=5.6 Hz, *CH*₂*Ph*), 4.37 (1H, d, *J*=5.6 Hz, *CH*₂*Ph*), 3.68 (1H, br s, OH), 3.51–3.46 (2H, m, H6a, H5), 3.41–3.36 (1H, m, H6b), 3.34–3.30 (4H, m, H4, OCH₃), 3.28 (3H, s, OMe), 2.61 (1H, dd, *J*_{3b,4}=4.8 Hz, *J*_{3a,3b}=15.2 Hz, H3a), 2.45 (1H, dd, *J*_{3b,4}=3.6 Hz, *J*_{3b,3a}=15.2 Hz, H3b); ¹³C NMR (CDCl₃, 100 MHz) δ 189.83, 160.07, 137.46, 128.94, 128.93, 128.00, 127.10, 127.09, 111.25, 82.27, 73.31, 70.60, 59.09, 58.25, 52.51, 23.46; LRMS (EI) *m/z* (rel intens) 293 (M⁺, 1), 244 (10), 174 (10), 91 (100); HRMS (EI) *m/z* calcd for C₁₆H₂₃NO₄; C: 65.51; H: 7.90. Found: C: 65.55; H: 7.96.

3.3.6. (*E*)-(4*R*,5*R*)-1,2,3-*Trideoxy*-2-*formyl*-5-*hydroxy*-1-*n*-*octyla*-*nimo*-4,6-*di*-O-*pentyl*-*hex*-1-*ene* (**24**). Pale yellow oil; $[\alpha]_{D}^{55}$ -32.6 (*c* 1.05, CHCl₃); IR (CHCl₃) 2926, 1654, 1597, 1292, 1095 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.85 (1H, s, CHO), 6.86 (1H, d, *J*_{1,NH}=13.5 Hz, H1), 6.54-6.52 (1H, m, NH), 3.72 (1H, br s, OH), 3.59-3.51 (2H, m, OCH₂), 3.42-3.32 (6H, m, H4, H5, H6, OCH₂), 3.18-3.14 (2H, m, H1'), 2.65 (1H, dd, *J*_{3a,4}=3.0 Hz, *J*_{3a,3b}=15.0 Hz, H3a), 2.36 (1H, dd, *J*_{3b,4}=2.5 Hz, *J*_{3b,3a}=15.0 Hz, H3b), 1.52-1.45 (6H, m, CH₂), 1.23-1.21 (18H, m, CH₂), 0.83-0.82 (9H, m, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 189.40, 160.32, 110.45, 80.41, 71.60, 71.41, 71.03, 70.96, 48.89, 31.72, 31.02, 30.05, 29.33, 29.14, 29.12, 28.35, 28.32, 26.50, 24.07, 22.57, 22.52, 22.50, 14.01, 13.98, 13.97; LRMS (EI) *m/z* (rel intens) 427 (M⁺, 3), 315 (20), 208 (14), 196 (100), 71 (52); HRMS (EI) *m/z* calcd for C₂₅H₄₉NO₄; C: 70.21; H: 11.55. Found: C: 70.25; H: 11.59.

3.3.7. (*E*)-(4*R*,5*R*)-1-Butylanimo-1,2,3-trideoxy-2-formyl-5-hydroxy-4,6-di-O-pentyl-hex-1-ene (**25**). Pale yellow oil; $[\alpha]_{D}^{5-}$ 32.2 (*c* 0.59, CHCl₃); IR (CHCl₃) 2929, 1654, 1597, 1215, 1093 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.85 (1H, s, CHO), 6.86 (1H, d, *J*_{1,NH}=13.5 Hz, H1), 6.54–6.51 (1H, m, NH), 3.73 (1H, br s, OH), 3.59–3.51 (2H, m, OCH₂), 3.44–3.33 (6H, m, H4, H5, H6, OCH₂), 3.20–3.16 (2H, m, H1'), 2.65 (1H, dd, *J*_{3a,4}=3.0 Hz, *J*_{3a,3b}=14.5 Hz, H3a), 2.36 (1H, dd, *J*_{3b,4}=2.5 Hz, *J*_{3b,3a}=14.5 Hz, H3b), 1.55–1.19 (6H, m, CH₂), 1.35–1.18 (10H, m, CH₂), 0.89–0.81 (9H, m, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 189.39, 160.33, 110.47, 80.41, 71.59, 71.42, 71.04, 70.95, 48.55, 33.05, 30.02, 29.32, 28.34, 28.31, 24.04, 22.50, 22.49, 19.64, 13.97, 13.96, 13.60; LRMS (EI) *m*/*z* calcd for C₂₁H₄₁NO₄ (M⁺) 371.3036, found 371.3031. Anal. Calcd for C₂₁H₄₁NO₄; C: 67.88; H: 11.12. Found: C: 67.92; H: 11.14.

