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Exploration of chiral aziridine ethers and aziridine alcohols as ligands for the Zn(II) catalyzed enantios-
elective direct aldol condensations reaction is described. The reaction of acetone with NO2-substituted
aromatic aldehydes in the presence of water gave the desired adducts in moderate chemical yields
(40–70%) and good to excellent enantiomeric excesses (80–98% ee).

� 2015 Elsevier Ltd. All rights reserved.
The aldol condensation reaction is one of the most common
tools in modern organic synthesis for the preparation of
carbon–carbon bonds.1–5 While the aldol condensation reaction is
traditionally carried out using anhydrous solvents it can also be
performed in an aqueous environment. However, this area of
research is underdeveloped and remains the current interest of a
number of different research groups.6–12 On the other hand, small
organic molecules, for example, amino acid derivatives13,14 have
been successfully used as ligands, which can act as previously
studied enzymatic catalysts (mimicking of type II aldolases14),
and thus promote aldol reactions originally catalyzed by the
enzymes.

In a series of Letters we have described the application of vari-
ous zinc(II) complexes with aziridine ligands in several stereose-
lective reactions; such as the addition of diethylzinc and
phenylethynylzinc to aldehydes15–21 and enones.22 Furthermore,
chiral aziridine ligands23 have been successfully applied to the
asymmetric aldol condensation reaction in the presence of Zn(II)
salts.24

As a continuation of our research interests, we decided to
examine the catalytic activity of previously synthesized aziridine
alcohols20 and aziridine ethers21 in the asymmetric aldol reaction.

Chiral N-trityl aziridine alcohols 1 and aziridine ethers 2 were
synthesized as previously described.20,21 Catalysts of type 1 were
obtained from N-trityl aziridine-2-carboxylic acid ester via the
corresponding Weinreb amide and subsequent reaction with vari-
ous Grignard reagents leading to aziridinyl ketones which upon
reduction gave the desired N-trityl aziridine alcohols 1a–e as
59:41 mixtures of diastereoisomers.20

Aziridine ethers were prepared from phenoxyacetyl chloride,
which upon treatment with a series of the corresponding sec-
ondary aziridines and subsequent reduction of the tertiary amide,
gave optically pure (S)-2a, (S)-2b, (R)-2b21 (Scheme 1).

Having a series of chiral aziridine catalysts 1a–e and 2a,b in
hand, we examined their catalytic activity in the stereocontrolled
asymmetric aldol condensation of acetone and 4-nitrobenzalde-
hyde in the presence of 5 mol % catalyst and 5 mol % Zn(OTf)2 in
acetone/water (2.9/0.1) (Scheme 2).24,25

The reaction time was optimized for 72 h, after which the reac-
tion products were isolated via column chromatography.

As shown in Table 1, aziridine alcohol ligands 1a–e exhibited
similar catalytic activities leading to the corresponding adduct in
yields ranging from 40% to 54% and enantiomeric excesses in the
range of 90–93%. Chiral aziridine ethers 2a,b also possessed com-
parable catalytic efficacy with (S)-2b (bearing a (S)-2-isopropy-
laziridine moiety) emerging as the best ligand to afford the
corresponding aldol adduct in 60% yield and 93% ee (Table 1,
entry 7).

The most effective ligand (S)-2b was also tested as a chiral cat-
alyst in the aldol condensation of acetone with 2-nitro- and 2,4-
dinitrobenzaldehyde (Table 1, entries 9 and 10). In both cases,
the yields of the corresponding adducts were higher than with 4-
nitrobenzaldehyde (72%), however the values of enantiomeric
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Scheme 1. Chiral aziridine ligands 1a–e and 2a,b.
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Scheme 2. Asymmetric aldol reaction catalyzed by chiral aziridine ligands 1a–e
and 2a,b.

Table 1
Aldol reaction of acetone with various aromatic aldehydes and ligands

Entry Catalyst R Yield (%)a eeb (%) Abs conf.c

1 1a 4-NO2 50 93 R27

2 1b 4-NO2 40 92 R27

3 1c 4-NO2 48 91 R27

4 1d 4-NO2 52 90 R27

5 1e 4-NO2 54 93 R27

6 2a 4-NO2 40 88 R27

7 2b 4-NO2 60 93 R27

8 2c 4-NO2 44 90 S27

9 2b 2-NO2 72 47 R28

10 2b 2,4-DiNO2 72 98 R29

a Reaction conditions: acetone (2.9 mL), H2O (0.1 mL), catalyst (0.025 mmol), Zn
(OTf)2 (0.025 mmol), aldehyde (1 mmol), 72 h, rt).

b Determined by HPLC using a Chiralpak OD-H column.
c Taken from the literature27–29 (on the basis of optical rotations signs and

retention times in HPLC chromatograms).
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excess were variable—47% for the reaction of 2-nitrobenzaldehyde
(Table 1, entry 9) and 98% for the reaction of 2,4-dinitrobenzalde-
hyde (Table 1, entry 10). The use of aziridine carbinols 1a–e led to
adducts with (R)-absolute configuration. The use of both enan-
tiomers of aziridine ethers (S)-2b and (R)-2b gave the opposite
enantiomers of adducts (entries 7 and 8) which was in accordance
with our previous findings.26

We presume that aziridine ligands 1a–e and 2a,b in combina-
tion with the Zn(II) salt creates an active catalyst which acts as a
Lewis acid through the generation of a zinc enolate (also mimick-
ing the mode of action of type II aldolase).14,29–32

It is worth mentioning that the application of chiral, small
amine–ether molecules as catalysts, have only been described spo-
radically in the literature.21,33–36

The scope of the substrates was limited to nitro-substituted
aldehydes due the fact that such compounds exhibit the highest
activity in this reaction12,14 (especially 2-nitrosubstituted ones as
explained by Maycock and Ventura37). Previous experiments
conducted in our group using benzaldehydes without the nitro
functional group in the reaction with acetone as well as aliphatic
aldehydes in the reaction with cyclohexanone14 gave no products
or proceeded with low chemical yields and ee values around 10%.

In conclusion we have reported that aziridine-ether ligands in
combination with Zn(OTf)2 in the presence of water constitutes
an efficient catalytic system for the aldol reaction of acetone with
nitrobenzaldehydes furnishing products with up to 98% ee.
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