ORIGINAL RESEARCH

Friedel–Crafts acyl rearrangements in the fluoranthene series

Tahani Mala'bi¹ • Shmuel Cohen¹ • Sergey Pogodin¹ • Israel Agranat¹

Received: 2 November 2016 / Accepted: 29 November 2016 / Published online: 15 December 2016 © Springer Science+Business Media New York 2016

Abstract Friedel–Crafts monoacylation and diacylation of fluoranthene (FT) gave 3-acetyl-, 8-acetyl-, 3-benzoyl-, 8-benzoyl-, 3-(4-fluorobenzoyl)-, 8-(4-fluorobenzoyl)-, 3,9-diacetyl-, 3,9-dibenzoyl-, and 3,9-bis(4-fluorobenzoyl)fluoranthene (3-AcFT, 8-AcFT, 3-BzFT, 8-BzFT, 3-(4-FBz)FT, 8-(4-FBz)FT, 3,9-Ac₂FT, 3,9-Bz₂FT, and 3,9-(4-FBz)₂FT). The crystal and molecular structures of 8-AcFT, 3,9-Ac₂FT, 7,10-Ac₂FT, 3-BzFT, 8-BzFT, 8-BzFT, 8-BzFT, 7,10-Ac₂FT, 3-BzFT, 8-BzFT, and 3-(4-FBz)FT were determined by X-ray crystallography. The structures of the fluoranthene derivatives, including 3,9-Ac₂FT were verified by ¹H-, ¹³C-, and ¹⁹F-NMR spectroscopy. The Friedel–Crafts acyl rearrangements in PPA of the above fluoranthene derivatives were studied at various temperatures and times. The kinetically controlled product 3-AcFT/3-BzFT rearranged to the thermodynamically-controlled product 8-AcFT/8-BzFT, not vice versa. 3,9-Ac₂FT, 3,9-Bz₂FT,

This contribution is dedicated to Professor George A. Olah, the illustrious scientist, the Doyen of Friedel–Crafts chemistry, in celebration of his forthcoming 90th birthday.

Electronic supplementary material The online version of this article (doi:10.1007/s11224-016-0894-7) contains supplementary material, which is available to authorized users.

Israel Agranat isri.agranat@mail.huji.ac.il

> Tahani Mala'bi tahani.malabi@mail.huji.ac.il

Shmuel Cohen shmuel.cohen2@mail.huji.ac.il

Sergey Pogodin s.pogodin@mail.huji.ac.il

¹ Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Philadelphia Bldg. #212, Edmond J. Safra Campus, 9190410 Jerusalem, Israel and $3,9-(4-FBz)_2FT$ underwent deacylation in PPA to give 8-AcFT, 8-BzFT, and 8-(4-FBz)FT, respectively. Deacetylation of $3,9-Ac_2FT$ gave also 3-methyl-1*H*-benzo[*cd*]fluoranthene (3-MeBcdFT). The rich Friedel–Crafts acylation chemistry in PPA revealed in the fluoranthene series is characterized by regioselectivity. DFT calculations at B3LYP/6-31G(*d*) supported the regioselectivity including the formation of $3,9-Ac_2FT$, and the win of kinetic control over thermodynamic control.

Keywords X-ray crystallography · NMR spectroscopy · Regioselectivity · Deacylation · Kinetic control · Thermodynamic control · PPA · DFT

Introduction

Friedel–Crafts alkylation and Friedel–Crafts acylation are considered cornerstones of organic chemistry [1, 2]. For many years, it has been accepted that Friedel–Crafts acylations, in contrast to Friedel–Crafts alkylations, are usually irreversible, free of rearrangements, and isomerizations [1, 3, 4]. The difference in behavior between Friedel–Crafts acylation and Friedel– Crafts alkylation was attributed to the resonance stabilization existing between the acyl group and the aromatic nucleus [5], which may serve as a barrier against rearrangements and reversible processes. When the acyl group has been tilted out of the plane of the aromatic nucleus, e.g., by neighboring bulky substituents, the resonance stabilization was reduced and the pattern of irreversibility of Friedel–Crafts has been challenged [5–7].

In 1955, Gore introduced the concept of reversibility of Friedel–Crafts acylation, proposing that "The Friedel–Crafts acylation reaction of reactive aromatic hydrocarbons is a reversible process" [8]. Gore concluded that "Reversibility is an important factor in acylation reactions" [8]. In 1964, Gore argued that in polycyclic aromatic systems other than naphthalene, there is

direct experimental evidence in favor of reversibility [9]. The reversibility studies have been focused mainly on unusual aspects of selectivity, including deacylations, one-way rearrangements, and kinetic versus thermodynamic control [7]. The incursion of reversibility in Friedel–Crafts acylations was revealed by Agranat, et al., in the benzoylation of naphthalene in polyphosphoric acid (PPA) at elevated temperatures [10]. The kinetically controlled 1-benzoylnaphthalene (1-BzNA) rearranged to the thermodynamically controlled 2-benzoylnaphthalene (2-BzNA) in PPA at 140 °C (vide infra), whereas 2-BzNA underwent only deacylation, e.g., at 140 °C, to give naphthalene (NA).

The reversibility concept was applied to the synthesis of new linearly annelated polycyclic aromatic ketones, by intramolecular Friedel–Crafts acyl rearrangements of their angularly annelated constitutional isomers [11–13]. Complete reversibility of Friedel–Crafts acylation was established in the intramolecular *ortho–para* acyl rearrangements of 1fluorofluorenone \Rightarrow 3-fluorofluorenones in PPA [14].

Acyl rearrangements and reversibility in Friedel–Crafts acylations have been associated with thermodynamic control [6, 14]. Frangopol et al. [15] and Nenitzescu and Balaban [16, 17] have reported the reversibility of Friedel–Crafts acetylation of olefins.

The contributions of kinetic control versus thermodynamic control in Friedel–Crafts acyl rearrangements remain an open question, in spite of the rich chemistry of Friedel–Crafts acylations [3, 8, 9]. We have recently reported that kinetic control wins out over thermodynamic control in the Friedel–Crafts acyl rearrangements of diacetylanthracenes in PPA [18] and non-planarity of the PAKs is not a sine qua non condition for the rearrangements as in case of dibenzofluorenone [19]. The conformational variations in these PAKs, which contribute to the understanding of the motifs of reversibility, have been described [20, 21].

We report here the results of a study of the Friedel–Crafts acyl rearrangements of acylfluoranthenes which includes mono- and diacetylfluoranthenes, mono- and dibenzoylfluoranthenes, and mono and bis(4-fluorobenzoyl)fluoranthenes in PPA.

Experimental section

Melting points were uncorrected. NMR spectra were recorded with Bruker Avance II 500 and AMX 400 spectrometers; ¹H-NMR spectra were recorded at 500.2 and 400.13 MHz in CDCl₃ as a solvent and as an internal standard, δ (CHCl₃) = 7.260 ppm. ¹³C-NMR spectra were recorded at 125.78 MHz using CDCl₃ as solvent and as internal standard, δ (CDCl₃) = 77.01 ppm, ¹⁹F-NMR spectra were recorded at 470.66 MHz in CDCl₃ as a solvent and as an internal standard, δ (CHCl₃) = 7.260 ppm and referenced and reported according to IUPAC Recommendations 2008 [22]. For comparison, the ¹⁹F-NMR chemical shift of fluorobenzene in CDCl₃ is –113.06 ppm. Complete assignments were carried out through 2D correlation spectroscopy (COZY, NOESY, HSQC, and HMBC) and recorded at 500.2 MHz. IR spectra were recorded using ALPHA Bruker FTIR spectrometer with an OPUS program using KBr. UV-Visible spectra were recorded with a Varian UV-Visible spectrophotometer using CHCl₃ as solvent and as internal standard. Column chromatography was performed using silica gel 60 (0.063-0.2 mm, 70-230 mesh ASTM) and appropriate solvents, the silica gel was obtained from Merck KGaA, Darmstadt, Germany. Mass spectra, LC-MS, spectra were recorded with Accurate-Mass Q-TOF LC-MS from Quaternary Agilent technologies using acetonitrile or CHCl₃ as a solvent. Elementary analyses for new polycyclic aromatic ketones (PAKs) were carried out using Perkin Elemer Preciesly, Series II, CHNS/O analyzer. LC-MS and Elementary analyses were carried out by Dr. Carina Hazan, the microanalysis laboratory, Institute of Chemistry, The Hebrew University of Jerusalem. TLC $R_{\rm f}$ on silica gel 60 F₂₅₄ plates was carried out using PE (40-60 °C)/EtOAc 80:20 as eluent. PLC chromatography on silica gel 60 F₂₅₄ plates was obtained from E. Merck.

Fluoranthene (98%), benzoyl chloride, 4-fluorobenzoyl chloride, acetyl chloride, AlCl₃, and polyphosphoric acid (PPA; 84% weight of P_2O_5 , density 1.9 g/ml) were obtained from Acros Organics, Israel. All the solvents AR grades were obtained from Bio-Lab Ltd., Israel. 7,10-diacetylfluoranthene (7,10-Ac₂FT) was obtained from Akos Consulting and Solutions Deutschland GmbH, Germany. Chloroform, dichloromethane and 1,2-dichloroethane were dried on CaCl₂.

X-ray crystallography

Single crystal of each fluoranthene derivative was attached to a 400/50 MicroMeshesTM with NVH Oil [23], and transferred to a Bruker SMART APEX CCD X-ray diffractometer equipped with a graphite-monochromator. Maintaining the temperature at 173 K was done with a Bruker KRYOFLEX nitrogen cryostat. The system was controlled by a Pentiumbased PC running the SMART software package [24]. Data were collected at room temperature for 8-acetylfluoranthene (8-AcFT), and at 173 K for the other fluoranthene derivatives under study, using MoK α radiation ($\lambda = 0.71073$ Å). Immediately after collection, the raw data frames were transferred to a second PC computer for integration and reduction by the SAINT program package [25]. The structures were solved and refined by the SHELXTL software package [26].