3.3.8. (*E*)-(4*R*,5*R*)-1-Benzylanimo-1,2,3-trideoxy-2-formyl-5-hydroxy-4,6-di-O-pentyl-hex-1-ene (**26**). Pale yellow oil; $[\alpha]_D^{55}$ +54.5 (*c* 0.06, CHCl₃); IR (CHCl₃) 2924, 1654, 1595, 1217, 1089 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.90 (1H, s, CHO), 7.33–7.19 (5H, m, ArH), 6.96 (1H, d, *J*_{1,NH}=13.0 Hz, H1), 6.89–6.87 (1H, m, NH), 4.36 (2H, d, *J*=5.0 Hz, *CH*₂*Ph*), 3.56–3.31 (9H, m, H4, H5, H6, OH, OCH₂), 2.66 (1H, d, *J*_{3a,3b}=15.0 Hz, H3a), 2.42 (1H, d, *J*_{3b,3a}=15.0 Hz, H3b), 1.54–1.09 (12H, m, CH₂), 0.82–0.75 (6H, m, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δ 189.83, 159.97, 137.50, 128.93, 128.92, 128.02, 127.24, 127.23, 109.98, 80.48, 71.63, 71.43, 71.01, 70.96, 52.47, 29.85, 29.34, 28.33, 28.29, 24.07, 22.51, 22.44, 14.01, 13.96; LRMS (EI) *m/z* (rel intens) 405 (M⁺, 3), 300 (20), 213 (14), 174 (92), 91 (100); HRMS (EI) *m/z* calcd for

3.3.9. (E)-(4R,5R)-1,2,3-Trideoxy-2-formyl-5-hydroxy-1-n-octylanimo-4,6-di-O-benzyl-hex-1-ene (27). Pale yellow oil; $[\alpha]_D^{25}$ +41.0 (c 0.20, CHCl₃); IR (CHCl₃) 2924, 1656, 1589, 1207, 1066 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) § 8.82 (1H, s, CHO), 7.28–7.19 (10H, m, ArH), 6.75 (1H, d, J_{1 NH}=14.0 Hz, H1), 6.18–6.15 (1H, m, NH), 4.62 (1H, d, *I*_{a,b}=11.5 Hz, *CH*₂*Ph*), 4.52 (1H, d, *I*_{a,b}=11.5 Hz, *CH*₂*Ph*), 4.46 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.41 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.54-3.41 (4H, m, H4, H5, H6), 3.09-2.98 (2H, m, H1'), 2.72 (1H, dd, J_{3a,4}=5.0 Hz, J_{3a,3b}=14.0 Hz, H3a), 2.28 (1H, dd, J_{3b,4}=8.5 Hz, J_{3b,3a}=14.0 Hz, H3b), 1.36–1.34 (2H, m, H2'), 1.22–1.18 (10H, m, H3', H4', H5', H6', H7'), 0.81 (3H, t, J=7.0 Hz, H8'); ¹³C NMR (CDCl₃, 125 MHz) δ 188.63, 159.44, 138.23, 137.93, 128.40, 128.39, 128.37, 128.36, 128.28, 128.27, 127.86, 127.85, 127.80, 127.74, 109.49, 77.71, 73.47, 72.56, 71.50, 71.19, 48.94, 31.73, 30.91, 29.12, 29.11, 26.44, 23.34, 22.59, 14.05; LRMS (EI) *m/z* (rel intens) 467 (M⁺, 1), 392 (11), 208 (10), 196 (43), 91 (100); HRMS (EI) *m*/*z* calcd for C₂₉H₄₁NO₄ (M⁺) 467.3036, found 467.3030. Anal. Calcd for C₂₉H₄₁NO₄; C: 74.48; H: 8.84. Found: C: 74.52; H: 8.88.

