Inorganic Chemistry

Pentamethylcyclopentadienyl Half-Sandwich Diazoalkane Complexes of Ruthenium: Preparation and Reactivity

Gabriele Albertin,*^{,†} Stefano Antoniutti,[†] Marco Bortoluzzi,[†] Alessandra Botter,[†] and Jesús Castro[‡]

[†]Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 Mestre Venezia, Italy [‡]Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310 Vigo (Galicia), Spain

Supporting Information

ABSTRACT: The diazoalkane complexes $[Ru(\eta^{5}-C_{5}Me_{5})-(N_{2}CAr1Ar2){P(OR)_{3}L]BPh_{4}$ (1-4) $[R = Me, L = P(OMe)_{3}$ (1); $R = Et, L = P(OEt)_{3}$ (2); $R = Me, L = PPh_{3}$ (3); $R = Et, L = PPh_{3}$ (4); Ar1 = Ar2 = Ph (a); Ar1 = Ph, Ar2 = p-tolyl (b); $Ar1Ar2 = C_{12}H_{8}$ (c); Ar1 = Ph, Ar2 = PhC(O) (d)] and $[Ru(\eta^{5}-C_{5}Me_{5}){N_{2}C(C_{12}H_{8})}{PPh(OEt)_{2}}(PPh_{3})]BPh_{4}$ (5c) were prepared by allowing chloro-compounds $RuCl(\eta^{5}-C_{5}Me_{5})[P(OR)_{3}]L$ to react with the diazoalkane $Ar1Ar2CN_{2}$ in the presence of NaBPh₄. Treatment of complexes 1-4 with H₂O afforded 1,2-

diazene derivatives $[Ru(\eta^5-C_5Me_5)(\eta^2-NH=NH){P(OR)_3}L]BPh_4$ (6–9) and ketone Ar1Ar2CO. A reaction path involving nucleophilic attack by H₂O on the coordinated diazoalkane is proposed and supported by density functional theory calculations. The complexes were characterized spectroscopically (IR and ¹H, ³¹P, ¹³C, ¹⁵N NMR) and by X-ray crystal structure determination of $[Ru(\eta^5-C_5Me_5)(N_2CC_{12}H_8){P(OEt)_3}_2]BPh_4$ (2c) and $[Ru(\eta^5-C_5Me_5)(\eta^2-NH=NH){P(OEt)_3}_2]BPh_4$ (7).

INTRODUCTION

Diazoalkane complexes of transition metals continue to attract attention,¹⁻⁶ due to the various coordination modes and reactivity shown by the metal-bonded Ar1Ar2CN₂ group. Diazoalkanes have also been used in models of the dinitrogen fixation process.^{7,8}

A number of diazoalkane complexes have been prepared¹⁻⁶ for several metals, and reactivity studies have revealed various pathways, depending on coordination mode and the nature of ancillary ligands. In η^2 -C,N coordinated diazoalkane, extrusion of N₂ and carbene M=CAr1Ar2 formation was observed, ^{1,2b,5,9,10} whereas an η^1 -N-bonded Ar1Ar2CN₂ complex can yield dinitrogen [M]-N2 derivatives,^{2g,k} or cleave the N-N bond of the Ar1Ar2CN₂ group.²ⁱ Dipolar (3 + 2) cycloaddition of coordinated diazoalkane with alkene and alkyne, yielding 3H-pyrazole derivatives, has also recently been reported.^{6a,b} However, no example of hydrolysis reaction on a coordinated Ar1Ar2CN₂ group had ever been reported until we found that pentamethylcyclopentadienyl half-sandwich complexes [Ru(η^5 - C_5Me_5 (N₂CAr1Ar2) {P(OR)₃} (PPh₃) BPh₄ can undergo an unprecedented reaction with H2O, affording side-on 1,2diazene derivatives $[Ru(\eta^5-C_5Me_5)(\eta^2-NH=NH){P(OR)_3}$ -(PPh₃)]BPh₄.¹¹ This interesting preliminary result prompted us to extend study to other half-sandwich complexes, in order to test whether other fragments can give rise to hydrolysis of coordinated Ar1Ar2CN₂ and how the nature of ancillary ligands can influence the properties of diazoalkane derivatives.

This paper reports full details of our study on the synthesis of diazoalkane complexes of pentamethylcyclopentadienyl coordinated ruthenium and their reactivity toward hydrolysis of the coordinated $Ar1Ar2CN_2$ group.

EXPERIMENTAL SECTION

General Comments. All synthetic work was carried out under Ar or N2, with standard Schlenk techniques or in an inert atmosphere drybox. All solvents were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. RuCl₃·3H₂O (Pressure Chemical Co., USA) and pentamethylcyclopentadiene C5Me5H (STREM) were used as received. The phosphites $P(OMe)_3$ and $P(OEt)_3$ (Aldrich) were used as received, whereas phenyldiethoxyphosphine PPh(OEt)2 was prepared by the method of Rabinowitz and Pellon.¹² Other reagents were purchased from commercial sources in the highest available purity and used as received. Diazoalkanes Ar1Ar2CN₂ (Ar1 = Ar2 = Ph; Ar1 = Ph, Ar2 = *p*-tolyl; Ar1Ar2 = $C_{12}H_8$) were prepared following the known methods.¹³ Infrared spectra were recorded on a PerkinElmer Spectrum-One FT-IR spectrophotometer. NMR spectra (¹H, ¹³C, ³¹P, ¹⁵N) were obtained on an AVANCE 300 Bruker spectrometer at temperatures between -90 and +25 °C, unless otherwise noted. ¹H and ${}^{13}C$ spectra are referred to internal tetramethylsilane. ${}^{31}P{}^{1}H{}$ chemical shifts are reported with respect to 85% H₃PO₄, ¹⁵N relative to CH315NO2; in both cases, downfield shifts (values in ppm) are considered positive. COSY, HMQC, and HMBC NMR spectroscopic experiments were performed with standard programs. The iNMR software package¹⁴ was used to treat NMR spectroscopic data. The conductivity of 10⁻³ mol dm⁻³ solutions of the complexes in CH₃NO₂ at 25 °C was measured on a Radiometer CDM 83. Elemental analyses

Received: March 17, 2016

were determined in the Microanalytical Laboratory of the Dipartimento di Scienze del Farmaco, University of Padova (Italy).

Caution. Pure diazoalkanes $N_2CAr1Ar2$ are potentially explosive; they must be handled with competence and caution.

Éthylglycine Hydrochloride.¹⁵ In a 50 mL one-necked roundbottomed flask containing 1.0 g (9.0 mmol) of glycine hydrochloride in 10 mL of ethanol, cooled to ca. -20 °C, SOCl₂ was added (1.17 mL, 16 mmol); when the mixture reached room temperature, another equivalent of solid glycine (1.0 g, 9.0 mmol) was slowly added and the mixture was refluxed for 2 h. After the colorless solution was cooled to room temperature, the solvent was removed under reduced pressure leaving a white solid, which was dried under high vacuum (0.01 mmHg) for 2 h and recrystallized from ethanol; yield \geq 90%.

Preparation of ¹⁵NNC(H)COOEt. The labeled compound was prepared by slight modification of the reported method.¹⁶ In a 50 mL three-necked round-bottomed flask, equipped with an argon inlet, septum cap, and thermometer, were placed 1.0 g (7.2 mmol) of ethylglycine hydrochloride, 2 mL of H2O, and 4 mL of CH2Cl2, and the mixture was cooled to ca. -5 °C. An ice-cooled solution of labeled $Na^{15}NO_2$ (98% ^{15}N enriched, 0.6 g, 8.5 mmol) in H_2O (2 mL) was added. To the resulting mixture, cooled to ca. -10 °C, 0.65 g of H_2SO_4 5% soln. (w/w) was slowly added. As a warm up could reduce the yield, the mixture was maintained at a temperature ≤ -1 °C during addition. Thereafter, the mixture was stirred for 20 min from -10 to -1 °C and then poured into an ice-cooled separating funnel. The yellow organic layer was recovered and the water phase was extracted with dichloromethane (2 \times 3 mL). The combined organic phase was washed with ice-cooled NaHCO3 5% soln. (6 mL), the organic phase was separated, and the water phase was extracted with dichloromethane $(2 \times 3 \text{ mL})$. The combined organic phase was dried over Na₂SO₄ and filtered, and the solvent was removed under reduced pressure at 0 °C. The resulting yellow oil was vacuum-dried for 25 min, and the resulting product was cold-distilled under high vacuum (0.01 mmHg); yield 0.62 g, 75%. ¹H NMR (300 MHz, CD₂Cl₂, 25 °C) δ : 4.75 (s br, 1H, CHN₂), 4.18 (q, 2H, CH₂), 1.25 (t, 3H, CH₃); ¹⁵N NMR (30.42 MHz, CD_2Cl_2 , 25 °C) δ : 5.3 (s br, ¹⁵NNC).

Synthesis of Complexes. The compound $[RuCl_2(\eta^5-C_5Me_5)]_2$ was prepared following the reported method.¹⁷

*RuCl(η*⁵-*C*₅*Me*₅)(*PPh*₃)₂. This complex was obtained by a slight modification of the reported method.¹⁸ A mixture of [RuCl₂(η^{5} -*C*₅*Me*₅)]₂ (1 g, 1.63 mmol), an excess of PPh₃ (2.62 g, 10.0 mmol), and 60 mL of anhydrous ethanol was refluxed for 72 h. The solution was then concentrated to about 30 mL by evaporation of the solvent under reduced pressure, and the solid formed was filtered, washed with ethanol, and dried under reduced pressure; yield ≥85%; ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.46–7.06 (m, 30H, Ph), 1.31 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : 7.46–7.06 (m, 30H, Ph), 1.31 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : A₂, 41.58 (s); Anal. Calcd for C₄₆H₄₅ClP₂Ru (796.32): C, 69.38; H, 5.70; Cl, 4.45; Found: C, 69.56; H, 5.61; Cl, 4.63%.