Quantum mechanical calculations

The quantum mechanical calculations of the fluoranthene derivatives under study were performed with the Gaussian 09 [27] packages. Becke's three-parameter hybrid density functional B3LYP [28], with the non-local correlation functional of Lee et al. [29] was used. The Pople style split valence 6-31G(d) basis set was employed for geometry optimizations. All structures were fully optimized, using symmetry constrains as indicated. Vibration frequencies were calculated at B3LYP/6-31G(*d*) to verify the nature of the stationary points. Non-scaled thermal corrections to enthalpy and to free-energy calculated at the same levels were applied. Calculations in the solvent reaction field (SCRF) were performed using the polarizable continuum model (PCM) with formic acid as solvent, as implemented in Gaussian 09 [30].

Procedures

8-Acetylfluoranthene (8-AcFT) and 3-acetylfluoranthene (3-AcFT) were prepared according to a literature procedure [31] with slight modifications. Fluoranthene (10 g, 49 mmol) was dissolved in dry CH₂Cl₂ and treated with acetyl chloride (4.4 ml, 64 mmol). The reaction mixture was cooled to 0 °C. AlCl₃ (8.5 g, 64 mmol) was then added in one portion. The reaction mixture was stirred for 1 h in ice bath then 4 h at rt. The complex was decomposed with cold dilute aqueous HCl (or cold H₂O). The reaction product was extracted with CH₂Cl₂, washed with H₂O and NaHCO₃(aq), dried over MgSO₄, and the organic solvent was evaporated under reduced pressure. The resulting crude product (7.0 g) contained 3-AcFT and 8-AcFT in the ratio of 35:65. Column chromatography of the crude product on silica gel using PE/EtOAc 99:1% as eluent gave the first fraction, 2.0 g of 3-AcFT, yield 17.0%, mp. 128-129 °C (lit. 127–129 °C [31, 32]); TLC $R_{\rm f}$ = 0.60. The second fraction contained 8-AcFT, 3.0 g, yield 25.0%, mp. 102-103 °C (lit. 101–102 °C [31–33]), TLC $R_f = 0.51$. A single crystal of 8-AcFT was obtained by recrystallization from EtOAc.

3-AcFT ¹H-NMR δ (CDCl₃, ppm)—8.77 (d, ³*J* = 8.5 Hz, 1H, H⁴), 8.17 (d, ³*J* = 7.5 Hz, 1H, H²), 7.91 (d, ³*J* = 8.0 Hz, 1H, H¹), 7.89–7.88 (m, 2H, H⁶, H¹⁰), 7.86 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, ⁵*J* = 0.5 Hz, 1H, H⁷), 7.68 (td, ³*J* = 6.5 Hz, ³*J* = 7.0 Hz, ⁴*J* = 2.0 Hz, 1H, H⁵), 7.43 (td, ³*J* = 7.5 Hz, ³*J* = 7.25 Hz, ⁴*J* = 1.5 Hz, 1H, H⁸), 7.35 (td, ³*J* = 7.5 Hz, ³*J* = 7.25 Hz, ⁴*J* = 1.5 Hz, 1H, H⁹), and 2.79 (s, 3H, CH₃). ¹³C-NMR δ (CDCl₃, ppm)—200.4 (C¹¹), 141.9 (C^{10b}), 140.6 (C^{6b}), 138.1 (C^{10a}), 137.0 (C^{6a}), 133.8 (C³), 133.0 (C^{10c}), 132.0 (C²), 130.2 (C⁵), 128.9 (C¹⁰), 127.9 (C^{3a}), 127.8 (C⁷), 127.1 (C⁴), 122.3 (C⁸), 121.6 (C⁹), 120.6 (C⁶), 118.5 (C¹), and 29.1 (CH₃).

8-AcFT ¹H-NMR δ(CDCl₃, ppm)—8.49 (s, 1H, H⁷), 8.02 (2d, ${}^{3}J = 7.0$ Hz, 2H, H¹, H⁶), 7.99 (dd, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H⁹), 7.95 (d, ${}^{3}J = 8.0$ Hz, 1H, H¹⁰), 7.92 (d, ${}^{3}J = 8.0$ Hz, 1H, H³), 7.89 (d, ${}^{3}J = 8.0$ Hz, 1H, H⁴), 7.68 (t, ${}^{3}J = 7.5$ Hz, ${}^{3}J = 7.5$ Hz, 2H, H², H⁵), and 2.71 (s, 3H, CH₃). 13 C-NMR δ(CDCl₃, ppm)—197.9 (C¹¹), 143.6 (C^{10a}), 139.6 (C^{3a}), 136.6 (C^{6b}), 136.0 (C^{6a}), 135.7 (C⁸), 133.2 (C^{10c}), 129.6 (C^{10b}), 128.3 (C²), 128.2 (C⁹), 128.1 (C¹⁰), 127.9 (C³), 127.2 (C⁴), 121.4 (C¹), 121.2 (C⁶), 121.2 (C⁷), 120.8 (C⁵), and 26.8 (CH₃).

3,9-Diacetylfluoranthene (3,9-Ac₂FT) was prepared according to a literature procedure [31] with slight modifications. To a cooled solution of fluoranthene (10 g, 49 mmol)

in dry CH₂Cl₂ (150 ml) at 0 °C, acetyl chloride (6.4 ml, 99.0 mmol) and then AlCl₃ (17.8 g, 128.3 mmol) were added. The reaction mixture was stirred for 1 h at 0 °C and then for 4 h at RT. The work-up was carried out according to the procedure described above. Column chromatography on silica gel of the crude product using PE/EtOAc 98:2 as eluent gave 6 g of pure 3,9-Ac₂FT, yield 42%, mp. 139–140 °C (lit 137–139 °C [31, 34]), TLC $R_{\rm f}$ = 0.26. A single crystal of 3,9-Ac₂FT was obtained by recrystallization from EtOH.

¹H-NMR δ (CDCl₃, ppm)—8.86 (dd, ³*J* = 8.5 Hz, ⁵*J* = 0.5 Hz, 1H, H⁴), 8.48 (s, 1H, H¹⁰), 8.22 (d, ³*J* = 7.0 Hz, 1H, H²), 8.03 (dd, ³*J* = 7.75 Hz, ⁴*J* = 2.0 Hz, ⁴*J* = 1.5 Hz, 1H, H⁸), 8.00 (d, ³*J* = 7.5 Hz, 1H, H¹), 7.98 (dd, ³*J* = 7.0 Hz, ⁴*J* = 1.0 Hz, 1H, H⁶), 7.92 (dd, ³*J* = 9.0 Hz, ⁵*J* = 0.5 Hz, 1H, H⁷), 7.74 (dd, ³*J* = 8.0 Hz, ⁴*J* = 2.0 Hz, 1H, H⁵), 2.80 (s, 3H, ³CH₃), and 2.71 (s, 3H, ⁹CH₃). ¹³C-NMR δ (CDCl₃, ppm)—200.4 (C¹³), 197.6 (C¹¹), 144.7 (C^{10a}), 140.8 (C^{10b}), 138.3 (C³), 136.5 (C⁸), 135.7 (C^{6a}), 134.1 (C^{6b}), 133.8 (C^{10c}), 132.2 (C²), 130.3 (C⁵), 129.6 (C⁹), 128.5 (C⁴), 127.9 (C^{3a}), 122.0 (C¹), 121.9 (C⁷), 121.3 (C¹⁰), 119.4 (C⁶), 29.1 (C³H₃), and 26.9 (C⁹H₃).

8-Benzoylfluoranthene (8-BzFT) and 3benzoylfluoranthene (3-BzFT) were prepared according to a literature procedure [32] with slight modifications. To a solution of fluoranthene (10 g, 49 mmol) at 0 °C in dry CH₂Cl₂ (150 ml), benzoyl chloride (7.5 ml, 64 mmol) was added followed by AlCl₃ (8.5 g, 64 mmol). The reaction mixture was left with stirring at 0 °C for 1 h then at RT for 4 h. The work-up was carried out according to the procedure described above. The crude product which consisted of a mixture of 3-BzFT and 8-BzFT in the ratio of 18:25, were subjected to column chromatography on silica gel using PE/EtOAc 99:1 as eluent. The first fraction was collected to give 2.5 g of 3-BzFT, yield 17.0%, mp. 130–131 °C (lit. 129–130 °C [32]), TLC $R_{\rm f} = 0.69$. The second fraction contained 3 g of 8-BzFT, yield 25.0% mp. 120-121 °C (lit. 120-121 °C [32]); TLC $R_{\rm f}$ = 0.49. Single crystals of 8-BzFT and 3-BzFT were obtained by recrystallizations from EtOAc and CHCl₃, respectively.

3-BzFT ¹H-NMR δ (CDCl₃, ppm)—8.17 (d, ³*J* = 8.5 Hz, 1H, H⁴), 7.95 (dd, ³*J* = 7.5 Hz, ⁴*J* = 3.0 Hz, 2H, H¹, H⁶), 7.93–7.92 (m, H⁷, H¹⁰), 7.89 (d, ³*J* = 7.5 Hz, 2H, H^{2'}, H^{6'}), 7.85 (d, ³*J* = 7.0 Hz, 1 Hz, H²), 7.66 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, 1H, H⁵), 7.62 (t, ³*J* = 7.0 Hz, ³*J* = 7.5 Hz, 1H, H^{4'}), 7.45 (t, ³*J* = 7.5, ³*J* = 8 Hz, 2H, H^{3'}, H^{5'}), 7.44 (td, ³*J* = 7.25 Hz, ³*J* = 8.5 Hz, ⁴*J* = 1.5 Hz, 1H, H⁸), and 7.40 (td, ³*J* = 8.5 Hz, ³*J* = 7.5 Hz, 1 Hz, H⁹). ¹³C-NMR δ (CDCl₃, ppm)—197.2 (C¹¹), 140.6 (C^{10b}), 140.3 (C^{6b}), 138.8 (C^{1'}), 136.5 (C^{10a}), 137.1 (C^{6a}), 132.9 (C^{10c}), 132.9 (C^{4'}), 132.7 (C³), 131.8 (C²), 130.4 (C^{2'}, C^{6'}), 129.5 (C⁵), 128.7 (C⁸), 128.5 (C^{3a}), 128.4 (C^{3'}, C^{5'}), 127.8(C⁹), 126.0 (C⁴), 122.2 (C¹⁰), 121.7 (C⁷), 120.7 (C⁶), and 118.4 (C¹).