3.3.10. (E)-(4S,5R)-1-Butylanimo-1,2,3-trideoxy-2-formyl-5-hydroxy-4,6–*di*-O-*benzyl*-*hex*-1-*ene* (**28**). Pale yellow oil; $[\alpha]_D^{25}$ +62.6 (*c* 0.23, CHCl₃); IR (CHCl₃) 2924, 1651, 1591, 1213, 1066 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 8.83 (1H, s, CHO), 7.28–7.19 (10H, m, ArH), 6.74 (1H, d, J_{1.NH}=13.5 Hz, H1), 6.16-6.12 (1H, m, NH), 4.62 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.52 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.46 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.41 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.54–3.41 (4H, m, H4, H5, H6), 3.09-2.97 (2H, m, H1'), 2.72 (1H, dd, J_{3a,4}=5.0 Hz, J_{3a,3b}=14.0 Hz, H3a), 2.65 (1H, br s, OH), 2.27 (1H, dd, J_{3b.4}=8.0 Hz, J_{3b.3a}=14.0 Hz, H3b), 1.37–1.31 (2H, m, H2'), 1.25–1.17 (2H, m, H3'), 0.82 (3H, t, J=7.0 Hz, H4'); ¹³C NMR (CDCl₃, 125 MHz) δ 188.65, 159.39, 138.26, 137.97, 128.40, 128.39, 128.37, 128.36, 128.28, 128.27, 127.85, 127.84, 127.80, 127.73, 109.56, 77.76, 73.46, 72.58, 71.55, 71.24, 48.61, 32.93, 23.37, 19.60, 13.59; LRMS (EI) m/z (rel intens) 411 (M⁺, 1), 164 (13), 140 (74), 91 (100); HRMS (EI) m/z calcd for C₂₅H₃₃NO₄ (M⁺) 411.2410, found 411.2405. Anal. Calcd for C₂₅H₃₃NO₄; C: 72.96; H: 8.08. Found: C: 72.99; H: 8.10.

3.3.11. (E)-(4S,5R)-1-Benzylanimo-1,2,3-trideoxy-2-formyl-5-O-ace*tyl-4,6-di-O-benzyl-hex-1-ene* (**29**). Pale yellow oil; $[\alpha]_D^{25}$ +75.1 (*c* 0.71, CHCl₃); IR (CHCl₃) 2920, 1651, 1597, 1215, 1068 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) & 8.87 (1H, s, CHO), 7.28–7.09 (15H, m, ArH), 6.84 (1H, d, J_{1.NH}=13.5 Hz, H1), 6.49-6.46 (1H, m, NH), 4.61 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.51 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.44 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.40 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.21 (1H, d, J=6.0 Hz, CH₂Ph), 4.20 (1H, d, J=6.0 Hz, CH₂Ph), 3.57-3.46 (3H, m, H4, H5, H6a), 3.42 (1H, dd, *J*_{6b,5}=4.5 Hz, *J*_{6b,6a}=9.0 Hz, H6b), 2.73 (1H, dd, $J_{3a,4}=5.5$ Hz, $J_{3a,3b}=14.0$ Hz, H3a), 2.32 (1H, dd, $J_{3b,4}=8.0$ Hz, $J_{3b,3a}=14.0$ Hz, H3b); ¹³C NMR (CDCl₃, 125 MHz) δ 189.02, 159.07, 138.15, 137.92, 137.64, 128.87, 128.86, 128.38, 128.37, 128.34, 128.33, 128.25, 128.24, 127.86, 127.85, 127.84, 127.77, 127.72, 127.09, 127.08, 110.51, 77.61, 73.43, 72.53, 71.50, 71.11, 52.34, 23.38; LRMS (EI) m/z (rel intens) 445 (M⁺, 1), 198 (12), 174 (22), 91 (100); HRMS (EI) m/z calcd for C₂₈H₃₁NO₄ (M⁺) 445.2253, found 445.2246. Anal. Calcd for C₂₈H₃₁NO₄; C: 75.48; H: 7.01. Found: C: 75.52; H: 7.06.

3.4. Standard procedure to prepare the diene derivatives (33–35)

The solution of β -enaminals (**7**–**9** or **15**–**17**) (1.0 equiv) in acetic acid (2 mL) was stirred at room temperature for 1.5–4 h, concentrated under reduced pressure, and then re-dissolved in pyridine (2 mL). The resulting mixture was mixed with acetic anhydride (2.5 equiv), followed by stirring at room temperature for 1 h. The

reaction mixture was concentrated under reduced pressure and redissolved in CH₂Cl₂ (50 mL). The resulting solution was washed with H₂O (20 mL×2), brine (20 mL×2), and concentrated under reduced pressure. The dry residue was purified by silica gel column chromatography with EtOAc/Hex (2:3) to give the diene products (**33–35**) in 85–90% yields.