 $RuCl(\eta^5-C_5Me_5)[P(OR)_3]_2$ (**R** = Me, Et). These complexes were prepared following two different methods. Method A: An excess of the appropriate phosphite $P(OR)_3$ (2.27 mmol) (R = Me, Et) was added to a solution of the complex $\text{RuCl}(\eta^5-\text{C}_5\text{Me}_5)(\text{PPh}_3)_2$ (0.30 g, 0.38 mmol) in 10 mL of toluene, and the reaction mixture was stirred for 4 h. The solvent and the excess of phosphine were removed under reduced pressure to give an oil, which was extracted with three 5 mL portions of petroleum ether 40-60 °C. The extracted material was evaporated to dryness, and the oil obtained was treated with methanol or ethanol (2 mL). By slow cooling of the solution to ca. -40 °C, a yellow solid separated out, which was filtered and dried under reduced pressure; yield \geq 65%. Method B: A slight excess of the appropriate phosphite (7.2 mmol) was added to a solution of the complex $[\operatorname{RuCl}_2(\eta^5-\operatorname{C}_5\operatorname{Me}_5)]_2$ (1.0 g, 1.63 mmol) in 20 mL of tetrahydrofuran (thf). Zinc dust (18.3 mmol, 1.20 g) was added to the reaction mixture, which was stirred for 2 h and then filtered on cellulose. The solvent was removed under reduced pressure to give an oil, which was triturated with methanol or ethanol (3 mL). By cooling of the resulting solution to ca. -40 °C, a yellow solid slowly separated, which was filtered and dried under reduced pressure; yield $\geq 75\%$. R = Me: ¹H NMR (CD₂Cl₂, 20 °C) δ: 3.61 (t, 18H, CH₃ phos), 1.64 (t, 15H, CH₃

 C_5Me_5); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : A₂, 158.1 (s); Anal. Calcd for $C_{16}H_{33}ClO_6P_2Ru$ (519.90): C, 36.96; H, 6.40; Cl, 6.82; Found: C, 37.08; H, 6.33; Cl, 6.75%. **R** = **Et**: ¹H NMR (CD₂Cl₂, 20 °C) δ : 3.98 (m, 12H, CH₂), 1.63 (t, 15H, CH₃ C_5Me_5), 1.24 (t, 18H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : A₂, 153.4 (s); Anal. Calcd for $C_{22}H_{45}ClO_6P_2Ru$ (604.06): C, 43.74; H, 7.51; Cl, 5.87; Found: C, 43.83; H, 7.60; Cl, 5.80%.

 $RuCl(\eta^5-C_5Me_5)[P(OR)_3](PPh_3)$ (**R** = Me, Et). An excess of the appropriate phosphite $P(OR)_3$ (3.75 mmol) was added to a solution of $\operatorname{RuCl}(\eta^5-C_5\operatorname{Me}_5)(\operatorname{PPh}_3)_2$ (1.0 g, 1.26 mmol) in 10 mL of toluene, and the reaction mixture was stirred for 1 h. The solvent was removed under reduced pressure to give an oil, which was triturated with methanol or ethanol (3 mL). A yellow solid was slowly precipitated by cooling of the resulting solution to ca. -25 °C, which was filtered and dried under reduced pressure; yield \geq 70%. R = Me: ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.62–7.33 (m, 15H, Ph), 3.44 (t, 9H, CH₃ phos), 1.32 (s br, 15H, CH₃ C₅Me₅); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 146.7, δ_B 49.3, ${}^2J_{AX}$ = 77.4 Hz; Anal. Calcd for $C_{31}H_{39}ClO_3P_2Ru$ (658.11): C, 56.58; H, 5.97; Cl, 5.39; Found: C, 56.42; H, 6.07; Cl, 5.22%. **R** = Et: ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.65, 7.34 (m, 15H, Ph), 3.92, 3.79 (m, 6H, CH₂), 1.30 (s br, 15H, CH₃) C_5Me_5), 1.02 (t, 9H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 142.6, δ_X 49.6, ${}^2J_{AX}$ = 79.3 Hz; Anal. Calcd for C34H45ClO3P2Ru (700.19): C, 58.32; H, 6.48; Cl, 5.06; Found: C, 58.48; H, 6.37; Cl, 4.92%

*RuCl(η*⁵-*C*₅*Me*₅*]*[*PPh(OEt)*₂](*PPh*₃). This complex was prepared like related phosphite compounds RuCl(η⁵-*C*₅*Me*₅)[P(OR)₃](PPh₃); yield ≥75%. ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.72–7.02 (m, 20H, Ph), 4.01, 3.65 (m, 4H, CH₂), 1.33 (s, 15H, CH₃ C₅*Me*₅), 1.19 (t, 6H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: AX spin syst, δ_A 158.7, δ_X 46.75, ²*J*_{*AX*} = 50.7 Hz; Anal. Calcd for C₃₈H₄₅ClO₂P₂Ru (732.23): C, 62.33; H, 6.19; Cl, 4.84; Found: C, 62.49; H, 6.25; Cl, 4.54%.

 $[Ru(\eta^{5}-C_{5}Me_{5})(N_{2}CAr1Ar2)\{P(OR)_{3}\}_{2}]BPh_{4}(1, 2)[R = Me(1), Et(2);$ Ar1 = Ph, Ar2 = p-tolyl (b); $Ar1Ar2 = C_{12}H_8$ (c); Ar1 = Ph, Ar2 =PhC(O) (d)]. In a 25 mL three-necked round-bottomed flask were placed 0.3 mmol of the complex $RuCl(\eta^5-C_5Me_5)[P(OR)_3]_2$, an excess of the appropriate diazoalkane (0.9 mmol), an excess of NaBPh₄ (0.6 mmol, 205 mg), and 5 mL of methanol or ethanol. The reaction mixture was stirred for 24 h and then concentrated to about 3 mL by evaporation of the solvent under reduced pressure. By cooling to ca. -25 °C of the resulting mixture a yellow-orange solid separated out, which was filtered and crystallized from dichloromethane (1 mL) and ethanol (2 mL); yield \geq 80%. 1b: IR (KBr, cm⁻¹) $\nu_{N_{h}}$ 1914 (s); ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.499-6.87 (m, 29H, Ph), 3.51 (t, 18H, CH₃ phos), 2.41 (s, 3H, CH₃ p-tolyl), 1.79 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: A₂, 147.0; Anal. Calcd for C53H65BN2O6P2Ru (1011.93): C, 64.09; H, 6.47; N, 2.77; Found: C, 64.26; H, 6.33; N, 2.65%; $\Lambda_{\rm M}$ = 56.1 Ω^{-1} mol⁻¹ cm². 1c: IR (KBr, cm⁻¹) ν_{N_2} 1928 (s); ¹H NMR (CD₂Cl₂, 20 °C) δ : 9.08, 7.98–6.87 (m, 28H, Ph + fluorene), 3.66 (t, 18H, CH₃ phos), 1.83 (t, 15H, CH₃ C_5Me_5 ; ³¹P{¹H} NMR (CD_2Cl_2 , 20 °C) δ : A₂, 144.4; ¹³C{¹H} NMR $(CD_2Cl_2, 20 \ ^{\circ}C) \delta$: 165–119 (m, Ph + fluorene), 100.2 (s, C₅Me₅), 82.5 (br, CN₂), 53.91 (d, CH₃ phos), 10.08 (s, CH₃ C₅Me₅); Anal. Calcd for C53H61BN2O6P2Ru (995.89): C, 63.92; H, 6.17; N, 2.81; Found: C, 63.84; H, 6.09; N, 2.70%; $\Lambda_{\rm M}$ = 55.5 Ω^{-1} mol⁻¹ cm². **2b**: IR (KBr, cm⁻¹) $\nu_{\rm N_2}$ 1930 (s); ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.48–6.87 (m, 29H, Ph), 3.88 (m, 12H, CH₂), 2.41 (s, 3H, CH₃ p-tolyl), 1.79 (t, 15H, CH₃ C₅Me₅), 1.21 (t, 18H, CH₃ phos); ${}^{31}P{}^{1}H{}^{3}NMR$ (CD₂Cl₂, 20 °C) δ: A₂, 141.6; Anal. Calcd for C₆₀H₇₇BN₂O₆P₂Ru (1096.09): C, 65.75; H, 7.08; N, 2.56; Found: C, 65.57; H, 7.20; N, 2.44%; $\Lambda_{\rm M}$ = 54.7 Ω^{-1} mol⁻¹ cm². 2c: IR (KBr, cm⁻¹) ν_{N_2} 1950 (s); ¹H NMR (CD₂Cl₂, 20 °C) δ: 9.10, 7.96–6.87 (m, 28H, Ph + fluorene), 4.02 (m, 12H, CH₂), 1.83 (t, 15H, CH₃ C₅Me₅), 1.28 (t, 18H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: A₂, 138.7; Anal. Calcd for C59H73BN2O6P2Ru (1080.05): C, 65.61; H, 6.81; N, 2.59; Found: C, 65.44; H, 6.70; N, 2.68%; $\Lambda_{\rm M}$ = 55.1 Ω^{-1} mol⁻¹ cm². 2d: IR (KBr, cm $^{-1})$ $\nu_{\rm N_2}$ 1952 (m), $\nu_{\rm CO}$ 1741 (s); $^1{\rm H}$ NMR (CD_2Cl_2, 20 $^{\circ}{\rm C})$ $\delta:$ 7.65-6.87 (m, 30H, Ph), 3.83 (m, 12H, CH₂), 1.76 (t, 15H, CH₃) $C_5Me_5),$ 1.20 (t, 18H, CH₃ phos); $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ : A₂, 144.5; Anal. Calcd for C₆₀H₇₅BN₂O₇P₂Ru (1110.08): C, 64.92; H, 6.81; N, 2.52; Found: C, 64.71; H, 6.70; N, 2.59%; Λ_M = 56.4 Ω^{-1} mol⁻¹ cm².