8-BzFT ¹H-NMR δ (CDCl₃, ppm)—8.40 (s, 1H, H⁷), 8.07 (d, ³*J* = 7.0 Hz, 1H, H⁶), 8.02 (d, ³*J* = 7.0 Hz, 1H, H¹), 8.01 (d, ³*J* = 8.0 Hz, 1H, H¹⁰), 7.95 (d, ³*J* = 8.5 Hz, 1H, H⁴), 7.92 (d, ³*J* = 8.5 Hz, 1H, H³), 7.89 (2d, ³*J* = 7.5 Hz, 2H, H^{2'}, H^{6'}), 7.86 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.5 Hz, 1H, H⁹), 7.71 (t, ³*J* = 7.5 Hz, ³*J* = 8.5 Hz, 1H, H⁵), 7.69 (t, ³*J* = 8.5 Hz, ³*J* = 8.5 Hz, 1H, H²), 7.63 (t, ³*J* = 7.5 Hz, ³*J* = 7.5 Hz, 1H, H^{4'}), and 7.54 (t, ³*J* = 7.5 Hz, ³*J* = 7.5 Hz, 2H, H^{3'}, H^{5'}). ¹³C-NMR δ (CDCl₃, ppm)—196.7(C¹¹), 143.2 (C^{10a}), 139.4 (C^{6b}), 138.1 (C^{1'}), 136.7 (C⁸), 136.1 (C^{10b}), 135.8 (C^{6a}), 133.2 (C^{10c}), 132.3 (C^{4'}), 130.2 (C⁹), 130.1 (C^{3a}), 130.0 (C^{2'}, C^{6'}), 128.3 (C^{3'}, C^{5'}), 128.3 (C²), 128.2 (C⁵), 127.9 (C⁴), 127.3 (C³), 123.2 (C⁷), 121.5 (C⁶), 121.0 (C¹⁰), and 120.9 (C¹).

3,9-Dibenzoylfluoranthene (3,9-Bz₂FT) A suspension of AlCl₃ (3.5 g, 26.4 mmol) and benzoyl chloride (3.1 ml, 26.4 mmol) in dry ClCH₂CH₂Cl (150 ml) was heated to 80 °C. 8-BzFT (3.0 g, 10.7 mmol) was then added, and the reaction was stirred overnight at 80 °C. The work-up was carried out according to the procedure described above. Column chromatography on silica gel of the crude product using PE/EtOAc 99:1 as eluent gave 1.0 g of 3,9-dibenzoylfluoranthene (3,9-Bz₂FT) as a pale yellow powder, yield 22.0%, mp. 159–160 °C, TLC $R_{\rm f}$ = 0.49. Elementary analysis: calculated for C₃₀H₁₈O₂: C = 87.78% and H = 4.42%. Found: C = 87.37%, H = 4.34%. MS, *m/z* = 411.138 (M⁺¹); IR: ν = 1653.18 cm⁻¹ (C=O); UV/vis (nm): λ = 391, 368, and 328.

¹H-NMR δ (CDCl₃, ppm)—8.46 (s, 1H, H¹⁰), 8.26 (d, ³*J* = 8.5 Hz, 1H, H⁴), 8.06 (d, ³*J* = 7.0 Hz, 1H, H⁶), 8.01 (d, ³*J* = 7.0 Hz, 1H, H¹), 8.00 (d, ³*J* = 7.5 Hz, 1H, H⁷), 7.91–7.78 (m, 6H, H², H⁸, H^{2'}, H^{2''}, H^{6''}, H^{6''}), 7.72 (td, ³*J* = 8.0 Hz, ⁴*J* = 1.5 Hz, 1H, H⁵), 7.64 (td, ³*J* = 8.5 Hz, ³*J* = 6.5 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 1.0 Hz, 2H, H^{4'}, H^{4''}), 7.52 (t, ³*J* = 7.25 Hz, ³*J* = 8.0 Hz, 2H, H^{3'}, H^{3''}), 7.51 (t, ³*J* = 7.0 Hz, ³*J* = 8.5 Hz, 2H, H^{5'}, H^{5''}). ¹³C-NMR δ (CDCl₃, ppm)—196.9 (C¹³), 196.5 (C¹¹), 143.9 (C^{10a}), 139.5 (C^{10b}), 138.5 (C^{1''}), 138.5 (C^{10c}), 137.9 (C^{1'}), 137.0 (C⁸), 131.8 (C²), 131.2 (C⁹), 130.4 (C^{2'}, C^{6'}), 130.0 (C^{2'''}, C^{6''}), 129.6(C⁵), 128.5 (C^{3a}), 128.5 (C^{3''}, C^{5''}), 128.4 (C^{3'''}, C^{5''}), 127.2 (C⁴), 123.7 (C⁷), 122.1 (C⁶), 121.2 (C¹⁰), and 119.3 (C¹).

3-(4-Fluorobenzoyl)fluoranthene (3-(4-FBz)FT) and 8-(4-fluorobenzoyl)fluoranthene (8-(4-FBz)FT) Fluoranthene (10.0 g, 49 mmol) was dissolved in dry CH₂Cl₂ (150 ml) and treated with 4-fluorobenzoyl chloride (10.1 ml, 68 mmol); the reaction mixture was cooled to 0 °C, AlCl₃ (8.6 g, 64 mmol) was then added in one portion. The reaction mixture was left with stirring for 1 h in 0 °C then for 4 h at rt. The precipitate was filtered off and both the filtrate and the precipitate were decomposed using cold dilute aqueous HCl. The crude product from the precipitate was recrystallized from PE to give 8-(4-fluorobenzoyl)fluoranthene (8-(4-FBz)FT), 3.5 g, yield 22.0%, mp. 143–144 °C, TLC $R_f = 0.74$. A single crystal 8-(4-FBz)FT

was obtained by recrystallization from EtOAc. Elementary analysis: calculated for 8-(4-FBz)FT ($C_{23}H_{13}FO$): C = 84.45%, H = 3.95%, F = 6.15%; found: C = 84.24%, H = 3.99%, F = 5.30%. MS: m/z = 325 (M⁺¹); IR, 1645.61 cm⁻¹ (C=O); UV/VIS (nm): 385, 368 and 327. The crude product from the filtrate was subjected to column chromatography on silica gel using PE/EtOEt 99:1 to give 2.5 g of 3-(4-fluorobenzoyl)fluoranthene (3-(4-FBz)FT) as a yellow powder, yield 17.0%, mp. 187.8–188.5 °C; TLC R_f = 0.71. A single crystal of 3-(4-FBz)FT was obtained by recrystallization from EtOAc. Elementary analysis: calculated for 3-(4-FBz)FT ($C_{23}H_{13}FO$): C = 85.17%, H = 4.04% and F = 5.86%; found: C = 84.24%, H = 3.99% and F = 5.30%. MS, m/z = 325(M⁺¹); IR: ν = 1641.55 cm⁻¹ (C=O); UV/vis (nm): λ = 392, 368, and 338.

3-(4-FBz)FT ¹H-NMR δ (CDCl₃, ppm)—8.10 (d, ³*J* = 8.5 Hz, 1H, H⁴), 7.95 (2d, ³*J* = 7.0 Hz, 2H, H¹, H⁶), 7.93 (d, ³*J* = 6.0 Hz, 2H, H^{2'}, H^{6'}), 7.89 (d, ³*J* = 9.5 Hz, 2H, H⁸, H⁹), 7.82 (d, ³*J* = 7.0 Hz, 1H, H²), 7.65 (td, ³*J* = 6.5 Hz, ⁴*J* = 2.0 Hz, 1H, H⁵), 7.44 (td, ³*J* = 8.0 Hz, ³*J* = 7.0 Hz, ⁴*J* = 1.0 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 2.0 Hz, 1H, H⁷), 7.41 (td, ³*J* = 8.0 Hz, ³*J* = 8.0 Hz, ⁴*J* = 8.0 Hz, ⁴*J* = 1.0 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 2.0 Hz, 1H, H¹⁰), and 7.17 (t, ³*J* = 7.5 Hz, ³*J* = 7.5 Hz, 2H, H^{3'}, H^{5'}). ¹³C-NMR δ (CDCl₃, ppm)—195.5 (C¹¹), 165.7 (C^{4'}), 140.7 (C^{10b}), 140.3 (C^{10a}), 138.5 (C^{6b}), 137.2 (C^{6a}), 135.1 (C^{1'}), 134.8 (C^{10c}), 133.0 (C^{2'}, C^{6'}), 132.8 (C³), 131.4 (C²), 129.5 (C⁵), 128.7 (C⁷), 128.4 (C^{3a}), 127.9 (C¹⁰), 125.8 (C⁴), 122.2 (C⁹), 121.7 (C⁸), 120.8 (C⁶), 118.4 (C¹), and 115.7 (C^{3'}, C^{5'}). ¹⁹F-NMR δ (CDCl₃, ppm)—105.26.