3.4.1. (E)-(5R)-1-(N-Acetyl-octylanimo)-1,2,3-trideoxy-2-formyl-5-Oacetyl-4,6-di-O-benzyl-hex-1,3-diene (**33**). Pale yellow oil; $[\alpha]_D^{25} - 2.3$ (c 1.21, CHCl₃); IR (CHCl₃) 2924, 1682, 1605, 1227, 1080 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.24 (1H, s, CHO), 7.43–7.10 (11H, m, ArH, H1), 5.59 (1H, s, H3), 5.51 (1H, t, *J*=5.5 Hz, H5), 4.70 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.62 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.48 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.45 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.66 (2H, d, J_{5.6}=6.0 Hz, H6), 3.63–3.60 (2H, m, H1'), 2.10 (3H, s, Ac), 2.04 (3H, s, Ac), 1.30-1.10 (12H, m, H2', H3', H4', H5', H6', H7'), 0.79 (3H, t, J=7.0 Hz, H8'); ¹³C NMR (CDCl₃, 125 MHz) δ 192.01, 170.88, 169.86, 154.97, 145.65, 137.67, 136.76, 128.40, 128.39, 128.38, 128.37, 128.02, 127.76, 127.68, 127.67, 127.64, 127.63, 119.01, 102.14, 73.22, 72.13, 72.12, 69.97, 31.73, 31.72, 29.30, 29.11, 28.93, 26.30, 22.56, 22.23, 21.06, 14.03; LRMS (EI) *m/z* (rel intens) 549 (M⁺, 1), 356 (6), 107 (10), 91 (100); HRMS (EI) *m*/*z* calcd for C₃₃H₄₃NO₆ (M⁺) 549.3090, found 549.3095. Anal. Calcd for C₃₃H₄₃NO₆; C: 72.10; H: 7.90. Found: C: 72.14; H: 7.95.

3.4.2. (E)-(5R)-1-(N-Acetyl-butylanimo)-1,2,3-trideoxy-2-formyl-5-O-acetyl-4,6-di-O-benzyl-hex-1,3-diene (**34**). Pale yellow oil; $[\alpha]_D^{25}$ -1.3 (c 0.52, CHCl₃); IR (CHCl₃) 2932, 1682, 1605, 1227, 1080 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.24 (1H, s, CHO), 7.44–7.10 (11H, m, ArH, H1), 5.59 (1H, s, H3), 5.52 (1H, t, J=5.0 Hz, H5), 4.70 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.63 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.49 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 4.45 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.66 (2H, d, J_{5.6}=6.0 Hz, H6), 3.64–3.60 (2H, m, H1'), 2.10 (3H, s, Ac), 2.04 (3H, s, Ac), 1.29–1.10 (4H, m, H2', H3'), 0.78 (3H, t, J=7.5 Hz, H4'); ¹³C NMR (CDCl₃, 125 MHz) δ 192.00, 170.88, 169.89, 154.96, 145.63, 137.67, 136.76, 128.41, 128.40, 128.39, 128.38, 128.03, 127.77, 127.71, 127.70, 127.65, 127.64, 118.98, 102.15, 73.23, 72.14, 72.13, 69.96, 31.03, 22.22, 21.06, 19.56, 19.55, 13.80; LRMS (EI) *m*/*z* (rel intens) 493 (M⁺, 1), 300 (27), 270 (12), 91 (100); HRMS (EI) m/z calcd for C₂₉H₃₅NO₆ (M⁺) 493.2464, found 493.2460. Anal. Calcd for C₂₉H₃₅NO₆; C: 70.60; H: 7.20. Found: C: 70.65; H: 7.26.