 $[Ru(\eta^{5}-C_{5}Me_{5})(N_{2}CAr1Ar2)\{P(OR)_{3}\}(PPh_{3})]BPh_{4}$ (3, 4) [R = Me (3), Et (4); Ar1 = Ar2 = Ph (a); Ar1 = Ph, Ar2 = p-tolyl (b); Ar1Ar2 = p $C_{12}H_8$ (c)]. In a 25 mL three-necked round-bottomed flask were placed solid samples of $RuCl(\eta^5-C_5Me_5)[P(OR)_3](PPh_3)$ (0.3 mmol), an excess of the appropriate diazoalkane (0.9 mmol), an excess of NaBPh₄ (0.6 mmol, 205 mg) and 7 mL of methanol or ethanol. The reaction mixture was stirred for 24 h after which time the solid formed, which was filtered and crystallized from dichloromethane (1 mL) and ethanol (3 mL); yield \geq 75%. 3a: IR (KBr, cm⁻¹) ν_{N_2} 1945 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.66–6.87 (m, 45H, Ph), 3.32 (d, 9H, CH₃ phos), (CD₂Cl₂, 20 °C) $\delta_{\rm r}$ (CD₃C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) $\delta_{\rm r}$ AX spin syst, $\delta_{\rm A}$ 140.97, $\delta_{\rm X}$ 48.63, ² $J_{\rm AX}$ = 65.26 Hz; ¹³C{¹H} NMR $(CD_2Cl_2, 20 \ ^{\circ}C) \delta$: 165–122 (m, Ph), 98.59 (s, C_5Me_5), 83.5 (br, CN₂), 53.98 (d, CH₃ phos), 9.99 (s, CH₃ C₅Me₅); Anal. Calcd for C₆₈H₆₉BN₂O₃P₂Ru (1136.12): C, 71.89; H, 6.12; N, 2.47; Found: C, 71.70; H, 6.05; N, 2.57%; $\Lambda_{\rm M}$ = 56.2 $\Omega^{-1}~{\rm mol}^{-1}~{\rm cm}^2.$ 3b: IR (KBr, cm⁻¹) $\nu_{\rm N_2}$ 1919 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.83–6.85 (m, 44H, Ph), 3.32 (d, 9H, CH₃ phos), 2.39 (s, 3H, CH₃ p-tolyl), 1.47 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 141.15, δ_X 48.75, ² J_{AX} = 65.38 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ: 165-122 (m, Ph), 98.47 (d, C₅Me₅), 83.88 (s, CN₂), 53.95 (d, CH₃) phos), 21.27 (s, CH₃ p-tolyl), 9.97 (s, CH₃ C₅Me₅); Anal. Calcd for C₆₈H₇₁BN₂O₃P₂Ru (1150.14): C, 72.06; H, 6.22; N, 2.44; Found: C, 71.88; H, 6.29; N, 2.32%; $\Lambda_{\rm M}$ = 55.2 Ω^{-1} mol⁻¹ cm². 3c: IR (KBr, cm⁻¹) $\nu_{\rm N_2}$ 1950 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ : 9.07, 8.00–6.87 (m, 43H, Ph), 3.47 (d, 9H, CH₃ phos), 1.56 (t, 15H, CH₃ C₅Me₅); $^{31}P{^{1}H}$ NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 138.30, δ_X 47.37, ${}^{2}J_{AX}$ = 63.91 Hz; Anal. Calcd for C₆₈H₆₇BN₂O₃P₂Ru (1134.10): C 72.02; H, 5.95; N, 2.47; Found: C, 72.18; H, 5.82; N, 2.53%; $\Lambda_{\rm M}$ = 51.9 Ω^{-1} mol⁻¹ cm². 4b: IR (KBr, cm⁻¹) ν_{N_1} 1942 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.81-6.87 (m, 44H, Ph), 3.70 (m, 6H, CH₂), 2.41 (s, 3H, CH₃ p-tolyl), 1.47 (t, 15H, CH₃ C₅Me₅), 1.12 (t, 9H, CH₃ phos); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 136.76, δ_X 48.24, ${}^{2}J_{AX}$ = 64.52 Hz; Anal. Calcd for C₇₂H₇₇BN₂O₃P₂Ru (1192.22): C, 72.53; H, 6.51; N, 2.35; Found: C, 72.34; H, 6.57; N, 2.26%; $\Lambda_{\rm M}$ = 54.2 Ω^{-1} mol⁻¹ cm². 4c: IR (KBr, cm⁻¹) ν_{N} , 1928 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ: 9.05, 7.98-6.87 (m, 43H, Ph), 3.84 (qnt, 6H, CH₂), 1.55 (t, 15H, CH₃ C₅Me₅), 1.15 (t, 9H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 133.75, δ_X 47.27, ${}^2J_{AX}$ = 63.32 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ: 165–120 (m, Ph), 99.57 (s, C₅Me₅), 80.96 (br, CN₂), 63.73 (d, CH₂), 16.00 (d, CH₃ phos), 9.91 (s, CH₃ C₅Me₅); Anal. Calcd for C₇₁H₇₃BN₂O₃P₂Ru (1176.18): C, 72.50; H, 6.26; N, 2.38; Found: C, 72.41; H, 6.18; N, 2.45%; $\Lambda_{\rm M}$ = 54.5 Ω^{-1} mol⁻¹ cm².

[*Ru*(η⁵-*C*₅*Me*₅){*N*₂*C*(*C*₁₂*H*₈)}{*PPh*(*OEt*)₂)(*PPh*₃)]*BPh*₄ (*5c*). This complex was prepared like the related species 3 and 4; yield ≥85%. IR (KBr, cm⁻¹) ν_{N_2} 1967 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ: 9.07, 7.97–6.47 (m, 48H, Ph + fluorene), 3.85–3.51 [m, 4H, CH₂; multiplets are due to the diastereotopic nature of the two OEt groups of PPh(OEt)₂], 1.43 (t, 15H, CH₃ C₅Me₅), 1.26, 1.19 (t, 6H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: AX spin syst, δ_A 160.67, δ_X 45.75, ²*J*_{AX} = 52.25 Hz; Anal. Calcd for C₅₇H₅₈BN₂O₂P₂Ru (976.91): *C*, 70.08; H, 5.98; N, 2.87; Found: C, 70.31; H, 6.05; N, 2.79%; Λ_M = 53.6 Ω⁻¹ mol⁻¹ cm².

 $[Ru(\eta^5-C_5Me_5)(\eta^2-NH=NH){P(OR)_3}_2]BPh_4$ (6,7) [R = Me (6), Et (7)]. An excess of H₂O (0.5 mmol, 9 μ L) was added to a solution of the appropriate diazoalkane complex $[Ru(\eta^5-C_5Me_5)(N_2CAr1Ar2){P(OR)_3}_2]BPh_4$ (1,2) (0.1 mmol) in 10 mL of CH₂Cl₂, and the reaction mixture was stirred for 48 h. The solvent was removed under reduced pressure to give an oil, which was triturated with alcohol (2 mL). A yellow-orange solid slowly separated out, which was filtered and crystallized by diffusion of ethanol into a dichloromethane solution (2 mL) of the complex; yield \geq 85%. 6: ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.72–6.87 (m, 20H, Ph), 3.65 (t, 18H, CH₃ phos), 1.66 (t, 15H, CH₃)

 $C_5Me_5);\ {}^{31}P\{^1H\}\ NMR\ (CD_2Cl_2,\ 20\ ^{\circ}C)\ \delta:\ A_2\ spin\ syst,\ 153.0;\ Anal.\ Calcd\ for\ C_{40}H_{55}BN_2O_6P_2Ru\ (833.70):\ C,\ 57.63;\ H,\ 6.65;\ N,\ 3.36;\ Found:\ C,\ 57.43;\ H,\ 6.77;\ N,\ 3.24\%;\ \Lambda_M\ =\ 53.2\ \Omega^{-1}\ mol^{-1}\ cm^2.\ 7:\ ^{1}H\ NMR\ (CD_2Cl_2,\ 20\ ^{\circ}C)\ \delta:\ 7.65-6.87\ (t,\ 20H,\ Ph),\ 4.09\ (m,\ 12H,\ CH_2),\ 1.64\ (t,\ 15H,\ CH_3\ C_5Me_5),\ 1.27\ (t,\ 18H,\ CH_3\ phos);\ ^{31}P\{^{1}H\}\ NMR\ (CD_2Cl_2,\ 20\ ^{\circ}C)\ \delta:\ A_2\ spin\ syst,\ 150.1;\ Anal.\ Calcd\ for\ C_{46}H_{67}BN_2O_6P_2Ru\ (917.86):\ C,\ 60.19;\ H,\ 7.36;\ N,\ 3.05;\ Found:\ C,\ 60.02;\ H_2\ 7.19;\ N,\ 3.17\%;\ \Lambda_M\ =\ 54.3\ \Omega^{-1}\ mol^{-1}\ cm^2.$

 $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{2}-{}^{15}NH=NH){P(OEt)_{3}_{2}]BPh_{4}$ (7₁). This labeled complex was prepared in one step by reacting RuCl(η^5 -C₅Me₅)[P-(OEt)3]2 in ethanol first with ethyldiazoacetate ¹⁵NNC(H)COOEt and then with water, as follows: in a 25 mL three-necked roundbottomed flask were placed solid samples of the chloro-complex $\operatorname{RuCl}(\eta^{5}-C_{5}\operatorname{Me}_{5})[P(\operatorname{OEt})_{3}]_{2}$ (100 mg, 0.16 mmol), an excess of NaBPh₄ (0.32 mmol, 109 mg) and 5 mL of ethanol. An excess of ¹⁵Nlabeled diazoalkane (0.48 mmol, 51 μ L) was added to the mixture, which was then stirred for 15 h. Dichloromethane (5 mL) and an excess of water (0.7 mmol, 13 μ L) were added to the reaction mixture, which was stirred for 15 h more. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 mL). A yellow-orange solid slowly separated out by cooling the solution to ca. -25 °C; yield $\geq 48\%$. ¹H NMR (CD₂Cl₂, 20 °C) δ : 7.63-6.88 (t, 20H, Ph), 7.14 (br, 2H, NH) (4.10 (m, 12H, CH₂), 1.65 (t, 15H, CH₃ C₅Me₅), 1.28 (t, 18H, CH₃ phos); ${}^{31}P{}^{1}H{}^{1}NMR$ $(CD_2Cl_2, 20 \ ^{\circ}C) \delta$: A₂X spin syst, 150.15 (s br); ¹⁵N NMR (CD_2Cl_2 , 20 °C) δ : NYZA₂ spin syst (N = ¹⁵N; Y, Z = ¹H; A = ³¹P), δ_N -208.3, ${}^{1}J_{NY} = 92.1, {}^{2}J_{NZ} = < 2.0, {}^{2}J_{NA} = < 1.5$ Hz.