8-(4-FBz)FT ¹H-NMR δ(CDCl₃, ppm)—8.36 (s, 1H, H⁷), 8.07 (d, ${}^{3}J$ = 7.0 Hz, 1H, H¹), 8.02 (d, ${}^{3}J$ = 6.5 Hz, 1H, H⁶), 8.01 (d, ${}^{3}J$ = 7.5 Hz, 1H, H¹⁰), 7.95 (2d, ${}^{3}J$ = 8.0 Hz, 2H, H³, H⁴), 7.92 (dd, ${}^{3}J$ = 7.0 Hz, ${}^{4}J$ = 1.5 Hz, 2H, H^{3'}, H^{5'}), 7.82 (dd, ${}^{3}J$ = 7.0 Hz, ${}^{4}J$ = 1.5 Hz, 1H, H⁹), 7.71 (t, ${}^{3}J$ = 8.0 Hz, 1H, H²), 7.69 (t, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 8.0 Hz, 1H, H⁵), and 7.21 (t, ${}^{3}J$ = 8.5 Hz, ${}^{3}J$ = 8.5 Hz, 2H, H^{2'}, H^{6'}). ¹³C-NMR δ(CDCl₃, ppm)—195.3 (C¹¹), 165.4 (C^{4'}), 143.3 (C^{10a}), 139.5 (C^{6b}), 136.6 (C⁸), 136.0 (C^{6a}), 135.8 (C^{10b}), 134.3 (C^{1'}), 133.2 (C^{10c}), 132.6 (C^{3'}, C^{5'}), 130.1 (C^{3a}), 130.0 (C⁹), 128.3 (C⁵), 128.2 (C²), 128.0 (C³), 127.4 (C⁴), 123.0 (C⁷), 121.5 (C¹), 121.1 (C¹⁰), 121.0 (C⁶), and 115.6 (C^{2'}, C^{6'}). ¹⁹F-NMR δ(CDCl₃, ppm)—-106.25.

3,9-Bis(4-fluorobenzoyl)fluoranthene (3,9-(4-FBz)₂FT) To a suspension of AlCl₃ (3.3 g, 26.4 mmol) and 4-fluorobenzoyl chloride (3.9 ml, 25 mmol) in dry ClCH₂CH₂Cl (150 ml) at 80 °C, 8-(4-FBz)FT (3.0 g, 9.3 mmol) was added. The reaction was stirred at 80 °C overnight. The work-up was carried out according to the procedure described above. Column chromatography on silica gel of the crude product using PE/EtOAc 99:1 gave 0.67 g of 3,9-bis(4-fluorobenzoyl)fluoranthene (3,9-(4-FBz)₂FT) as a pale yellow powder, yield 15.0%, mp. 184.1– 185.5 °C. TLC $R_{\rm f}$ = 0.59. Single crystal of 3,9-(4-FBz)₂FT was obtained by recrystallization from CDCl₃. Elementary analysis: calculated for 3,9-(4-FBz)₂FT (C₃₀H₁₁F₂O₂): C = 80.71, H = 3.61 and F = 8.51%; found: C = 80.19, H = 3.60 and F = 8.00%. MS: *m/z* = 446.11(M⁺¹); IR: *ν* = 1646.92 cm⁻¹ (C=O); UV/vis (nm): *λ* = 383, 368, and 316.

¹H-NMR δ(CDCl₃, ppm)—8.389 (s, 1H, H¹⁰), 8.21 (d, ³*J* = 8.5 Hz, 1H, H⁴), 8.08 (d, ³*J* = 7.0 Hz, 1H, H⁶), 8.03 (d, ³*J* = 7.0 Hz, 1H, H¹), 8.02 (d, ³*J* = 7.5 Hz, 1H, H⁷), 7.99–7.92 (m, 4H, H²', H^{6'}, H^{2"}, H^{6"}), 7.86 (d, ³*J* = 7.0 Hz, 1H, H²), 7.86 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, 1H, H⁸), 7.73 (td, ³*J* = 7.75 Hz, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, 1H, H⁵), 7.22 (t, ³*J* = 8.5 Hz, ³*J* = 8.5 Hz, 2H, H^{3"}, H^{5"}), and 7.19 (t, ³*J* = 8.5 Hz, ³*J* = 9.0 Hz, 2H, H^{3''}, H^{5''}). ¹³C-NMR δ(CDCl₃, ppm)— 195.2(C¹¹), 194.9(C¹³), 166.6 (C^{4'}), 164.6 (C^{4''}), 143.8 (C^{10a}), 139.4 (C^{10b}), 138.4 (C³), 136.8 (C⁸), 135.8 (C^{6a}), 135.3 (C^{6b}), 134.8 (C^{1''}), 134.0 (C^{1'}), 133.4 (C^{10c}), 133.0 (C^{2''}, C^{6''}), 132.6 (C^{2'}, C^{6'}), 131.3 (C⁹), 131.0 (C²), 129.6 (C⁵), 128.3 (C^{3a}), 127.0 (C⁴), 123.5 (C⁷), 122.1 (C⁶), 121.2 (C¹⁰), 119.3 (C¹), 115.7 (C^{3''}, C^{5''}), and 115.5 (C^{3'}, C^{5'}). ¹⁹F-NMR δ(CDCl₃, ppm)—-104.74 and -105.78.

Acyl rearrangements of acetylfluoranthenes, diacetylfluoranthenes, benzoylfluoranthenes, dibenzoylfluoranthenes, fluorobenoylfluoranthene, and bis(fluorobenzoyl)fluoranthene. In a 150-ml round-bottomed flask equipped with a magnetic stirrer and argon gas. PPA (40 g) was heated with stirring for a few minutes at a desired temperature; 0.3 g of acylfluoranthene, diacylfluoranthene, or bis(fluorobenzoyl)fluoranthene was then added. The reaction mixture was stirred for an appropriate time. It was then poured into ice and H₂O and stirred overnight in order to hydrolyze the complex and PPA and to facilitate the extraction of the organic compounds. The reaction product was extracted with CH₂Cl₂, washed with saturated aqueous NaHCO3 and H2O, dried over MgSO₄, filtered, and the organic solvent was evaporated in vacuum to give the crude products. These were detected and identified according to their selected ¹H-NMR chemical shifts.

Acyl rearrangement of 3,9-Ac₂FT. The reaction was carried out in a 150-ml round-bottomed flask with a magnetic stirrer and anhydrous argon atmosphere, protected from moisture. PPA (133 g) was added. After stirring for few minutes at 120 °C, 3,9-Ac₂FT (1.0 g, 3.4 mmol) was added. The reaction mixture was stirred at 120 °C for 2 h, and then was poured into a mixture of ice and water and stirred overnight. The products were extracted with CH₂Cl₂, the organic fraction were washed with saturated NaHCO₃ and water, and dried over MgSO₄. The organic solvent was evaporated in vacuum to give a mixture that consisted of 3,9-Ac₂FT, 8-AcFT, and FT in the ratios 59:16:25 and 3methylbenzo[*c*,*d*]fluoranthene (3-MeBcdFT). The crude product (0.7 g) was purified by column chromatography on silica gel using PE/EtOAc as eluent, starting with 98:2 and then 20:80 ratio, to give 0.1 g of 3-MeB*cd*FT as pure red powder, in 11% yield, mp. 209–210 °C; TLC $R_{\rm f} = 0.48$; MS: $m/z = 269 \ ({\rm M}^{+1})$; IR: $\nu = 1641 \ {\rm cm}^{-1}$ (C=O); UV/vis (nm): $\lambda = 432$, 414, 387 sh, 348 sh, 307 sh, 295 sh, and 247.

¹H-NMR δ (CDCl₃, ppm)—8.32 (d, ³*J* = 7.0 Hz, 1H, H¹¹), 7.80 (d, ³*J* = 7.0 Hz, 1H, H¹⁰), 7.71–7.67 (m, 2H, H⁶, H⁹), 7.66 (s, 2H, H⁴, H⁵), 7.29–7.27 (m, 2H, H⁷, H⁸), 6.34 (2, ⁴*J* = 1 Hz,1H, H²), and 2.42 (d, ³*J* = 1.5 Hz, 3H, CH₃). ¹³C-NMR δ (CDCl₃, ppm)—185.1 (C=O), 148.9 (C^{3a}), 143.4 (C^{9b}), 140.6 (C^{5b}), 140.3 (C^{5a}), 140.2 (C^{9a}), 133.0 (C^{9c}), 130.7 (C¹¹), 130.4 (C^{11a}), 129.3 (C²), 129.1 (C⁷), 129.0 (C⁸), 128.9 (C³), 128.6 (C⁴, C⁵), 126.7 (C^{11b}), 123.0 (C⁹), 122.8 (C⁶), 120.6 (C⁴, C⁵), 120.5 (C¹⁰), and 22.9 (CH₃).

Acyl rearrangement of 8-acetyl fluoranthene The reaction was carried out in a 150-ml round-bottomed flask with a magnetic stirrer and anhydrous argon atmosphere, protected from moisture. PPA (133 g) was added. After stirring for few minutes at 120 °C, 8-AcFT (1.0 g, 3.4 mmol) was added. The reaction mixture was stirred at 120 °C for 2 h, and then was poured into a mixture of ice and water and stirred overnight. The products were extracted with CH_2Cl_2 , the organic fraction were washed with saturated NaHCO₃ and water, and dried over MgSO₄. The organic solvent was evaporated in vacuum to give a mixture of both 3-AcFT and 8-AcFT. Two new compounds were formed at reaction temperatures higher than 120 °C. Separation of the compound I was performed by PLC on silica gel, using PE/EtOAc as eluent.

Compound I ¹H-NMR (δ CDCl₃, ppm)—8.47 (s, H⁷), 8.08 (d, J = 6.5 Hz, H⁶), 8.05 (d, J = 8.0 Hz, H¹⁰), 8.03 (d, J = 7.0 Hz, H¹), 7.95 (d, J = 6.5 Hz, H³), 7.94 (d, J = 7.5 Hz, H⁹), 7.91 (d, J = 8.5 Hz, H⁴), 7.72 (t, J = 7.5 Hz, 7.5 Hz, H²), and 7.69 (t, J = 8.0 Hz, 8.5 Hz, H⁵). ¹³C-NMR (δ CDCl₃, ppm)— $\delta = 196.7$ (C=O), 143.1 (C^{10b}), 139.5 (C^{7a}), 137.2 (C⁸), 136.1 (C⁷), 135.9 (C^{10a}), 133.2 (C⁶), 130.1 (C³), 130.1 (C⁴), 128.3 (C⁵), 128.2 (C²), 127.9 (C⁹), 127.3 (C⁴), 123.2 (C⁷), 121.4 (C¹), 121.1 (C¹⁰), and 121.0 (C⁶). LC-MS: m/z = 633 and 431 (M⁺¹).