3.4.3. (E)-(5R)-1-(N-Acetyl-benzylanimo)-1,2,3-trideoxy-2-formyl-5-O-acetyl-4,6-di-O-benzyl-hex-1,3-diene (35). Pale yellow oil; $[\alpha]_D^{25}$ +17.0 (*c* 0.88, CHCl₃); IR (CHCl₃) 2931, 1682, 1605, 1211, 1080 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.26 (1H, s, CHO), 7.72–6.94 (11H, m, ArH, H1), 5.41 (1H, t, J=5.5 Hz, H5), 5.38 (1H, s, H3), 4.89 (1H, d, J_{a,b}=17.0 Hz, CH₂Ph), 4.83 (1H, d, J_{a,b}=17.5 Hz, CH₂Ph), 4.69 (1H, d, J_{a,b}=11.0 Hz, CH₂Ph), 4.61 (1H, d, J_{a,b}=11.5 Hz, CH₂Ph), 4.45 (1H, d, J_{a,b}=12.5 Hz, CH₂Ph), 4.42 (1H, d, J_{a,b}=12.0 Hz, CH₂Ph), 3.61 (2H, d, J_{5,6}=5.0 Hz, H6), 2.07 (3H, s, Ac), 1.88 (3H, s, Ac); ¹³C NMR (CDCl₃, 125 MHz) δ 191.90, 171.27, 169.94, 154.91, 145.23, 137.66, 136.93, 136.80, 128.81, 128.80, 128.39, 128.38, 128.37, 128.03, 128.02, 127.77, 127.76, 127.75, 127.74, 127.73, 127.41, 127.40, 125.96, 119.20, 101.55, 73.25, 72.09, 72.08, 69.92, 31.02, 22.18, 20.91; LRMS (EI) m/z (rel intens) 527 (M⁺, 1), 394 (6), 289 (25), 91 (100); HRMS (EI) m/z calcd for C₃₂H₃₃NO₆ (M⁺) 527.2308, found 527.2300. Anal. Calcd for C₃₂H₃₃NO₆; C: 72.90; H: 6.30. Found: C: 72.94; H: 6.36.

3.5. Standard procedure for cyclization of 3-deoxy- β -enaminals to produce 3-deoxy-C-2-formylglycals (41–43)

The solution of 3-deoxy- β -enaminals (**19–23** or **27–29**) (1.0 equiv) in HOAc (3 mL) was stirred at 80 °C for 20 min, concentrated under reduced pressure, and then re-dissolved in CH₂Cl₂ (50 mL). The resulting mixture was washed with H₂O (20 mL×2),

brine (20 mL×2), and concentrated under reduced pressure. The dry residue was purified by silica gel column chromatography with EtOAc/Hex (1:4) to give 3-deoxy-C-2-formylglycals (**41–43**) in 95-97% yields.

3.5.1. 1,5-Anhydro-4,6-di-O-benzyl-2,3-dideoxy-2-C-formyl-*D*-erythro-hex-1-enitol (**41**). Pale yellow oil; $[\alpha]_D^{25}$ +65.7 (*c* 0.28, CHCl₃); IR (CHCl₃) 2940, 1676, 1625, 1197, 1095 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.24 (1H, s, CHO), 7.29–7.19 (11H, m, ArH, H1), 4.61 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.52 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.44 (1H, d, *J*_{a,b}=12.0 Hz, *CH*₂*Ph*), 4.14–4.11 (1H, m, H5), 3.77–3.73 (1H, m, H4), 3.72–3.68 (2H, m, H6), 2.64 (1H, dd, *J*_{3a,4}=5.0 Hz, *J*_{3a,3b}=16.5 Hz, H3a), 2.20 (1H, dd, *J*_{3b,4}=7.5 Hz, *J*_{3b,3a}=16.5 Hz, H3b); ¹³C NMR (CDCl₃, 125 MHz) δ 189.88, 163.45, 137.60, 137.54, 128.49, 128.48, 128.47, 128.46, 127.92, 127.88, 127.80, 127.79, 127.75, 127.74, 116.96, 79.45, 73.64, 70.99, 68.47, 68.35, 22.46; LRMS (EI) *m/z* (rel intens) 338 (M⁺, 1), 221 (10), 141 (8), 91 (100); HRMS (EI) *m/z* calcd for C₂₁H₂₂O₄; C: 74.54; H: 6.55. Found: C: 74.59; H: 6.61.