 $[Ru(\eta^5-C_5Me_5)(\eta^2-NH=NH){P(OR)_3}(PPh_3)]BPh_4$ (8,9) [R = Me (8), Et (9)]. These complexes were prepared like the related species 6,7, starting from diazoalkane complexes 3,4; yield ≥85%. 8:⁻¹H NMR (CD₂Cl₂, 20 °C) δ: 7.43, 7.31 (br), 7.02, 6.87 (t) (35H, Ph), 3.58 (d, 9H, CH₃ phos), 1.43 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 120.30, δ_X 37.33, ${}^2J_{AX}$ = 90.41 Hz; ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ: 165–119 (m, Ph), 108.84 (s, C₅Me₅), 55.72 (d, CH₃ phos), 9.34 (s, CH₃ C₅Me₅); Anal. Calcd for C55H61BN2O3P2Ru (971.91): C, 67.97; H, 6.33; N, 2.88; Found: C, 67.82; H, 6.40; N, 2.78%; $\Lambda_{\rm M}$ = 53.6 Ω^{-1} mol⁻¹ cm². 9: ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.46, 7.31 (br), 7.02, 6.87 (t) (35H, Ph), 4.02 (m, 6H, CH₂), 1.43 (t, 15H, CH₃ C₅Me₅), 1.08 (t, 9H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ : AX spin syst, δ_A 115.11, δ_X 37.71, ${}^{2}J_{AX}$ = 91.02 Hz; ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 20 °C) δ : 165–122 (m, Ph), 108.68 (s, C5Me5), 65.31 (d, CH2), 15.97 (d, CH3 phos), 9.38 (s, CH₃ C₅Me₅); Anal. Calcd for C₅₈H₆₇BN₂O₃P₂Ru (1013.99): C, 68.70; H, 6.66; N, 2.76; Found: C, 68.62; H, 6.77; N, 2.64%; $\Lambda_{\rm M}$ = 55.3 Ω^{-1} mol⁻¹ cm².

[*Ru*(η⁵-*C*₅*Me*₅)(η²⁻¹⁵*NH*=*NH*){*P*(*OR*)₃](*PPh*₃)]*BPh*₄ (**8**₇, **9**₇) [*R* = *Me* (**8**), *Et* (**9**)]. These complexes were prepared exactly like the related labeled compond 7₁, by reacting chloro-compounds RuCl(η⁵-*C*₅*Me*₅)-[*P*(OR)₃](*PPh*₃) first with labeled ethyldiazoacetate ¹⁵NNC(H)-COOEt and then with water; yield ≥ 45%. **8**₁: ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.01 (br, 2H, NH); ¹⁵N NMR (CD₂Cl₂, 20 °C) δ: -210.9 (dm), ¹*J*¹⁵_{NH} = 92.0 Hz. **9**₁: ¹H NMR (CD₂Cl₂, 20 °C) δ: 6.94 (br, 2H, NH); ¹⁵N NMR (CD₂Cl₂, 20 °C) δ: NYZAX spin syst (N = ¹⁵N; Y, Z = ¹H; A, X = ³¹P), δ_N -211.1, ¹*J*_{NY} = 92.4, ²*J*_{NZ} = 2.7, ²*J*_{NA} = 3.7, ²*J*_{NX} = 0.9, ³*J*_{YZ} = 17.0, ³*J*_{YA} = 3.0, ³*J*_{YX} = 6.6, ³*J*_{ZA} = 3.0, ³*J*_{ZX} = 10, ²*J*_{AX} = 90.87 Hz; ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: AXN spin syst, δ_A 115.3, δ_X 37.9, ²*J*_{AX} = 90.9, ²*J*_{AN} = 3.7, ²*J*_{XN} = 0.9 Hz. *Reaction of* [*Ru*(η²-*C*₅*Me*₅](*N*₂*C*(*C*₁₂*H*₆)](*P*(*OMe*)₃](*PPh*₃)]*BPh*₄ (*3c*)

Reaction of $[Ru(\eta^5-C_5Me_5)[N_2C(C_{12}H_8)]{P(OMe)_3}(PPh_3)]BPh_4$ (**3c**) with H_2O : Separation of Fluorenone $C_{12}H_8CO$. An excess of H_2O (0.44 mmol, 8 μ L) was added to a solution of diazoalkane complex **3c** (100 mg, 0.088 mmol) in 10 mL of dichloromethane, and the reaction mixture was stirred for 24 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 mL). A yellow solid, characterized as the diazene complex **8**, slowly separated by cooling the resulting solution to ca. -25 °C and was filtered and dried under reduced pressure. The mother liquor was chromatographed on a silica gel column (52 cm) using a mixture of petroleum ether (40–60 °C), dichloromethane, and ethanol in 20:5:2 ratio as eluent. The first eluted species was evaporated to dryness and characterized as fluorenone $C_{12}H_8CO$ by GC and IR (KBr, ν_{CO} 1712 s, cm⁻¹) data by comparison with an authentic sample.

[*Ru*(η⁵-*C*₅*Me*₅)(*CO*){*P*(*OEt*)₃)(*PPh*₃)]*BPh*₄ (**10**). To a solution of RuCl(η⁵-*C*₅*Me*₅)[*P*(OEt)₃](PPh₃) (100 mg, 0.14 mmol) in ethanol (5 mL) was added an excess of NaBPh₄ (0.28 mmol, 96 mg), and the reaction mixture was stirred under a CO atmosphere (1 atm) for 10 h. The yellow solid which precipitated was filtered and crystallized from dichloromethane (1 mL) and ethanol (2 mL); yield ≥85%. IR (KBr, cm⁻¹) ν_{CO} 1951 (s); ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.55–6.86 (m, 35H, Ph), 3.85 (qnt, 6H, CH₂), 1.60 (t, 15H, CH₃ *C*₅*Me*₅), 1.13 (t, 9H, CH₃ phos); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: AX spin syst, δ_A 133.60, δ_{BX} 50.65, ²*J*_{AX} = 53.22 Hz; Anal. Calcd for C₅₉H₆₅BO₄P₂Ru (1011.97): C, 70.02; H, 6.47; Found: C, 69.81; H, 6.34%; Λ_M = 53.9 Ω^{-1} mol⁻¹ cm². [*Ru*(η⁵-*C*₅*Me*₅)(η²-*CH*₂=*CH*₂){*P*(*OMe*)₃}(*PPh*₃)]*BPh*₄ (**11**). A solution

[*Ru*(η³-*C*₅*Me*₅)(η²-*CH*₂=*CH*₂){*P*(*OMe*)₃}(*PPh*₃)]*BPh*₄ (11). A solution of diazoalkane complex (0.1 mmol) in 10 mL of dichloromethane was stirred under ethylene H₂C=*C*H₂ (1 atm) for 24 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 mL) containing an excess of NaBPh₄ (0.15 mmol, 51 mg). A yellow-orange solid slowly separated, which was filtered and crystallized from dichloromethane (1 mL) and ethanol (2 mL); yield ≥ 75%. ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.54–6.88 (m, 35H, Ph), 3.49 (d, 9H, CH₃ phos), ABCDXY spin syst (ABCD = ¹H; X, Y = ³¹P), δ_A = δ_B = 2.51, δ_C = δ_D = 2.37, ³J_{AB} = ³J_{CD} = 13.90, ²J_{AC} = ²J_{BD} = −1.10, ³J_{AD} = ³J_{BC} = 8.60, ³J_{AX} = ³J_{BX} = 5.65, ³J_{AY} = ³J_{BY} = 0.75, ³J_{CX} = ³J_{DX} = 6.00, ³J_{CY} = ³J_{DY} = 0.75 Hz (4H, CH₂=*CH*₂), 1.39 (br, 15H, CH₃ C₃Me₅); ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ: AX spin syst, δ_A 139.97, δ_B 49.13, ²J_{AX} = 65.00 Hz; ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ: 165– 119 (m, Ph), 99.05 (s, C₃Me₅); S.7.73 (d, CH₃ phos), 43.30 (s, = CH₂), 9.39 (s, CH₃ C₅Me₅); Anal. Calcd for C₅₇H₆₃BO₃P₂Ru (969.94): C, 70.58; H, 6.55; Found: C, 70.40; H, 6.68%; Λ_M = 54.1 Ω⁻¹ mol⁻¹ cm².

[*Ru*(η⁵-*C*₅*Me*₅){=*C*=*C*(*H*)(*p*-tolyl))}(*P*(*OMe*)₃)(*PPh*₃)]*BPh*₄ (12*b*). An excess of the terminal alkyne HC≡*C*(*p*-tolyl) (0.4 mmol, 52 µL) was added to a solution of the diazoalkane complex [*Ru*(η⁵-*C*₅*Me*₅){*N*₂*C*(*Ph*)(*p*-tolyl)}(*P*(OMe)₃)(*PPh*₃)]*BPh*₄ (3*b*) (0.1 mmol) in dichloromethane (5 mL), and the reaction mixture was stirred for 24 h. The solvent was removed under reduced pressure to give an oil, which was triturated with ethanol (2 mL) containing an excess of NaBPh₄ (0.15 mmol, 51 mg). A pink solid slowly separated out, which was filtered and crystallized from dichloromethane (1 mL) and ethanol (2 mL); yield ≥80%. IR (KBr, cm⁻¹) $\nu_{Ru=C=C}$ 1634 (m); ¹H NMR (CD₂Cl₂, 20 °C) δ: 7.60−6.87 (m, 39H, Ph), 5.52 (dd, ⁴*J*_{PH} = 2.4, ⁴*J*_{PH} = 6.0, 1H, =CH), 3.45 (t, 9H, CH₃ phos), 2.33 (s, 3H, CH₃ *p*-tolyl), 1.59 (t, 15H, CH₃ C₅Me₅); ³¹P{¹H</sup>} NMR (CD₂Cl₂, 20 °C) δ: AX spin syst, δ_A 138.03, δ_X 50.46, ²*J*_{AX} = 52.70 Hz; Anal. Calcd for C₆₄H₆₇BO₃P₂Ru (1058.04): C, 72.65; H, 6.38; Found: C, 72.52; H, 6.47%; Λ_M = 52.5 Ω⁻¹ mol⁻¹ cm².

X-ray Crystallography. Crystallographic data were collected at room temperature using a Bruker Smart 6000 CCD detector and Cu– $K\alpha$ radiation ($\lambda = 1.54178$ Å) generated by a Incoatec microfocus source equipped with Incoatec Quazar MX optics. The software APEX2¹⁹ was used for collecting frames of data, indexing reflections, and the determination of lattice parameters, SAINT¹⁹ for integration of intensity of reflections, and SADABS¹⁹ for scaling and empirical absorption correction. The crystallographic treatment was performed with the Oscail program.²⁰ The structure of compound **2c** was solved by direct methods and refined by a full-matrix least-squares based on F².²¹ Non-hydrogen atoms were included in idealized positions and refined with isotropic displacement parameters. One of the ethyl groups on the P(OEt)₃ ligand resulted to be disordered over two

position with relative abundance of 0.57(3):0.43(3). The structure of compound 7 was solved by using the SHELXT program²² and refined by a full-matrix least-squares based on F², SHELXL program.²³ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in idealized positions and refined with isotropic displacement parameters. Hydrogen atoms in the diazene ligand were found in the density map, but their refinement was unsuccessful. For this reason, they were included in idealized positions by using the HFIX 23 instruction, and their site occupation factors were refined, resulting to be close to 60:40%. Only the hydrogen atoms at 60% probability were used in figures. Details of crystal data and structural refinement are given in the Supporting Information.