Acyl rearrangements of fluorobenzoylfluoranthenes and **3,9-bis(fluorobenzoyl)fluoranthene (general procedure).** In a 150-ml round-bottomed flask equipped with a magnetic stirrer and argon and protected from the moisture, PPA (40 g) was heated with stirring for few minutes at a desired temperature. Selected fluorobenzoylfluoranthene or 3,9-bis(fluorobenzoyl)fluoranthene (0.3 g) was added. The reaction mixture was stirred for an appropriate time. It was then poured into ice and H₂O and stirred overnight in order to hydrolyze the PPA and to facilitate the extraction of the organic compounds. The reaction products were extracted with CH₂Cl₂, washed with saturated aqueous NaHCO₃ and H₂O, dried over MgSO₄, filtered, and the organic solvent was evaporated in vacuum to give the crude products. These were detected and identified according

to their selected ¹H-NMR chemical shifts. Column chromatography using appropriate solvent was used to separate the resulted products of the rearrangements.

Results and discussion

Fluoranthene (FT) is a non-alternant polycyclic aromatic hydrocarbon (PAH) with C_{2v} symmetry, in which a naphthalene ring and a benzene ring are fused together to give a peri-condensed $C_6C_6C_6C_5$ ring system. The Kekulé structures in fluoranthenes have been systematically analyzed [35]. Fluoranthenes possessing Kekulé structures were classified into three types, depending on the nature of the two C-C bonds connecting benzene and naphthalene fragments. Fluoranthene has five nonequivalent sites for mono substitution: 1, 2, and 3 at the naphthalene ring and 7 and 8 at the benzene ring. Electrophilic aromatic substitution has been shown to take place at the naphthalene ring at position 3 (α -position), and/or at the benzene ring at position 8, farther away from the "bay" regions. Monoacylation of fluoranthene gave only 3-acylfluoranthene and 8-acylfluoranthene [31, 32]. These monoacylfluoranthenes differ in their degree of overcrowding. The acyl group at position 3 is overcrowded due to the peri-hydrogen (H⁴); the acyl group at position 8 is considered non - overcrowded; it is flanked by two *ortho* hydrogens $(H^7,$ H⁹). Friedel–Crafts acylations at positions 1 and 7 do not take place due to the overcrowded bay regions. Moreover, position 2 resembles the β -position of naphthalene; it is less reactive toward electrophilic attack than position 3 (α -position). Dewar-PI MO study of electrophilic aromatic substitution in fluoranthene and it's σ -complexes correctly predicted that fluoranthene undergoes electrophilic substitution preferentially at position 3 [36].

There are 25 constitutional isomers of a diacylfluoranthene. These may be classified on the basis of the positions of the acyl substituents: (i) diacylfluoranthene in which the two acyl groups are positioned at the naphthalene ring system; (ii) diacylfluoranthene in which one acyl group is positioned at the naphthalene ring and the second acyl is positioned at the benzene ring; and (iii) diacylfluoranthene in which the two acyl groups are positioned at the benzene ring. Diacylfluoranthenes of group (ii) have been claimed to be synthesized by Friedel–Crafts diacylation of fluoranthene giving 3,8diacylfluoranthene and/or 3,9-diacylfluoranthene [31, 34].

The present study encompasses the following mono- and diacylfluoranthenes: 3-AcFT, 8-AcFT, 3,9-Ac₂FT, 7,10-Ac₂FT, 3-BzFT, 8-BzFT, 3,9-Bz₂FT, 3-(4-FBz)FT, 8-(4-FBz)FT, and 3,9-(4-FBz)₂FT (Fig. 1).

Synthesis

Friedel–Crafts acylations of fluoranthene have previously been studied. The syntheses of 3-AcFT, 8-AcFT, 3-BzFT, 8-BzFT, 3,9-Ac₂FT, and 7,10-Ac₂FT are described in the

literature [31, 32, 37–39]. The present study describes in addition the synthesis of 3,9-Bz₂FT, 3-(4-FBz)FT, 8-(4-FBz)FT, and 3,9-(4-FBz)₂FT. The structures of 8-AcFT, 8-BzFT, 3-BzFT, 3-(4-FBz)FT, 3,9-Ac₂FT, and 7,10-Ac₂FT have been verified by X-ray crystallography (vide infra) [40].

3-(4-FBz)FT and 8-(4-FBz)FT were synthesized by treatment of FT with 4-fluorobenzoyl chloride and AlCl₃ in CH₂Cl₂ at 0 °C for 4 h. The constitutional isomers were separated using column chromatography to give 17% of 3-(4-FBz)FT, mp. 188– 189 °C, and 22% 8-(4-FBz)FT, mp. 143–144 °C.

3,9-Bz₂FT and 3,9-(4-FBz)₂FT were prepared by the reactions of 8-BzFT/8-(4-FBz)FT, benzoyl chloride/4fluorobenzoyl chloride, and AlCl₃ in 1,2-dichloroethane at 80 °C for 14 h. 3,9-Bz₂FT and 3,9-(4-FBz)₂FT were purified by column chromatography. 3,9-Bz₂FT was obtained as a yellow product, 22% yield, mp. 159–160 °C. 3,9-(4-FBz)₂FT was obtained as a pale yellow, yield 15%, mp. 184–186 °C.

In the present study, the reaction of 8-AcFT, acetyl chloride and AlCl₃ in dry CH₂Cl₂ starting at 0 °C, then at room temperature for 1 h gave one constitutional isomer of diacetylfluoranthene, 3,9-Ac₂FT. mp. 139–140 °C (lit. 137– 139 °C [31, 34]). The same isomer was obtained by the analogous acetylation of 3-AcFT. The previous reported studies of Friedel–Crafts acetylation of 3-AcFT and 8-AcFT, with 2.3 equivalents of acetyl chloride and AlCl₃ in CH₂Cl₂ for 4 h at room temperature gave 42% of a diacetylfluoranthene, without unequivocally determining its exact structure [31, 41]. We note that the Friedel–Crafts acetylations of 3-AcFT and 8-AcFT to give 3,9-Ac₂FT were regioselective.

NMR spectroscopy

The structures of AcFTs, BzFTs and (4-FBz)FTs have been verified by ¹H- and ¹³C-NMR spectra. Table 1 gives the ¹H-NMR chemical shifts of AcFTs, BzFTs, and (4-FBz)FTs. Table 2 gives the ¹H-NMR chemical shifts of hydrogens *peri* and *ortho* to the carbonyl, ¹³C-NMR chemical shifts of the carbonyl group, and ¹⁹F-NMR chemical shifts.

In 3-AcFT, 3-BzFT, and 3-(4-FBz)FT, the hydrogens located *peri* to the carbonyl group (H⁴) are deshielded more than the hydrogens *ortho* to the carbonyl group (H²). Both H² and H⁴ were considerably deshielded as compared with the hydrogens of unsubstituted FT. The differences in the chemical shifts between the hydrogens *peri* and *ortho* to the carbonyl to those of unsubstituted FT are noted: $\Delta\delta(H^4) = 0.92$ ppm, $\Delta\delta(H^2) = 0.53$ ppm (3-AcFT), $\Delta\delta(H^4) = 0.32$ ppm, $\Delta\delta(H^2) = 0.18$ ppm (3-BzFT), and $\Delta\delta(H^4) = 0.26$ ppm, $\Delta\delta(H^2) = 0.18$ ppm (3-(4-FBz)FT). A similar deshielding effect was evident in the chemical shifts of H⁷ which is located *ortho*- to the carbonyl group in 8-AcFT, 8-BzFT, and 8-(4-FBz)FT. The differences in chemical shift between these compounds and unsubstituted FT were 0.57, 0.49, and 0.44 ppm, respectively.

Fig. 1 Acetyl-, diacetyl-, benzoyl-, dibenzoyl-, 4-fluorobenzoyl-, and bis(4-fluorobenzoyl)fluoranthenes under study

Molecular and crystal structures

The crystal and molecular structures of the fluoranthene derivatives 8-AcFT, 3,9-Ac₂FT, 7,10-Ac₂FT, 3-BzFT, 8-BzFT, and 3-(4-FBz)FT were determined by X-ray crystallography [40]. Ketones 8-AcFT and 8-BzFT crystallized in the orthorhombic space group *Pbca* with C₁ symmetry. Ketones 3,9-Ac₂FT, 3-BzFT, and 3-(4-FBz)FT crystallized in the monoclinic space groups $P2_1/c$, $P2_1/n$, and $P2_1/n$, respectively with C₁ symmetry. Ketone 7,10-Ac₂FT crystallized in the orthorhombic space group $P2_12_12_1$ with C₂ symmetry. The ORTEP diagrams of their molecular structures are presented in Figs. 2 and 3. Table 3 gives their crystallographic data. Table 4 gives selected geometrical parameters derived from the X-ray crystal structures of 8-AcFT, 3,9-Ac₂FT, 3-BzFT, 8-BzFT, and 3-(4-FBz)FT under study.