3.5.2. 1,5-Anhydro-4,6-di-O-methyl-2,3-dideoxy-2-C-formyl-*D*-erythro-hex-1-enitol (**42**). Pale yellow oil; $[\alpha]_D^{25}$ +70.8 (*c* 0.24, CHCl₃); IR (CHCl₃) 2935, 1672, 1624, 1200, 1105 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.25 (1H, s, CHO), 7.23 (1H, s, H1), 4.09–4.06 (1H, m, H5), 3.57 (2H, d, $J_{6,5}$ =4.0 Hz, H6), 3.52–3.48 (1H, m, H4), 3.35 (6H, s, OCH₃), 2.60 (1H, dd, $J_{3a,4}$ =5.0 Hz, $J_{3a,3b}$ =16.5 Hz, H3a), 2.14 (1H, dd, $J_{3b,4}$ =7.0 Hz, $J_{3b,3a}$ =16.5 Hz, H3b); ¹³C NMR (CDCl₃, 125 MHz) δ 189.93, 163.29, 116.85, 79.07, 71.01, 70.65, 59.46, 56.68, 21.70; LRMS (EI) *m*/*z* (rel intens) 186 (M⁺, 1), 91 (100); HRMS (EI) *m*/*z* calcd for C₉H₁₄O₄ (M⁺) 186.0892, found 186.0896. Anal. Calcd for C₉H₁₄O₄; C: 58.05; H: 7.58. Found: C: 58.12; H: 7.65.

3.5.3. 1,5-Anhydro-4,6-di-O-benzyl-2,3-dideoxy-2-C-formyl-D-threohex-1-enitol (**43**). Pale yellow oil; $[\alpha]_D^{f5} +74.2$ (*c* 0.62, CHCl₃); IR (CHCl₃) 2945, 1674, 1635, 1195, 1090 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 9.25 (1H, s, CHO), 7.27–7.17 (11H, m, ArH, H1), 4.56 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.49 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.42 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.33 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.42 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.33 (1H, d, $J_{a,b}$ =12.0 Hz, *CH*₂*Ph*), 4.17–4.14 (1H, m, H5), 3.88 (1H, br s, H4), 3.72 (1H, dd, $J_{6a,5}$ =7.0 Hz, $J_{6a,6b}$ =10.0 Hz, H6a), 3.65 (1H, dd, $J_{6b,5}$ =5.5 Hz, $J_{6b,6a}$ =10.0 Hz, H6b), 2.61 (1H, dd, $J_{3a,4}$ =2.5 Hz, $J_{3a,3b}$ =17.5 Hz, H3a), 2.17 (1H, dd, $J_{3b,4}$ =3.5 Hz, $J_{3b,3a}$ =17.5 Hz, H3b); ¹³C NMR (CDCl₃, 125 MHz) δ 190.41, 163.95, 137.58, 137.48, 128.47, 128.46, 128.45, 128.44, 127.92, 127.89, 127.88, 127.87, 127.80, 127.79, 116.75, 78.65, 73.61, 70.96, 68.60, 67.63, 21.18; LRMS (EI) *m*/*z* (rel intens) 338 (M⁺, 1), 221 (8), 125 (11), 91 (100); HRMS (EI) *m*/*z* calcd for C₂₁H₂₂O₄ (M⁺) 338.1518, found 338.1510. Anal. Calcd for C₂₁H₂₂O₄; C: 74.54; H: 6.55. Found: C: 74.56; H: 6.57.

Acknowledgements

The authors thank the National Science Council of Taiwan (NSC100-2113-M-039-001-MY2) and China Medical University, Taiwan (CMU99-S-32) for their financial support.

References and notes

- Liu, H.; Liang, X.; Søhoel, H.; Bülow, A.; Bols, M. J. Am. Chem. Soc. 2001, 123, 5116–5117.
- 2. Hickson, C. L.; McNab, H. Org. Bioorg. Chem. 1988, 339-342.
- (a) Thummel, R. P.; Kohli, D. K. J. Org. Chem. 1977, 42, 2742–2747; (b) Bosh, J.; Bonjoch, J.; Serret, I. Heterocycles 1980, 14, 1983–1988; (c) Thummel, R. P.; Lefoulon, F.; Mahadevan, R. J. Org. Chem. 1985, 50, 3824–3828; (d) Wang, X. C.; Cui, Y. X.; Mak, T. C. W.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1990, 167–169; (e) Wall, M. E.; Wani, M. C.; Nicholas, A. W.; Manikumar, G.; Tele, C.;

Moore, L.; Truesdale, A.; Leitner, P.; Besterman, J. M. *J. Med. Chem.* **1993**, *36*, 2689–2700; (f) Wang, X. C.; Wong, H. N. C. *Tetrahedron* **1995**, *51*, 6941–6960; (g) Dukat, M.; Fiedler, W.; Dumas, D.; Damaj, I.; Martin, B. R.; Rosecrans, J. A.; James, J. R.; Glennon, R. A. *Eur. J. Med. Chem.* **1996**, *31*, 875–888.