Computational Studies. The computational geometry optimizations were carried out without symmetry constraints, using the rangeseparated DFT functional ω B97X²⁴ in combination with the def2-SVP split-valence polarized basis set of Ahlrichs and Weigend, with relativistic ECP on the metal center.²⁵ The "restricted" formalism was always applied. The stationary points were characterized by IR simulations (harmonic approximation), from which zero-point vibrational energies and thermal corrections (*T* = 298.15 K) were obtained. The correction for BSSE to the computed dissociation energies was introduced by means of the CP approach.²⁶ The C-PCM implicit solvation model (ε = 9.08) was added to ω B97X calculations.²⁷ Gaussian '09 was used as software,²⁸ running on x86-64 workstations based on Intel Xeon E5 v3 multicore processors.

RESULTS AND DISCUSSION

Preparation of Diazoalkane Complexes. Pentamethylcyclopentadienyl half-sandwich complexes $\text{RuCl}(\eta^5\text{-}C_5\text{Me}_5)$ [P-(OR)₃]L were reacted with an excess of diazoalkane Ar1Ar2CN₂ in the presence of NaBPh₄ to yield the diazoalkane derivatives [Ru($\eta^5\text{-}C_5\text{Me}_5$)(N₂CAr1Ar2){P(OR)₃}L]BPh₄ (1– 5), which were isolated and characterized (Scheme 1).

Scheme 1. R = Me, L = P(OMe)₃ (1); R = Et, L = P(OEt)₃ (2); R = Me, L = PPh₃ (3); R = Et, L = PPh₃ (4); P(OR)₃ = PPh(OEt)₂, L = PPh₃ (5); Ar1 = Ar2 = Ph (a); Ar1 = Ph, Ar2 = *p*-tolyl (b); Ar1Ar2 = $C_{12}H_8$ (c); Ar1 = Ph, Ar2 = PhC(O) (d)

The reaction proceeded with substitution of chloride by diazoalkane, affording cationic diazoalkane complexes 1-5. The presence of the NaBPh₄ salt, which favors the substitution of Cl⁻, allows easy formation of complexes 1-5.

Both the bis(phosphite) $[\operatorname{RuCl}(\eta^5-\operatorname{C_5Me_5}){P(OR)_3}_2]^+$ and mixed-ligand fragments $[\operatorname{RuCl}(\eta^5-\operatorname{C_5Me_5}){P(OR)_3}_2]^+$ stabilize the diazoalkane complexes 1–5. This result contrasts with those obtained with the related $\operatorname{C_5H_5}$ derivatives, ^{6a,b} which give stable diazoalkane derivatives $[\operatorname{RuCl}(\eta^5-\operatorname{C_5H_5})-(\operatorname{N_2CAr1Ar2}){P(OR)_3}(\operatorname{PPh_3})]^+$ only with mixed phosphine and phosphite ligands. No Ar1Ar2CN₂ complex was obtained using the bis(phosphite) $[\operatorname{RuCl}(\eta^5-\operatorname{C_5H_5}){P(OR)_3}_2]^+$. The better donor properties of $\operatorname{C_5Me_5}$ with respect to $\operatorname{C_5H_5}$ allow diazoalkane complexes to be prepared also with two phosphites $P(OR)_3$ as coligands. All new complexes $[Ru(\eta^{5}-C_{5}Me_{5})(N_{2}CAr1Ar2){P(OR)_{3}}-L]BPh_{4}$ (1–5) were isolated as yellow-orange solids, that are stable in air and in solution of polar organic solvents, where they behave as 1:1 electrolytes.²⁹ Their characterization is supported by analytical and spectroscopic data (IR and NMR) and by X-ray crystal structure determination of complex $[Ru(\eta^{5}-C_{5}Me_{5}){N_{2}C(C_{12}H_{8})}{P(OEt)_{3}_{2}}BPh_{4}$ (2c), the ORTEP³⁰ of which is shown in Figure 1.

Figure 1. ORTEP view of the cation of **2c**. Ellipsoids are drawn at 30% probability. P1 and P2 represent $P(OEt)_3$ ligands. Hydrogen atoms are not shown.

Compound 2c consists of a tetraphenylborate salt of a ruthenium cationic complex. Only the cation is shown in Figure 1. The cation contains a ruthenium atom in a half-sandwich piano-stool structure, coordinated by a η^5 -pentamethylcyclopentadienyl ligand (Cp^{*}), two phosphite ligands $[P(OEt)_3]$ as legs, and one 9-fluorenediazo ligand bound to the Ru center via the terminal nitrogen atom ligand. Selected bond lengths and angles are shown in Table 1, together with those of 7 for comparative purposes, since it is also a cationic complex of general formula $Cp*Ru\{P(OEt)_3\}_2\}[N]$, in which [N] represents a nitrogen donor ligand (vide infra). The overall geometry of the half-sandwich piano-stool complex is a slightly distorted octahedral and is marked by near 90° values for P-Ru–P and N–Ru–P angles (legs of the piano-stool) or by the angles between the centroid of the Cp* ligand (Ct1) and the legs, in both compounds close to the theoretical 125.3° (Table 1). Again in all three, the η^5 -coordination mode of the Cp* ligand and the coordinative behavior of the phosphites is, as usual for these ligands, with a Ru-C bond length average of about 2.26 Å and Ru–P bond distances [between 2.2504(8) and 2.2904(11) Å], i.e., in the expected range for triethylphosphite compounds [e.g., an average of 2.266(3) Å for $cis-H_2Ru\{P(OEt)_3\}_4\}^{31}$ and do not need further comments. The most interesting characteristic of 2c is the coordination mode of the 9-fluorenediazo ligand. It should be noted that the Ru-N(1)-N(2) bond angle depends on the ancillary ligand, so that the tris(pyrazolyl)borate derivative (Tp) shows an angle close to 130° , ³² but η^{5} -indenyl or Cp derivatives have angles between 150 and 160°. The new Cp* derivative **2c** should be included in the latter group, with a Ru-N(1)-N(2) bond angle of $153.1(3)^{\circ}$. In fact, the value is between those found in the 9-diazofluorene ruthenium complex (η^5 -Ind)RuP¹P²{NNC- $(C_{12}H_8)$ [150.5(2)°]³³ or the diaryldiazo Ru complex CpRuP¹P²[NNC(Ph)Tol] [156.0(1)°].^{6a} Conversely, the N(1)-N(2)-C(11) bond angle is 164.1(4)°, more acute than those found in the above-mentioned η^{5} -indenyl, $171.2(3)^{\circ}$,³³ the Cp substituted compound, $173.9(6)^{\circ}$,^{6a} and

Table 1	. Se	lected	Bond	Lengths	[Å]	and	Angles	ſ	'	1
---------	------	--------	------	---------	-----	-----	--------	---	---	---

	2c	7
Ru-Ct1	1.9096(3)	1.9080(3)
Ru-N(1)	1.950(3)	2.026(3)
Ru-N(2)		2.020(3)
Ru-Ct2		1.9009(3)
Ru-P(1)	2.2541(10)	2.2904(11)
Ru-P(2)	2.2737(10)	2.2761(10)
Ru-C _{avg}	2.260	2.259(4)
Ru-C(1)	2.247(4)	2.265(4)
Ru-C(2)	2.256(3)	2.284(4)
Ru-C(3)	2.270(3)	2.274(4)
Ru-C(4)	2.272(3)	2.245(4)
Ru-C(5)	2.257(3)	2.229(4)
N(1)-N(2)	1.161(4)	1.385(5)
N(2)-C(31)	1.296(4)	
C(31)-C(312)	1.448(5)	
C(31)-C(310)	1.453(5)	
Ct1-Ru-P(1)	126.58(3)	119.61(3)
Ct1-Ru-P(2)	124.78(3)	125.31(3)
P(1)-Ru-P(2)	90.73(4)	87.85(4)
Ct1-Ru-N(1)	123.25(9)	121.50(12)
Ct1-Ru-N(2)		122.46(10)
N(1)-Ru-P(1)	89.63(9)	110.98(12)
N(1)-Ru-P(2)	91.26(9)	81.84(11)
N(2)-Ru-P(1)		81.10(11)
N(2)-Ru-P(2)		106.93(11)
N(1)-Ru- $N(2)$		40.02(14)
P(1)-Ru-Ct2		96.23(3)
P(2)-Ru-Ct2		94.53(3)
Ct1-Ru-Ct2		124.306(16)
N(1)-N(2)-Ru		70.19(19)
Ru-N(1)-N(2)	153.1(3)	69.79(19)
N(1)-N(2)-C(31)	164.1(4)	
N(2)-C(31)-C(310)	127.6(3)	
N(2)-C(31)-C(312)	123.6(3)	
C(312) - C(31) - C(310)	108.8(3)	
Ct1 represents the centroid if	the Cp* ligand,	Ct2 represents the

middle of the N=N bond.

the 9-diazofluorene ruthenium complex Ru{NNC($C_{12}H_8$)}-(PNP)Cl₂ [170.1(3)°].^{2g} Of course, it is also far from the almost linear value found for the Tp derivative, 178.2(4)°.³² The bond distances at the diazo moiety, Ru–N(1) of 1.950(3) Å, N(1)–N(2) of 1.161(4) Å and N(2)–C(11) of 1.296(4) Å, are virtually the same values found in the above-mentioned 9-diazofluorene ruthenium complexes (η^{5} -Ind)RuP¹P²{NNC-($C_{12}H_8$)}³³ and Ru[NNC($C_{12}H_8$)}(PNP)Cl₂,^{2g} or even in CpRuP¹P²[NNC(Ph)Tol],^{6a} so that a double bond between the nitrogen atoms and also N(2) and C(11) can be proposed.

The IR spectra of diazoalkane complexes $[\text{Ru}(\eta^5-\text{C}_5\text{Me}_5)-(\text{N}_2\text{CAr1Ar2})\{\text{P}(\text{OR})_3\}\text{L}]\text{BPh}_4$ (1–5) show a medium-intensity band at 1967–1914 cm⁻¹, which can be attributed to the ν_{N2} of the diazoalkane ligand. Comparison of this value with literature data^{1–3} also suggests an end-on η^1 -coordination mode for the Ar1Ar2CN₂ group, like that found in the solid state for **2c**. The ¹H NMR spectra show the characteristic signals of the ancillary ligands and those of the substituents Ar1 and Ar2 of the diazo ligand. The ³¹P NMR spectra are either singlets for bis(phosphite) derivatives **1**, **2**, or AX systems for mixed-ligand complexes **3–5**, fitting the proposed formulation.