A characteristic geometric parameter of acylfluoranthene species is the torsion angle (τ) of the acyl group relative to the fluoranthene system: $C^{3a}-C^3-C^{11}-O^{12}$ for 3-BzFT and 3-(4-FBz)FT, $C^7-C^8-C^{11}-O^{12}$ for 8-AcFT and 8-BzFT, $C^{3a}-C^3-C^{11}-O^{12}$ and $C^{10}-C^9-C^{11}-O^{12}$ for 3,9-Ac₂FT, and $C^{6b}-C^7-C^{11'}-O^{12'}$ and $C^{10a}-C^{10}-C^{11}-O^{12}$ for 7,10-Ac₂FT. For benzoylfluoranthenes, there is also the torsion angle (v) of

Table 1 ¹ H-	NMR che	mical shifts (δ	5, ppm) of m	tono- an	nd diacylf	luoranthenes	in CDCl ₃									
	H ¹	H^{2}	H ³ H ^ć		H ⁵ I	He	H ⁷	H ⁸	H ⁹	H^{10}	CH ₃ H ²	, H ^{2"}	H ^{3'} , H ^{3"}]	H ^{4'} , H ^{4"}]	H ⁵ ', H ^{5″}	H ⁶ , H ^{6″}
FT	7.95 d	7.64 t	7.85 d 7.8	85 d	7.64 t 7	7.95 d	7.92 dd	7.42–7.39 m	7.42–7.39 m	7.92 dd	I					
3-AcFT	7.91 d	8.17 d	- 8.	2 p 17	7.68 td 7	7.89–7.88 m	7.86 dd	7.43 td	7.35 td	7.89–7.88 m	2.79 s –	•		·	I	I
8-AcFT	8.02 d	7.68 t	7.92 d 7.8	; p 68	7.68 t 8	8.02 d	8.49 s	Ι	7.99 dd	7.95 d	2.71 s –	•		·	I	I
$3,9-Ac_2FT$	8.00 d	8.22 d	- 8.5	86 dd	7.74 dd	7.98 dd	7.92 dd	8.03 dd	Ι	8.48 s	2.80 s – 2.71 s	·	'	'	I	1
$7,10-Ac_2FT$	8.33 d	7.64 d	7.91 d 7.9	91 d	7.64 d 8	8.33 d	I	7.58 s	7.58 s	I	2.78 s –	·				1
3-BzFT	7.95 dd	l 7.85 d,	- 8.	17 d 3	7.66 td 7	7.95 dd	7.93–7.92 m	7.44 td	7.40 td	7.93–7.92 m	- 7.8	p 6	7.45 t	7.62 t	7.45 t	7.89 d
8-BzFT	8.02 d	7.69 t	7.92 d 7.9	95 d	7.71 t 8	8.07 d	8.40 s	I	7.86 d	8.01 d	- 7.8	p 6	7.54 t	7.63 t	7.54 t	7.89 d
$3,9-Bz_2FT$	8.01 d	7.91–7.87 m	1 - 8.2	26 d	7.72 td 8	8.06 d	8.00 d	7.91–7.87 m	Ι	8.46 s	- 7.5	1–7.87 m	7.52 ^a t	7.64 t	7.51 ^b t	7.91–7.87 m
3-(4-FBz)FT	7.95 d	7.82 d	- 8.	10 d	7.65 td 7	7.94 d	7.44 td	7.89 d	7.89 d	7.41 td	- 7.5	3 d	7.17 t	Ì	7.93 d	7.17 t
8-(4-FBz)FT	8.07 d	7.71 t	7.95 d 7.	95 d	7.69 t 8	8.02 d	8.36 s	I	7.82 dd	8.01 d	- 7.2	1 t	- pp 26.7	Ì	7.92 dd	7.21 t
3,9-(4-FBz) ₂ F	T 8.03 d	7.86 t	- 8.5	21 dd	7.73 td 8	3.08 d	8.02 d	7.86 dd	I	8.39 s	- 7.5	9-7.92 m	7.22° t	` I	7.19 ^d t	7.99–7.92 m

3,9-(4-FBz)₂FT 8.03 d

^a H^{3′}, H^{3″} ^b H^{5′}, H^{5″} ^c H^{3′}, H^{5″} ^d H^{3′}, H^{5″}

Table 2¹H-, ¹³C-, and ¹⁹F-NMR chemical shifts (δ , ppm) of monoand diacylfluoranthenes in CDCl₃

	Peri-H	Ortho-H			¹⁹ F-NMR	¹³ C-NMR
3-AcFT	8.77 (H ⁴)	8.17 (H ²)	_	_	_	200.4
8-AcFT	_	8.49 (H ⁷)	7.99 (H ⁹)	_	_	197.9
3,9-Ac ₂ FT	8.86 (H ⁴)	8.22 (H ²)	8.48 (H ¹⁰)	8.03 (H ⁸)	_	200.3, 197.6
7,10-Ac ₂ FT	-	7.58 (H ⁸)	7.58 (H ⁹)	-	_	202.13
3-BzFT	8.17 (H ⁴)	7.85 (H ²)	-	-	_	197.2
8-BzFT	-	8.41 (H ⁷)	7.86 (H ⁹)		_	196.7
3,9-Bz ₂ FT	8.26 (H ⁴)	7.89 (H ²)	7.89 (H ⁸)	8.46 (H ¹⁰)	_	196.9, 196.5
3-(4-FBz)FT	8.10 (H ⁴)	7.82 (H ²)	-	-	-105.26	195.5
8-(4-FBz)FT	-	8.36 (H ⁷)	7.82 (H ⁹)	-	-106.25	195.3
3,9-(4-FBz) ₂ FT	8.21 (H ⁴)	7.86 (H ²)	8.39 (H ¹⁰)	7.86(H ⁸)	-104.73, -105.78	195.2, 194.9

the acyl group relative to the benzene ring $C^{2'}-C^{1'}-C^{11}-O^{12}$. In addition, the dihedral angle (θ) between the planes of the fluoranthene and benzene aromatic systems was defined. Conformations of the acyl groups are denoted as E when τ is greater than 90° or as Z when τ is less than 90°.

The carbonyl group in 3-BzFT is tilted out of the planes of the fluoranthene ring system and the phenyl ring by $\tau = 28^{\circ}$ and 27° , respectively, with a dihedral angle $\theta = 58^{\circ}$. 3-BzFT is a slightly overcrowded isomer; its O^{12...}H⁴ contact distance is 239 pm, slightly shorter than the sum of the respective Van-der-Waals radii of hydrogen (115 pm) and oxygen (129 pm) [42].

8-AcFT is considered an essentially planar PAKs with $\tau = 2^{\circ}$ and $\theta = 4^{\circ}$. The carbonyl group in 8-BzFT, unlike that in 8-AcFT is twisted out of the planes of fluoranthene and phenyl moieties by $\tau = 23^{\circ}$ and $\upsilon = 32^{\circ}$ with a large dihedral angle $\theta = 52^{\circ}$.

3,9-Ac₂FT has a large torsion angle of the carbonyl group at position 3 ($\tau_3 = 22^\circ$) and a small torsion angle of the carbonyl group at position 9 ($\tau_9 = 3^\circ$). In 7,10-Ac₂FT, $\tau_7 = 33^\circ$, and $\tau_{10} = 32^{\circ}$, the dihedral angles between the acetyl plane and fluoranthene plane are relatively large: $\theta_7 = 37^\circ$ and $\theta_{10} = 38^\circ$. This large titling of the carbonyl groups out of the fluoranthene plane is mostly due to the bay regions.

None of the PAKs under study adopts a fully planar conformation in their crystal structures. All acylfluoranthenes crystallize as Z or Z,Z-diastereomers with C_1 symmetry. The values of their carbonyl torsion angles vary. Mono- and diacylfluoranthenes under study are arranged in the following order of decreasing torsion angles τ .

 $7,10-Ac_2FT > 3-BzFT > 3-(4-FBz)FT > 8-BzFT$ $> 3,9-Ac_{2}FT > 8-AcFT$

Friedel–Crafts acyl rearrangements

The Friedel-Crafts acyl rearrangements of AcFTs, Ac₂FTs, BzFTs, 3,9-Bz₂FT, (4-FBz)FTs, and 3,9-(4-FBz)₂FT in PPA

were studied at various temperatures and for various periods of time using PPA as a solvent. The compounds were subjected to PPA at 80-160 °C for 2-6 h. The results of the rearrangements were characterized by the low-field ¹H-NMR chemical shifts of the hydrogens ortho and peri to carbonyl group. The results of the acyl rearrangements of AcFTs versus BzFTs and Ac₂FT versus Bz₂FT are given in Table 5. Other rearranged products are excluded. Scheme 1 describes the Friedel-Crafts acyl rearrangements of AcFTs and 3.9-Ac₂FT.

3-AcFT Friedel-Crafts acyl rearrangements of 3-AcFT in PPA gave both 3-AcFT and 8-AcFT. The ratio of 8-AcFT increased considerably by lengthening the time and raising the temperature of the reaction. FT was also formed upon prolonging the time of the reaction and raising the temperature.

8-AcFT The reaction of 8-AcFT in PPA at temperatures below 100 °C for varying reaction times did not indicate any acyl rearrangements or deacetylation. At higher temperatures, 8-AcFT, in contrast to 3-AcFT, underwent only deacetylation to give FT. However, during the reactions of both 3-AcFT and 8-AcFT at temperatures higher than 120 °C, two new rearrangement products were formed. The first compound I was separated by PLC, using PE/EtOAc as eluent. Compound I was tentatively characterized by its ¹H- and ¹³C-NMR spectra. The singlet at $\delta = 8.47$ ppm assigned to H⁷ is noted. Also, the signal at m/z = 431 in the mass spectrum of I is attributed to an $(8-FT)_2C=O^{+1}(C_{33}H_{18}O^{+1})$ species. The structure of the second compound (traces) was not elucidated. A possible pathway of the formation of bis (8-fluoranthenyl) ketone ((8-FT)₂C=O) is oxidation and deacetylation of 8-AcFT to give 8fluoranthene carboxylic acid (8-FTCO₂H) and FT, respectively, followed by Friedel–Crafts acylaion of FT by 8-FTCO₂H.