- (a) Otteneder, M.; Plastaras, J. P.; Marnett, L. J. Chem. Res. Toxicol. 2002, 15, 312–318; (b) Hu, F. Z.; Zhang, G. F.; Liu, B.; Zou, X. M.; Zhu, Y. Q.; Yang, H. Z. J. Heterocycl. Chem. 2009, 46, 584–590.
- (a) De, D.; Mague, J. T.; Byers, L. D.; Krogstad, D. J. Tetrahedron Lett. 1995, 36, 205–208; (b) Sottofattori, E.; Anzaldi, M.; Balbi, A. J. Heterocycl. Chem. 1998, 35, 1377–1380; (c) Anzaldi, M.; Sottofattori, E.; Rizzetto, R.; di Casaleto, B. C.; Balbi, A. Eur. J. Med. Chem. 1999, 34, 837–842; (d) Costanzo, A.; Guerrini, G.; Ciciani, G.; Bruni, F.; Selleri, S.; Costa, B.; Martini, C.; Lucacchini, A.; Aiello, P. M.; Ipponi, A. J. Med. Chem. 1999, 42, 2218–2226; (e) Ziotin, S. G.; Kislitsin, P. G.; Samet, A. V.; Serebryakov, E. A.; Konyushkin, L. D.; Semenov, V. V.; Buchanan, A. C.; Gakh, A. A. J. Org. Chem. 2000, 65, 8430–8438; (f) Balsamo, A.; Coletta, I.; Guglielmotti, A.; Landolfi, C.; Mancini, F.; Martinelli, A.; Milanses, C.; Minutolo, F.; Nencetti, S.; Orlandini, E.; Pinza, M.; Rapposelli, S.; Rossello, A. Eur. J. Med. Chem. 2003, 38, 157–168; (g) Nishiwaki, N.; Ogihara, T.; Takami, T.; Tamura, M.; Ariga, M. J. Org. Chem. 2004, 69, 8382–8386; (h) Balbi, A.; Anzaldi, M.; Mazzei, M.; Miele, M.; Bertolotto, M.; Ottonello, L.; Dallegri, F. Bioorg. Med. Chem. 2006, 14, 5152–5160; (i) Mitchinson, A.; Blackaby, W. P.; Bourrain, S.; Carling, R. W.; Lewis, R. T. Tetrahedron Lett. 2006, 47, 2257–2260; (j) Sosnovskikh, V. Y.; Moshkin, V. S.; Kodess, M. I. Tetrahedron Lett. 2008, 49, 6856–6859; (k) Zheng, W.; Yuan, C.; Degterev, A.; Hsu, E.; Yuan, J. Bioorg. Med. Chem. Lett. 2008, 18, 4932–4935.
- (a) Pedras, M. S. C.; Suchy, M. Bioorg. Med. Chem. 2006, 14, 714–723; (b) Theoclitou, M. E.; Aquila, B.; Block, M. H.; Brassil, P. J.; Castriotta, L.; Code, E.; Collins, M. P.; Davies, A. M.; Deegan, T.; Ezhuthachan, J.; Filla, S.; Freed, E.; Hu, H.; Huszar, D.; Lawson, D.; Lewis, P. M.; Nadella, M. V. P.; Oza, V.; Pontz, T.; Ronco, L.; Russell, D.; Whitston, D.; Zheng, X.; Jayaraman, M.; Padmanilayam, M. J. Med. Chem. 2011, 54, 6734–6750.
- (a) d'Ischia, M.; Costantini, C.; Prota, G. *Tetrahedron Lett.* **1993**, 34, 3921–3924;
 (b) Takeuchi, I.; Ushida, M.; Hamada, Y.; Yuzuri, T.; Suezawa, H.; Hirota, M. *Heterocycles* **1995**, 41, 2221–2232; (c) Ischia, M.; Napolitano, A.; Costantini, C. *Tetrahedron* **1995**, 51, 9501–9508.
- 8. Todoriki, R.; Ono, M.; Tamura, S. Heterocycles 1986, 24, 755–769.
- 9. Briehl, H.; Lukosch, A.; Wentrup, C. J. Org. Chem. 1984, 49, 2772-2779.
- (a) Breitmaier, E.; Gassenmann, S. Chem. Ber. 1971, 104, 665–667; (b) Tamura, S.; Yabe, E. Chem. Pharm. Bull. 1973, 21, 2105–2111; (c) Tamura, S.; Ono, M.; Furuyama, K. Chem. Pharm. Bull. 1980, 28, 2356–2366; (d) Ono, M.; Tanaka, H.; Tamura, S. Chem. Pharm. Bull. 1982, 30, 1933–1941.