Hydrolysis Reactions. Diazoalkane complexes 1–4 react with H₂O at room temperature to give the η^2 -diazene derivatives [Ru(η^5 -C₅Me₅)(η^2 -NH=NH){P(OR)₃}L]BPh₄ (6–9), which were isolated in almost quantitative yield and characterized (Scheme 2).

Ketone Ar1Ar2CO also forms in the reaction and was separated in good yield (>90%), indicating the stoichiometry shown in Scheme 2 for the hydrolysis reaction.

All diazoalkane complexes react with H2O, both those containing two phosphites (1, 2) and mixed-ligand $P(OR)_3$ and PPh_3 ones (3, 4), affording side-on 1,2-diazene derivatives 6–9. Instead, related cyclopentadienyl complexes $[Ru(\eta^5-C_5H_5) (N_2CAr1Ar2)\{P(OR)_3\}(PPh_3)]BPh_4$, recently prepared by us, ^{6a,b} do not undergo hydrolysis, and the starting complexes were recovered unchanged after 24 h of reaction. This result was rather unexpected, since η^5 -C₅Me₅ diazo derivatives 1-4 react so easily with H_2O that 1,2-diazene complexes 6-9 slowly form, even with traces of water present in not strictly anhydrous solvents. Also unreactive to hydrolysis are the half-sandwich indenyl $[\operatorname{Ru}(\eta^5 - \operatorname{C}_9H_7)(\operatorname{N}_2\operatorname{CAr}1\operatorname{Ar}2){P(\operatorname{OR})_3}(\operatorname{PPh}_3)]BPh_4^3$ and tris(pyrazolyl)borate derivatives [Ru(Tp)(N₂CAr1Ar2){P- $(OR)_{3}(PPh_{3})$ BPh₄,³² highlighting the peculiar properties of the pentamethylcyclopentadienyl ligand, which, in the halfsandwich fragment $[Ru(\eta^5-C_5Me_5)]P(OR)_3L^+$ (L = phosphite or PPh₃), can activate the coordinated diazoalkane toward hvdrolvsis.

The formation of diazene ligands from hydrolysis of a coordinated diazoalkane is rather surprising, but may be explained as due to the nucleophilic attack^{5a} of H_2O on the carbon atom of diazoalkane, according to the reaction path shown in Scheme 3.

In order to support this pathway, we exploited NMR spectra to follow the progress of the reaction, in an attempt to detect intermediates, but no new species were observed, apart from the reagents, final diazenes 6-9, and ketone Ar1Ar2C=O.

This hydrolysis reaction was therefore studied by DFT calculations on the compound $[Ru(\eta^5-C_5Me_5)(N_2CPh_2){P-(OMe)_3}_2]^+$.

Nucleophilic attack by water on the diazoalkane carbon atom is accompanied by protonation at N1 and affords the diazene intermediate $[Ru(\eta^5-C_5Me_5){NHNC(OH)Ph_2}{P(OMe)_3}_2]^+$ [A]. The substituents on the N atoms are mutually cis, and a N–H---O intramolecular hydrogen bond stabilizes the species (see Figure 2 and Supporting Information). The LUMO of the

Figure 2. DFT-optimized structure of $[Ru(\eta^{5}-C_{5}Me_{5}){NHNC(OH)-Ph_{2}}{P(OMe)_{3}_{2}}^{+}$. C-PCM\@B97X\def2-SVP calculations, dichloromethane as continuous medium. Hydrogen atoms on the ancillary ligands and the phenyl rings have been omitted for clarity. Selected computed bond lengths (Å): Ru–N 2.080; N–N 1.227; N–H 1.044; NH--O 1.948; N–C 1.502; C–O 1.396; O–H 0.967; Ru–C 2.206, 2.214, 2.219, 2.227, 2.243; Ru–P 2.256, 2.259. Selected computed angles (deg): Ru–N–N 131.1; Ru–N–H 115.6; H–N–N 113.2; N–N–C 115.2; N–C–O 111.3.

coordinated diazoalkane is localized, among all, on the Nbonded carbon atom and has the correct orientation to interact with the electron pairs of water. The HOMO contributes to the formal lone pair on the N1 atom (see Figure 3). The frontier

Figure 3. Frontier orbitals of $[Ru(\eta^{5}-C_{5}Me_{5})(N_{2}CPh_{2}){P(OMe)_{3}}_{2}]^{+}$. C-PCM\@B97X\def2-SVP calculations, dichloromethane as continuous medium. Surface isovalue = 0.035 au Hydrogen atoms have been omitted for clarity.

orbitals of the diazoalkane complex should therefore be involved in the interaction of the ligand with the water molecule. The energies of these orbitals are influenced by the presence of substituents on the cyclopentadienyl ring. In fact, calculations show a lowering of about 0.25 eV of $E_{\rm HOMO}$ and 0.14 eV of $E_{\rm LUMO}$, caused by the replacement of the metal fragment with $[{\rm Ru}(\eta^5-{\rm C}_5{\rm H}_5){\rm P(OMe)}_3]_2]^+$. These variations can be attributed to the smaller donation of the nonsubstituted cyclopentadienyl ring.

^{*a*}[Ru]-N₂CPh₂ + xH₂O taken as reference (G = 0 kcal mol⁻¹; x = 1, 2). [Ru] = [Ru(η^{5} -C₅Me₅){P(OMe)₃}₂]⁺. C-PCM\ ω B97X\def2-SVP calculations, dichloromethane as continuous medium. Only local minima are reported.

After the addition of water, C-N bond cleavage and hydrogen transfer from the oxygen atom to N2 lead to $[\operatorname{Ru}(\eta^{5}-C_{5}\operatorname{Me}_{5})\{\operatorname{NHNH}--\operatorname{OCPh}_{2}\}\{\operatorname{P}(\operatorname{OMe})_{3}\}_{2}]^{+}$. It is likely that this step is preceded by a rotation around the C-N bond in the intermediate $[Ru(\eta^5-C_5Me_5){NHNC(OH)Ph_2}{P (OMe)_{3}_{2}^{+}$, in order to reduce the distance between N2 and the hydrogen atom of the OH moiety. The relative energy of the corresponding rotamer, depicted in Scheme 4, is around 0.5 kcal mol⁻¹ with respect to the reactants (see the Supporting Information for Cartesian coordinates). The conversion of $[\operatorname{Ru}(\eta^5-C_5\operatorname{Me}_5)\{\operatorname{NHNC}(\operatorname{OH})\operatorname{Ph}_2\}\{\operatorname{P}(\operatorname{OMe})_3\}_2]^+$ to $[\operatorname{Ru}(\eta^5-C_5\operatorname{Me}_5)]$ C_5Me_5 {NHNH---OCPh₂} {P(OMe)₃}², depicted in Scheme 4 (pathway 1), is slightly endoergonic, but additional Gibbs energy, around 5.1 kcal mol⁻¹, is subsequently given by the dissociation of benzophenone and the consequent increase in entropy.

Another mechanism for the C-N bond cleavage may involve nucleophilic attack by another water molecule on the carbon atom of [Ru]-NHNC(OH)Ph₂, with the formation of the intermediate $C(OH)_2Ph_2$ geminal diol, which in turn converts to benzophenone and water (pathway 2). The intermediate of the latter, $[Ru(\eta^5-C_5Me_5){NHNH---(OH)_2CPh_2}{P (OMe)_{3}_{2}^{+}$, has higher relative Gibbs energy than that on pathway 1, as Scheme 4 shows. As in the previous case, dissociation of the organic substrate from the diazene moiety causes the Gibbs energy to fall by about 5 kcal mol⁻¹. The relative energies of the intermediates (local minima) are reported in Scheme 4. The computed data are not conclusive about the hydrolysis mechanism because we were unable to locate the transition states, and the Gibbs energy difference between the intermediates of the two pathways, summarized in Scheme 4, is not sufficient to unambiguously determine the most probable mechanism. The Cartesian coordinates of $[Ru(\eta^{5}-C_{5}Me_{5}){NHNH---OCPh_{2}}{P(OMe)_{3}_{2}}^{+}$ and $[Ru(\eta^{5}-C_{5}Me_{5}){NHNH---OCPh_{2}}{P(OMe)_{3}_{2}}^{+}$ C_5Me_5 {NHNH---(OH)₂CPh₂} {P(OMe)₃}⁺ are available in a separated XYZ file (Supporting Information).

It is worth noting that free diazoalkanes are reported^{34,35} to undergo hydrolysis, yielding alcohol and N₂. Coordination of

our pentamethylcyclopentadienyl fragment [Ru(η^5 -C₅Me₅){P-(OR)₃}L]⁺ entails novel reactivity to hydrolysis, affording diazene NH==NH and ketone.

Diazene NH==NH is one of the most reactive nitrogen hydrides,³⁶ undergoing disproportionation at ca. -150 °C in the condensed phase to N₂ and N₂H₄. However, it is an important molecule, useful as a reagent in stereoselective cis hydrogenation of unsaturated organic compounds³⁷ and of possible importance to inorganic and bioinorganic N₂ reduction processes.³⁸ The stability of diazene is greatly enhanced by coordination to transition metals, usually in a bimetallic (μ -HN==NH) or end-on (η^1 -HN==NH) fashion, obtained by oxidation of hydrazine complexes.^{39–41} Hydrolysis of a coordinated diazolkane highlights a new method of synthesizing this important nitrogen dihydride species.

The new diazene complexes $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{2}-HN=NH)-\{P(OR)_{3}\}L]BPh_{4}$ (6–9) were separated as yellow solids stable in air and in solution of polar organic solvents, where they behave as 1:1 electrolytes.²⁹ Their characterization is supported by analytical and spectroscopic data (IR, ¹H, ³¹P, ¹³C, ¹⁵N NMR) and by X-ray crystal structure determination of $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{2}-HN=NH)\{P(OMe)_{3}\}(PPh_{3})]BPh_{4}$ (8)¹¹ and $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{2}-HN=NH)\{P(OEt)_{3}\}_{2}]BPh_{4}$ (7), the ORTEP³⁰ of which is shown in Figure 4.