3.9-Ac₂FT The major rearrangement product of the reactions of 3,9-Ac₂FT in PPA at high temperatures was 3-methyl-1Hbenzo[cd]fluoranthen-1-one (3-MeBcdFT); 8-AcFT was also

Fig. 2 ORTEP drawings of the X-ray molecular structures of (Z)-8-AcFT (left), (Z)-8-BzFT (middle), and (Z)-3-BzFT (right)

formed. The structure of the rearrangement product 3-MeBcdFT was determined by ¹H- and ¹³C-NMR spectra.

The mass spectrum of the rearrangement product of 3,9-Ac₂FT indicated a C₂₀H₁₂O species (M^+ = 268). The following three constitutional isomers were considered: 3-methyl-1*H*-benzo[*cd*]fluoranthen-1-one (3-MeB*cd*FT), 3-methyl-1*H*-cyclopenta[*l*]fluoranthen-1-one (3-MeCP*k*FT), and 3methyl-1*H*-cyclopenta[*l*]fluoranthen-1-one (3-MeCP*l*FT) (Fig. 4). The choice of 3-MeB*cd*FT was based on the NOE signal between CH₃ (2.42 ppm) and H⁴ (7.66 ppm). The lowfield doublet at 8.32 ppm representing H¹¹ is unlikely to represent any other hydrogens in the other two constitutional isomers. The ¹H-NMR chemical shifts of the rearrangement product are consistent with the reported chemical shifts for 1*H*-benzo[*cd*]fluoranthen-1-one (B*cd*FT) [43] (Fig. 4), e.g., the low-field doublet of H^4 (not H^{11}) at 8.28 ppm and the four proton multiplet in the range 7.2–7.7 ppm.

A possible mechanism for the formation of 3-MeBcdFT is described in Scheme 2: deacetylation of the 9-acetyl group of $3,9\text{-Ac}_2FT$ to give 3-AcFT and acetylium ion, acetylation of the enol of 3-AcFT, followed by intramolecular Friedel–Crafts alkylation to give 3-MeBcdFT.

7,10-Ac₂FT This ketone did not undergo any rearrangement or deacylation in PPA over a wide range of temperatures (60–160 °C) and for various times of the reactions. The reason for this lack of reactivity is probably the deactivation effect of the second acetyl group at position 10 toward deacylation of the acetyl group at position 7.

Fig. 3 ORTEP drawings of the X-ray molecular structures of (Z)-3-(4-FBz)FT (left), (Z,Z)-3,9-Ac₂FT (middle), and (Z,Z)-7,10-Ac₂FT (right)

Table 3	Crystallographic	data for the a	cylfluoranthenes	under study
---------	------------------	----------------	------------------	-------------

	8-AcFT	3,9-Ac ₂ FT	3-BzFT	8-BzFT	3-(4-FBz)FT	7,10-Ac ₂ FT
Empirical formula	$C_{18}H_{12}O$	$C_{20}H_{14}O_2$	$C_{23}H_{14}O$	$C_{23}H_{14}O$	C ₂₃ H ₁₃ FO	$C_{20}H_{14}O_2$
Temperature (K)	295 (1)	173 (1)	173 (1)	173 (1)	173 (1)	173 (1)
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	$P2_1/c$	$P2_1/n$	Pbca	$P2_1/n$	P2 ₁ 2 ₁ 2 ₁
<i>a</i> (°A)	13.833 (2)	11.9313 (6)	4.0946 (2)	7.3362 (5)	4.0169 (8)	7.5756 (5)
<i>b</i> (°A)	7.754 (1)	7.2530 (4)	29.687 (2)	18.313 (1)	31.132 (6)	9.4417 (6)
<i>c</i> (°A)	23.805 (4)	17.1787 (8)	12.3288 (7)	22.493 (2)	12.191 (3)	19.049 (1)
α (deg)	90°	90°	90°.	90°	90°	90°
β (deg)	90°	107.056(1)°	94.236(1)°	90°	94.410(4)°	90°
γ (deg)	90°	90°	90°.	90°	90°	90°
Volume (°A ³)	2553.6(7)	1421.2(1)	1494.6(1)	3021.8(3)	1520.0(5)	1362.5(2)
Ζ	8	4	4	8	4	4
Density (calc.; Mg/m ³)	1.271	1.338	1.361	1.347	1.417	1.396
Reflections collected	25,808	15,721	17,101	31,211	10,911	15,856
Independent Reflections	2775 ($R_{\rm int} = 0.0487$)	3407 ($R_{int} = 0.0193$)	3560 ($R_{int} = 0.0231$)	3301 ($R_{int} = 0.0293$)	3290 ($R_{int} = 0.0763$)	3240 ($R_{int} = 0.0284$)
Final <i>R</i> indices $(I > 2\sigma_{I})$	$R_1 = 0.1010,$ w $R_2 = 0.2024$	$R_1 = 0.0495,$ w $R_2 = 0.1290$	$R_1 = 0.0597,$ w $R_2 = 0.1347$	$R_1 = 0.0494,$ w $R_2 = 0.1172$	$R_1 = 0.1478,$ w $R_2 = 0.2912$	$R_1 = 0.0483,$ w $R_2 = 0.1158$

3-BzFT The reaction of 3-BzFT in PPA was carried out at different times and temperatures of the reaction. The rearrangement of 3-BzFT started at low temperature, e.g., at 80 °C for 2 h to give 8-BzFT. At 100 °C for 2 h, the reaction gave 8-BzFT and 3,9-Bz₂FT in the ratio 26:3. This ratio increased by lengthening the time and raising the reactions temperature. At 160 °C for 4 h, the results indicated almost complete debenzoylation of 3-BzFT to FT and rearrangement to 8-BzFT; the ratio was 1 (3-BzFT): (8-BzFT): 90 (FT).

8-BzFT The reaction of 8-BzFT in PPA at 60–100 °C for 2– 6 h did not give any 3-BzFT. Debenzoylation to FT was observed at temperatures higher than 120 °C. At 160 °C, almost complete debenzoylation to FT occurred; the ratio 8-BzFT: FT at 160 °C for 6 h was 7:93.

3,9-Bz₂FT The reaction of 3,9-Bz₂FT in PPA was also studied. Debenzoylation started at high temperature (140 °C for 4 h) to give 8-BzFT in the ratio 72 (3,9-BzFT): 28 (8-BzFT). Upon prolonging the reaction time, e.g., 140 °C for 6 h, debenzoylation to FT also took place. In the acyl rearrangement experiments of 3,9-Bz₂FT, there was no indication for the formation of rearrangement products, in contrast to 3,9-Ac₂FT. An aldol condensation is not possible in this case.

The results of Friedel–Crafts acyl rearrangements of 3-BzFT and 8-BzFT correspond well with the degree of deviation from planarity of the carbonyl group(s). The data given in Table 5 indicate that 8-BzFT with a relatively small torsion angle as compared with 3-BzFT, underwent deacylation and acyl rearrangements more difficultly than 3-BzFT.

The introduction of a fluorine atom at the *para* positions of the phenyl group hardly affected the results of rearrangements. (4-FBz)FTs acted in the same way as BzFTs. The only differences were the ratios and the temperatures at which the rearrangements started.

3-(4-FBz)FT Friedel–Crafts acyl rearrangements of 3-(4-FBz)FT started at 80 °C to give 8-(4-FBz)FT. At higher temperature, 120 °C for 2 h, 3-(4-FBz)FT, 8-(4-FBz)FT, 3,9-(4-FBz)₂FT, and FT were formed in the ratios of 41:42:5:12, respectively. The relative amount of FT increased upon raising the temperature. At 140 °C for 6 h, 100% of FT was formed.

8-(4-FBz)FT The reaction of 8-(4-FBz)FT in PPA at temperatures below 100 °C gave only the starting ketone. At temperatures above 120 °C, the deacylation product FT started to appear. The relative amount of FT increased upon raising the temperature and prolonging the time of the reactions. At 140 °C for 2 h, 3,9-(4-FBz)₂FT was formed; the ratios were 83 (8-(4-FBz)FT):2 (3,9-(4-FBz)₂FT):15 (FT). At 160 °C for 6 h, the ratio of 8-(4-FBz)FT to FT was 13:87, whereas 3,9-(4-FBz)₂FT were not formed. The only difference in behavior between 8-(4-FBz)FT and 8-BzFT was the formation of 3,9-(4-FBz)₂FT from the former at temperatures higher than 120 °C. Table 6 summarizes the Friedel–Crafts acyl

Table 4 Selected geometrical parameters of 3-BzFT, 8-AcFT, 8-BzFT, 3-(4-FBz)FT, 3,9-Ac₂FT, and 7,10-Ac2FT derived from their X-ray crystal structures

	θ (deg)	τ (deg)	v (deg)	$C_{\text{carb}} - C_{\text{arom}}^{a}$ (pm)	O…H (pm)	CH3H/HH (pm)
(Z)-3-I	BzFT					
C_1	57.6	27.7 -146.4	27.4 -149.0	149.1 149.7	239.8, H ⁴ 253.4, H ^{6'}	240.3, H ² H ^{2'}
(Z)-8-A	AcFT					
C ₁	4.7	-1.9 176.8	_	149.9	249.6, H ⁷	262.2, C ¹³ H ⁹
(Z)-8-I	BzFT					
C ₁	52.4	22.7 -154.7	31.87 -142.3	149.2 149.8	252.0, H ⁷ 257.9, H ^{2'}	246.6, H ⁹ H ^{6'}
(Z)-3-(4-FBz)FT					
C_1	55.85	-23.54	-30.14	149.2	238.7, H ⁴	235.0, H ² H ^{2'}
		150.73	146.9	148.8	251.9, H ^{6'}	
(Z,Z)-3	3,9-Ac ₂ FT					
C_1	5.26	2.7 -178.3	-	149.5	234.7, H ⁴	259.2, $C^{13}H^2$
	24.7	-21.7 155.15	-	149.5	247.5, H ¹⁰	261.7, C ^{13'} H ⁸
(Z,Z)-7	7,10-Ac ₂ FT					
C ₂	37.2	-33.38 144.4	_	150.5	227.3, H ⁶	260.9, C ¹³ H ⁹
	38.31	32.34 -143.18	-	150.2	230.0, H ¹	260.3, C ^{13'} H ⁸

^a $C^3 - C^{11}$ and $C^{1'} - C^{11}$ for 3-BzFT, $C^8 - C^{11}$ for 8-AcFT, $C^8 - C^{11}$ and $C^1 - C^{11}$ for 8-BzFT, $C^3 - C^{11}$ and $C^{1'} - C^{11}$ for 3-BzFT, $C^3 - C^{11}$ and $C^9 - C^{11}$ for 3,9-Ac₂FT, and $C^7 - C^{11}$ and $C^{10} - C^{11'}$ for 7,10-Ac₂FT

rearrangements of BzFTs and Bz₂FT as compared to 4-FBzFTs and 4-(FBz)₂FT.