- 11. Nair, V.; Vietti, D. E.; Copper, C. S. J. Am. Chem. Soc. 1981, 103, 3030-3036.
- Elmorsy, S. S.; Badawy, D. S.; Nour, M. A.; Pelter, A. Tetrahedron Lett. 1991, 32, 5421–5422.
- 13. Dabrowski, J.; Kamienska-Trela, K. J. Am. Chem. Soc. 1976, 98, 2826-2834.
- 14. Ramesh, N. G.; Balasubramanian, K. K. Tetrahedron Lett. 1991, 32, 3875-3878.
- Lin, Z. P.; Lin, H. C.; Wu, H. H.; Chou, H. W.; Lin, S. K.; Sung, K. C.; Wong, F. F. Tetrahedron Lett. 2009, 50, 5120–5122.
- Cimarelli, C.; Giuli, S.; Palmieri, G. Tetrahedron: Asymmetry 2006, 17, 1308–1317.
- 17. Ganguly, N. C.; Dutta, S.; Datta, M. Tetrahedron Lett. 2006, 47, 5807-5810.
- 18. Kim, H. J.; Su, L.; Jung, H.; Koo, S. Org. Lett. 2011, 13, 2682–2685.
- Thomas, R. M.; Reddy, G. S.; Lyengar, D. S. Tetrahedron Lett. 1999, 40, 7293–7294.
- Thomas, R. M.; Mohan, H.; Iyengar, D. S. Tetrahedron Lett. 1997, 38, 4721–4724.
- (a) Forsyth, D. A.; Estes, M. R.; Lucas, P. J. Org. Chem. 1982, 47, 4380–4382; (b) Beugelmans, R.; Bourdet, S.; Bigot, A.; Zhu, J. Tetrahedron Lett. 1994, 35, 4349–4350.
- 22. Chandrasekhar, S.; Reddy, C. R.; Rao, R. J. Tetrahedron 2001, 57, 3435-3438.
- Dahlèn, A.; Sundgren, A.; Lahmann, M.; Oscarson, S.; Hilmersson, G. Org. Lett. 2003, 5, 4085–4088.
- Babler, J. H.; White, N. A.; Kowalski, E.; Jast, J. R. Tetrahedron Lett. 2011, 52, 745–748.
- Yin, B. L.; Cai, C. B.; Lai, J. Q.; Zhang, Z. R.; Huang, L. Adv. Synth. Catal. 2011, 353, 3319–3324.
- 26. Greenspoon, N.; Keinan, E. J. Org. Chem. 1988, 53, 3723-3731.
- Wang, J.; Huang, W.; Zhang, Z.; Xiang, X.; Liu, R.; Zhou, X. J. Org. Chem. 2000, 74, 3299–3304.
- Ohkubo, M.; Mochizuki, S.; Sano, T.; Kawaguchi, Y.; Okamoto, S. Org. Lett. 2007, 9, 773–776.
- 29. Yuan, C.; Hollingsworth, R. I. Tetrahedron Lett. 2011, 52, 5421-5423.
- (a) Comins, D. L.; Hiebel, A. C.; Huang, S. Org. Lett. 2001, 3, 769–771; (b) Khachik, F.; Chang, A. N.; Gana, A.; Mazzola, E. J. Nat. Prod. 2007, 70, 220–226.
- Egi, M.; Kawai, T.; Umemura, M.; Akai, S. J. Org. Chem. 2012, 77, 7092–7097.
 Hanessian, S.; Maianti, J. P.; Matias, R. D.; Feeney, L. A.; Armstrong, E. S. Org. Lett. 2011, 13, 6476–6479.
- 33. Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679-3681.
- (a) Wang, J.; Świdorski, J. J.; Sydorenko, N.; Hsung, R. P.; Coverdale, H. A.; Kuyava, J. M.; Liu, J. *Heterocycles* **2006**, *70*, 423–459; (b) Li, G.; Hsung, R. P.; Slafer, B. W.; Sagamanova, I. K. Org. *Lett.* **2008**, *10*, 4991–4994; (c) Li, G.; Carlson, L. J.; Sagamanova, I. K.; Slafer, B. W.; Hsung, R. P.; Gilardi, C.; Sklenicka, H. M. Synthesis **2009**, 2905–2914.