In the cation of 7, the ruthenium atom is again coordinated by one Cp*, two P(OEt)₃ ligands and another ligand, to achieve the half-sandwich piano-stool structure, one η^2 -diazene ligand acting as one of the *legs*. The molecular structure of [RuCp*(η^2 -HN=NH){P(OEt)₃}₂]⁺ is closely related to another compound previously described by our group, [RuCp*(η^2 -NH=NH)(PPh₃){P(OMe)₃}]^{+.11} The difference between them is the presence of differing phosphane ligands, two P(OEt)₃ ligands in 7 instead of one PPh₃ and one P(OMe)₃ ligand in the previously described compound.¹¹ Both compounds consist of a tetraphenylborate salt of a ruthenium complex, but 7 crystallizes in triclinic space group $P\overline{1}$, and the other crystallizes in monoclinic space group $P2_1/c$. The cation found in 7 is shown in Figure 4: its most interesting feature is,

Figure 4. ORTEP view of the cation of 7. Ellipsoids are drawn at 20% probability level. P1 and P2 represent $P(OEt)_3$ ligands.

again, the presence of one η^2 -diazene (η^2 -HN=NH) ligand, which is side-on bound to the metal. To the best of our knowledge, only two nonbridging side-on diazene ruthenium complexes have been crystallographically described, the abovementioned phosphine-phosphito $[RuCp^*(\eta^2-NH=NH)]$ $(OMe)_{3}(PPh_{3})^{+}$ complex¹¹ and $[Ru(\eta^{2}-NH=NH)-(\eta^{2}-NH=NH)]^{+}$ (depe)₂].^{41a} It should also be noted that the Ru–N distances, 2.020(3) and 2.026(3) Å, are even shorter than those found in $[RuCp^*(\eta^2-NH=NH){P(OMe)_3}(PPh_3)]^{+,11}$ 2.030(3) and 2.038(3) Å, and clearly shorter than those in the $[Ru(\eta^2 -$ NH=NH)(depe)₂] complex,^{41a} 2.123(4) and 2.134(3) Å. However, the N-N bond length falls between both values, being 1.385(5) Å vs $1.366(5)^{11}$ or 1.414(5) Å;^{41a} that is, all of them are clearly longer than those reported in other ruthenium diazene complexes, either terminal or bridging [about 1.28 Å]. The lengthening of the N–N bond has been ascribed^{41a} to back-bonding from the filled d-orbitals of ruthenium to the antibonding π^* orbitals of the diazene ligand.

The relative position of the hydrogen atoms of the diazene moiety cannot be unambiguously determined from the X-ray crystal structure.⁴² DFT calculations on the two possible isomers (see the separate XYZ file) support the relative trans orientation, which resulted in it being more stable than the

corresponding cis one by about 0.9 kcal mol^{-1} (Gibbs energy difference).

The ¹H NMR spectra of diazene complexes **6**–**9** only show the signals of the ancillay ligands C_5Me_5 , P(OR)₃, and PPh₃ and the anion BPh₄. No signals attributable to the diazene hydrogen atoms were observed. However, a heterocorrelated experiment (HMQC spectra, Figure 5) between the ¹⁵N and ¹H nuclei of the labeled complexes [Ru(η^5 -C₅Me₅)(η^2 -H¹⁵N=NH){P-(OR)₃}L]BPh₄ (7₁, **8**₁, **9**₁) clearly identifies the η^2 -HN=NH protons at 7.14–6.94 ppm as signals—one doublet and one broad singlet—overlapping the multiplet of the phenyl protons.

Further support for the presence of the η^2 -diazene ligand comes from the proton-coupled ¹⁵N NMR spectra of labeled complexes 7₁, 8₁, and 9₁, which appear as doublets of multiplets at -208.3 (7₁), -210.9 (8₁), and -211.1 (9₁) ppm; they could be simulated with an NYZAX model (N = ¹⁵N; Y, Z = ¹H; A, X = ³¹P) for mixed-ligand complexes 8₁ and 9₁ and with an NYZA₂ model for phosphite derivative 7₁ (Figure 6), ¹J¹⁵_{NH} = 92.1, ²J¹⁵_{NH} < 2.0 Hz. The spectra collapsed to a single multiplet (a triplet for 7₁) upon ¹H decoupling, confirming the presence of the NH=NH group in the complexes.

The ³¹P NMR spectra of **8** and **9** are AX multiplets (AXN in the labeled complexes), whereas those of **6** and 7 are singlets (doublets in the labeled 7₁), fitting the proposed formulation for the complexes. However, the singlet observed (between +20 and -80 °C) in the ³¹P NMR spectra of complexes [Ru(η^{5} -C₅Me₅)(η^{2} -NH=NH){P(OR)₃}_2]BPh₄ (**6**, 7), which contain a *trans* η^{2} -diazene ligand, is somewhat surprising because an AB system would be expected. Probably, the difference in chemical shift between the two ³¹P nuclei is so small in these compounds that gives, within the line width of the spectrum, an apparent singlet.

Some reactivity studies on diazene complexes **6–9** indicated that they are robust species, in which the diazene ligand is quite stable to substitution. For example, treatment of **9** with CO (1 atm) gives rise to substitution of the NH=NH ligand and formation of the species $[\text{Ru}(\eta^5\text{-}C_5\text{Me}_5)(\text{CO})\{\text{P(OEt)}_3\}\text{L}]$ -BPh₄ (**10**), but after 48 h of reaction only about 20% of the carbonyl was formed (Scheme 5). Ethylene (1 atm) also reacts

Figure 5. ${}^{1}H/{}^{15}N$ HMQC NMR spectrum of $[Ru(\eta^{5}-C_{5}Me_{5})(\eta^{2}-{}^{15}NH=NH){P(OEt)_{3}_{2}]BPh_{4}(7_{1})$ in CD₂Cl₂ at 243 K.

Figure 6. ¹⁵N, ¹H coupled NMR spectrum of $[Ru(\eta^5-C_5Me_5)(\eta^2-15NH=NH){P(OEt)_3}_2]BPh_4$ (7₁) in CD₂Cl₂ at 243 K.

with 8 to afford the ethylene complex $[\text{Ru}(\eta^5-\text{C}_5\text{Me}_5)(\eta^2-\text{H}_2\text{C}=\text{CH}_2)\{\text{P}(\text{OMe})_3\}(\text{PPh}_3)]\text{BPh}_4$ (11), the formation of which is rather slow: only 10–15% was obtained after 24 h of reaction at room temperature. Similar behavior is shown by *p*-tolyl acetylene, which slowly substitutes the diazene ligand, affording the vinylidene complex $[\text{Ru}(\eta^5-\text{C}_5\text{Me}_5)\{=\text{C}=\text{C}-(\text{H})(p\text{-tolyl})\}\{\text{P}(\text{OMe})_3\}(\text{PPh}_3)]\text{BPh}_4$ (12b).⁴³

Instead, the diazene complexes do not react with base (a large excess of NEt₃). This result is rather surprising, as the aryldiazene [M]-HN=NAr is known^{7,8,44,45} to undergo deprotonation to afford aryldiazenido complexes [M]=N=NAr. The hydrogens of our η^2 -HN=NH group were probably not sufficiently acidic, preventing any deprotonation reaction giving rise to new diazo species.

CONCLUSIONS

This work reports that diazoalkane molecules coordinated to the half-sandwich pentamethylcyclopentadienyl fragment [Ru- $(\eta^5-C_5Me_5)$ {P(OR)₃}L]⁺ undergo unprecedented hydrolysis, affording side-on 1,2-diazene derivatives. A reaction path involving nucleophilic attack of H₂O on the diazoalkane is proposed and discussed on the basis of DFT calculations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.6b00671.

Table S1, NMR spectroscopy data: Figures S1–S2 (PDF)

Crystallographic data (CIF1 and CIF2) Computational data (XYZ)

AUTHOR INFORMATION

Corresponding Author

*E-mail: albertin@unive.it.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Thanks go to Mrs. Daniela Baldan, from the Università Ca' Foscari Venezia (Italy), for technical assistance.

REFERENCES

(1) (a) Dartiguenave, M.; Joëlle Menu, M. J.; Deydier, E.; Yves Dartiguenave, Y.; Siebald, H. *Coord. Chem. Rev.* **1998**, *178–180*, 623– 663. (b) Mizobe, Y.; Ishii, Y.; Hidai, M. *Coord. Chem. Rev.* **1995**, *139*, 281–311.

(2) (a) Bonyhady, S. J.; Goldberg, J. M.; Wedgwood, N.; Dugan, T. R.; Eklund, A. G.; Brennessel, W. W.; Holland, P. L. Inorg. Chem. 2015, 54, 5148-5150. (b) Iluc, V. M.; Hillhouse, G. L. J. Am. Chem. Soc. 2014, 136, 6479-6488. (c) Matson, E. M.; Fanwick, P. E.; Bart, S. C. Eur. J. Inorg. Chem. 2012, 2012, 5471-5478. (d) Khosla, C.; Jackson, A. B.; White, P. S.; Templeton, J. L. Organometallics 2012, 31, 987-994. (e) Russell, S. K.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2009, 131, 36-37. (f) Mankad, N. P.; Peters, J. C. Chem. Commun. 2008, 1061-1063. (g) Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Milstein, D. Organometallics 2008, 27, 3526-3533. (h) Samant, R. G.; Graham, T. W.; Rowsell, B. D.; McDonald, R.; Cowie, M. Organometallics 2008, 27, 3070-3081. and references therein. (i) Bart, S. C.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2007, 129, 7212-7213. (j) Schaub, T.; Radius, U. Z. Anorg. Allg. Chem. 2007, 633, 2168-2172. (k) Cohen, R.; Rybtchinski, B.; Gandelman, M.; Rozenberg, H.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 2003, 125, 6532-6546. (1) Rowsell, B. D.; Trepanier, S. J.; Lam, R.; McDonald, R.; Cowie, M. Organometallics 2002, 21, 3228-3237. (m) Gao, Y.; Jennings, M. C.; Puddephatt, R. J.; Jenkins, H. A. Organometallics 2001, 20, 3500-3509.

(3) (a) Messerle, L.; Curtis, M. D. J. Am. Chem. Soc. **1980**, 102, 7789–7791. (b) Woodcock, C.; Eisenberg, R. Organometallics **1985**, 4, 4–7. (c) Curtis, M. D.; Messerle, L.; D'Errico, J. J.; Butler, W. M.; Hay, M. S. Organometallics **1986**, 5, 2283–2294.

(4) (a) Nakamura, A.; Yoshida, T.; Cowie, M.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2108–2117. (b) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 1231–1236. (c) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 2435–2440. (d) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 2441–2448. (e) Hillhouse, G. L.; Haymore, B. L. J. Am. Chem. Soc. 1982, 104, 1537–1548. (f) Cowie, M.; Loeb, S. J.; McKeer, I. R. Organometallics 1986, 5, 854–865. (g) Kaplan, A. W.; Polse, J. L.; Ball, G. E.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 11649–11662. (h) Kwen, H.; Young, V. G., Jr.; Maatta, E. A. Angew. Chem., Int. Ed. 1999, 38, 1145–1146. (i) Dias, E. L.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 2001, 123, 2442–2443. (j) Werner, H.; Mahr, N.; Wolf, J.; Fries, A.; Laubender, M.; Bleuel, E.; Garde, R.; Lahuerta, P. Organometallics 2003, 22, 3566–3576.

(5) (a) Ben-Shoshan, R.; Chatt, J.; Leigh, G. J.; Hussain, W. J. Chem. Soc., Dalton Trans. **1980**, 771–775. (b) Hidai, M.; Aramaki, S.; Yoshida, K.; Kodama, T.; Takahashi, T.; Uchida, Y.; Mizobe, Y. J. Am. Chem. Soc. **1986**, 108, 1562–1568.

(6) (a) Albertin, G.; Antoniutti, S.; Baldan, D.; Castro, J.; Comparin, G. Organometallics **2013**, *32*, 3157–3160. (b) Albertin, G.; Antoniutti, S.; Botter, A.; Castro, J.; Giacomello, M. Organometallics **2014**, *33*, 3570–3582. (c) Albertin, G.; Antoniutti, S.; Callegaro, F.; Castro, J. Organometallics **2009**, *28*, 4475–4479. (d) Albertin, G.; Antoniutti, S.; Bordignon, E.; Carrera, B. Inorg. Chem. **2000**, *39*, 4646–4650.

(7) (a) Sutton, D. Chem. Rev. **1993**, 93, 995–1022. (b) Hidai, M.; Mizobe, Y. Chem. Rev. **1995**, 95, 1115–1133.

(8) (a) Kisch, H.; Holzmeier, P. Adv. Organomet. Chem. 1992, 34, 67–109. (b) Sellmann, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 64–67. (c) Zollinger, H. Diazo Chemistry II; VCH: Weinheim, Germany, 1995.

(9) (a) Baratta, W.; Del Zotto, A.; Rigo, P. Organometallics **1999**, *18*, 5091–5096. (b) Del Zotto, A.; Baratta, W.; Sandri, M.; Verardo, G.; Rigo, P. Eur. J. Inorg. Chem. **2004**, 2004, 524–529. (c) Seino, H.; Watanabe, D.; Ohnishi, T.; Arita, C.; Mizobe, Y. Inorg. Chem. **2007**, *46*, 4784–4786. (d) Zarkesh, R. A.; Heyduk, A. F. Organometallics **2009**, 28, 6629–6631. (e) Alvarez, M. A.; García, M. E.; Gonzalez, R.; Ruiz, M. A. Organometallics **2010**, *29*, 5140–5153. (f) Ren, W.; Zhou, E.; Fang, B.; Hou, G.; Zi, G.; Fang, D.-C.; Walter, M. D. Angew. Chem., Int. Ed. **2014**, 53, 11310–11314.

(10) (a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 800-812. (b) Doyle, M. P. Chem. Rev. 1986, 86, 919-939. (c) Roper, W. R. J. Organomet. Chem. 1986, 300, 167-190. (d) Putala, M.; Lemenovskii, D. A. Russ. Chem. Rev. 1994, 63, 197-216. (e) Werner, H. J. Organomet. Chem. 1995, 500, 331-336. (f) Che, C.-M.; Huang, J.-S.; Lee, F.-W.; Li, Y.; Lai, T.-S.; Kwong, H.-L.; Teng, P.-F.; Lee, W.-S.; Lo, W.-C.; Peng, S.-M.; Zhou, Z.-Y. J. Am. Chem. Soc. 2001, 123, 4119-4129. (g) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976-9977. (h) Kirmse, W. Angew. Chem., Int. Ed. 2003, 42, 1088-1093. (i) Dai, X.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085-10094. (j) Shishkov, I. V.; Rominger, F.; Hofmann, P. Organometallics 2009, 28, 1049-1059. (k) Egloff, J.; Ranocchiari, M.; Schira, A.; Schotes, C.; Mezzetti, A. Organometallics 2013, 32, 4690-4701. (l) Kornecki, K. P.; Briones, J. F.; Boyarskikh, V.; Fullilove, F.; Autschbach, J.; Schrote, K. E.; Lancaster, K. M.; Davies, H. M. L.; Berry, J. F. Science 2013, 342, 351-354.

(11) Albertin, G.; Antoniutti, S.; Botter, A.; Castro, J. Inorg. Chem. 2015, 54, 2091–2093.

(12) Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623-4626.

(13) (a) Smith, L. I.; Howard, K. L. Organic Syntheses; Wiley: New York, 1955; Vol. III, p 351. (b) Miller, J. B. J. Org. Chem. 1959, 24, 560–561. (c) Baltzly, R.; Mehta, N. B.; Russell, P. B.; Brooks, R. E.; Grivsky, E. M.; Steinberg, A. M. J. Org. Chem. 1961, 26, 3669–3676. (14) Balacco, G. http://www.inmr.net/.

(15) Gerlach, M.; Putz, C.; Enders, D.; Gaube, G. Patent No. WO 02/22569, 2002.

(16) Searle, N. E. Organic Syntheses, Coll. 1963, 4, 424.

(17) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. Organometallics 1984, 3, 274–278.

Article

(18) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. **2008**, 130, 8923–8930.

(19) APEX2, SMART, SAINT; Bruker AXS Inc.: Madison, WI, USA, 2007.

(20) McArdle, P. J. Appl. Crystallogr. 1995, 28, 65-65.

(21) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.

(22) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3–8.

(23) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.

(24) (a) Minenkov, Y.; Singstad, Å.; Occhipinti, G.; Jensen, V. R. Dalton Trans. 2012, 41, 5526–5541. (b) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. (c) Gerber, I. C.; Ángyán, J. G. Chem. Phys. Lett. 2005, 415, 100–105.

(25) (a) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. (b) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123–141.

(26) Cramer, C. J. Essentials of Computational Chemistry, 2nd Ed.; Wiley: Chichester, UK, 2004.

(27) (a) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669–681. (b) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995–2001.

(28) Frisch, M. J. et al. *Gaussian 09*, Revision C.01; Gaussian Inc., Wallingford, CT, USA, 2010.

(29) Geary, W. J. Coord. Chem. Rev. 1971, 7, 81-172.

(30) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565-565.

(31) McCarty, W. J.; Yang, X.; DePue Anderson, L. J. D.; Jones, R. A. Dalton Trans. **2012**, 41, 13496–13503.

(32) Albertin, G.; Antoniutti, S.; Bortoluzzi, M.; Castro, J.; Marzaro, L. Dalton Trans. **2015**, *44*, 15470–15480.

(33) Albertin, G.; Antoniutti, S.; Castro, J.; Dottorello, G. Dalton Trans. 2015, 44, 9289–9303.

(34) Patai, S. The Chemistry of Diazonium and Diazo Groups; Wiley & Sons: Chichester, UK, 1978.

(35) McGarrity, J. F.; Smyth, T. J. Am. Chem. Soc. 1980, 102, 7303-7308.

(36) Wiberg, N.; Bachhuber, H.; Fischer, G. Angew. Chem., Int. Ed. Engl. 1972, 11, 829–830.

(37) (a) Corey, E. J.; Pasto, D. J.; Mock, W. L. J. Am. Chem. Soc. 1961, 83, 2957–2958. (b) van Tamelen, E. E.; Timmons, R. J. J. Am. Chem. Soc. 1962, 84, 1067–1068.

(38) (a) Barney, B. M.; McClead, J.; Lukoyanov, D.; Laryukhin, M.;
Yang, T.-C.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. *Biochemistry* 2007, 46, 6784–6794. (b) Coucouvanis, D. Acc. Chem. Res. 1991, 24, 1–8. (c) Back, R. A. Rev. Chem. Intermed. 1984, 5, 293–323. (d) Thorneley, R. N. F.; Eady, R. R.; Lowe, D. J. Nature 1978, 272, 557–558.

(39) (a) Sellmann, D.; Hille, A.; Rosler, A.; Heinemann, F. W.; Moll, M.; Brehm, G.; Schneider, S.; Reiher, M.; Hess, B. A.; Bauer, W. *Chem.* - *Eur. J.* **2004**, *10*, 819–830. (b) Sellmann, D.; Käppler, J.; Moll, M.; Knoch, F. *Inorg. Chem.* **1993**, *32*, 960–964. (c) Fujisawa, K.; Lehnert, N.; Ishikawa, Y.; Okamoto, K. *Angew. Chem., Int. Ed.* **2004**, *43*, 4944– 4947.

(40) (a) Cheng, T.-Y.; Ponce, A.; Rheingold, A. L.; Hillhouse, G. L. Angew. Chem., Int. Ed. Engl. **1994**, 33, 657–659. (b) Smith, M. R., III; Cheng, T.-Y.; Hillhouse, G. L. J. Am. Chem. Soc. **1993**, 115, 8638–8642. (c) Zhang, Q.-F.; Zheng, H.; Wong, W.-Y.; Wong, W.-T.; Leung, W.-H. Inorg. Chem. **2000**, 39, 5255–5264.

(41) (a) Field, L. D.; Li, H. L.; Dalgarno, S. J. *Inorg. Chem.* **2010**, *49*, 6214–6221. and references therein. (b) Field, L. D.; Li, H. L.; Dalgarno, S. J.; Turner, P. *Chem. Commun.* **2008**, 1680–1682.

(42) Previous reports (see ref 41) suggest a more probable *trans* diazene isomer, and the most populated electronic density around the nitrogen atoms found in 7 fits a *trans* disposition.

(43) It is worth noting that, since the substitution of diazene in 8, 9 is slow, the resulting complexes 10, 11, 12 were prepared following different methods, reported in the Experimental Section.

(44) (a) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. J. Am. Chem. Soc. **1986**, 108, 6627–6634. (b) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. Inorg. Chem. **1988**, 27, 829–835. (c) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bordignon, E.; Busatto, F.; Pelizzi, G. Inorg. Chem. **1997**, 36, 1296–1305.

(45) (a) Smith, M. R., III; Cheng, T. Y.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 8638–8642. (b) Smith, M. R.; Hillhouse, G. L. J. Am. Chem. Soc. 1988, 110, 4066–4068.