3,9-(4-FBz)₂FT No rearrangements were observed when 3,9-(4-FBz)₂FT was treated with PPA at temperatures lower than 120 °C, 4 h. Upon prolonging the time of the reactions,

8-(4-FBz)FT started to form and its relative amount increased upon prolonging the time and increasing the temperature. At 140 °C for 4 h the ratios were 53 (3,9-(4-FBz)₂FT):17 (8-(4-FBz)FT):30 (FT). Treatment of 3,9-(4-FBz)₂FT with PPA at 120 °C for 6 h gave only (3,9-(4-FBz)₂FT) and (8-(4-FBz)FT) in the ratio 96:4, respectively. At

Table 5 Products of Friedel– Crafts acyl rearrangements of	Starting	Temperature	Time	3-XFT		8-XFT		3,9-X ₂ FT	[FT
AcF Is, BZF Is, Ac_2F Is, and Bz_2FTs		(0)	(II)	X = Ac	X = Bz	X = Ac	X = Bz	X = Ac	X = Bz	
	3-AcFT	80	6	95	_	5	_	_	_	0
	3-AcFT	120	2	15	_	36	-	-	-	43
	3-BzFT	100	2	_	71	-	26	-	3	0
	3-BzFT	160	4	_	1	-	9	-	0	90
	8-AcFT	100	2	_	_	100	-	-	-	-
	8-AcFT	160	6	_	_	17	-	-	-	78
	8-BzFT	100	2	_	_	-	100	-	-	-
	8-BzFT	160	6	_	_	-	7	-	-	93
	3,9-Ac ₂ FT	80	6	-	-	0	_	100	_	-
	3,9-Ac ₂ FT	100	6	_	-	13	-	66	-	-
	3,9-Bz ₂ FT	100	6	_	_	-	-	-	100	-
	3,9-Bz ₂ FT	140	4	_	-	-	28	—	72	—
	3,9-Bz ₂ FT	140	6	-	-	-	33	-	21	46

Scheme 1. Friedel-Crafts acyl rearrangements of AcFTs and 3,9-Ac2FT

140 °C for 6 h, the reaction gave $3,9-(4-FBz)_2FT$ and 8-(4-FBz)FT in the ratio 41:59, respectively.

DFT study

3- and 8-Acetylfluoranthenes (3-AcFT and 8-AcFT), 3,8- and 3,9-diacetylfluoranthenes (3,8-Ac₂FT and 3,9-Ac₂FT), and their derivatives which may be involved in their Friedel–Crafts acyl rearrangements, were subjected to a systematic DFT study. Calculations at B3LYP/6-31G(d) were carried out for the species in

Fig. 4 Polycyclic aromatic ketones related to the acyl rearrangement of 3,9-Ac₂FT

Scheme 2 Possible pathway of formation of 3-MeBcdFT

the gas phase and in formic acid environment, by placing the solute in a cavity within the solvent (HCO₂H) reaction field, using the polarizable continuum model (PCM) [30]. Recently, a computational model for predicting the site for electrophilic aromatic substitution was reported [44, 45]. The model was based on DFT calculations of the relative stabilities of σ -complex intermediate and applied (inter alia) to Lewis-acidpromoted Friedel-Crafts acylations. AcFTs may adopt (each) two diastereomeric conformers E and Z; both of them were considered for non-charged species; in addition, the methyl group may adopt an eclipsed or a staggered conformation. O-protonates may adopt antiand syn-orientations of the hydroxyl proton. Full conformational search was performed to find the conformations of σ -complexes arising due to the free rotation around the $sp^3 C^3 - C^{11}/C^8 - C^{11}$ bonds. The results of the DFT calculations of the acetylfluoranthenes (AcFTs), their corresponding O-protonates and σ complexes in formic acid environment are presented in Tables 7 and 8 (only the global minima conformations are shown; see Electronic supplementary material for the complete data).

According to the results of the DFT calculations, acetylfluoranthenes 3-AcFT, 8-AcFT, and *O*-protonate 3-AcFTH⁺ adopt the *Z* conformations as their global minima. 8-AcFT adopts the *Z* conformation also in the X-rays structure (vide supra). The global minimum (*E*)-8-AcFTH⁺ is only 1.2 kJ/mol higher in energy than its *Z*-diastereomer. In the series of diacetylfluoranthenes, (Z,E)-3,8-Ac₂FT and (Z,Z)-3,9-Ac₂FTH⁺ are the global minima conformations, with (Z,Z)-3,8-Ac₂FTH⁺ only 0.4 kJ/mol higher in energy than (Z,E)-3,8-Ac₂FT. The gas phase calculations gave *Z*-diastereomers of 8-AcFTH⁺ and (Z,Z)-3,8-Ac₂FTH⁺ as the respective global

Starting material	Temperature (°C)	Time (h)	3- <i>X</i> FT		8- <i>X</i> FT		3,9- <i>X</i> ₂ FT		FT
			$\overline{X = Bz}$	X = 4-FBz	$\overline{X = Bz}$	X = 4-FBz	$\overline{X = Bz}$	X = 4-FBz	
3-BzFT	100	2	71	_	26	_	3	_	0
3-BzFT	160	4	1	_	9	-	0	_	90
3-(4-FBz)FT	80	4	-	100	-	0	-	0	-
3-(4-FBz)FT	120	2	-	41	-	42	-	5	12
3-(4-FBz)FT	140	4	—	30	-	15	—	0	54
8-BzFT	100	2	0	_	100	_	0	_	-
8-BzFT	160	6	0	_	7	_	0	_	93
8-(4-FBz)FT	80	4	—	0	-	100	—	0	-
8-(4-FBz)FT	140	2	—	0	-	83	—	2	15
8-(4-FBz)FT	140	6	-	0	-	36	-	2	62
8-(4-FBz)FT	160	6	-	0	-	13	-	0	87
3,9-Bz ₂ FT	100	6	0	_	0	_	100	_	-
3,9-Bz ₂ FT	140	6	0	_	33	_	21	_	46
3,9-(4-FBz) ₂ FT	100	6	—	0	-	0	—	100	-
3,9-(4-FBz) ₂ FT	140	4	-	0	-	17	-	53	30

Table 6 Products of Friedel-Crafts acyl rearrangements of BzFTs, Bz2FT, 4-FBzFTs, and 4-(FBz)2FT

minima conformations. These results show the preference of Z conformations of an acyl substituent in position 3 of the fluoranthene system, and no distinct preference of either Z- or E-conformations of an acyl substituent in the 8/9 positions. Only Z-conformations were further considered for the O-protonates and σ -complexes of diacetylfluoranthenes.

The following relative stabilities of the constitutional isomers of acetylfluoranthenes and their derivatives are (i) ketones: $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z)-8-\text{AcFT})$ and 11.3 kJ/mol ((Z)-3-AcFT); (ii) O-protonates: $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z)-8-\text{AcFTH}^+) \text{ and } 14.71 \text{ kJ/mol}$ $((Z)-3-AcFTH^+)$; and (iii) σ -complexes: $\Delta\Delta G_{298} = 0.0 \text{ kJ/mol} (3\sigma\text{-AcFTH}^+) \text{ and } 4.4 \text{ kJ/mol}$ $(8\sigma$ -AcFTH⁺). The relative stabilities of the constitutional isomers of diacetylfluoranthenes are ketones: $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z,E)-3,8-Ac_2FT), 0.9 \text{ kJ/mol}$ $((Z,Z)-3,9-Ac_2FT)$ (however, in the gas phase $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z,Z)-3,9-Ac_2FT), \text{ and } 0.8 \text{ kJ/mol}$ $((Z,Z)-3, 8-Ac_2FT));$ (ii) O-3-protonates: $\Delta\Delta G_{298}$ = 0.0 kJ/mol ((Z,Z)-3,9-Ac₂FTH⁺) and 4.1 kJ/ mol $((Z,Z)-3,8-Ac_2FTH^+)$; (iii) *O*-8/9-protonates: $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z,Z)-3,9-Ac_2FTH^+) \text{ and } 3.4 \text{ kJ/}$ mol $((Z,Z)-3,8-Ac_2FTH^+)$; (iv) di-O-protonates: $\Delta G_{298} = 0.0 \text{ kJ/mol} ((Z,Z)-3,9-\text{Ac}_2\text{FTH}_2^{++})$ and 10.9 kJ/mol ((Z,Z)-3,8-Ac₂FTH₂⁺⁺); (v) σ-complexes: $\Delta G_{298} = 0.0 \text{ kJ/mol} (3.9\sigma\text{-Ac}_2\text{FTH}^+) \text{ and } 6.4 \text{ kJ/mol}$ $(3,8\sigma-Ac_2FTH^+)$; (v) *O*-protonated σ -complexes: $\Delta \Delta G_{298} = 0.0 \text{ kJ/mol} (3.9\sigma - \text{Ac}_2 \text{FTH}_2^{++}) \text{ and } 18.4 \text{ kJ/}$ mol $(3,8\sigma-Ac_2FTH_2^{++})$.

The proposed mechanism of the Friedel–Crafts acyl rearrangements of acetylfluoranthenes in PPA (Scheme 3) involves deacetylation of 3-AcFT to FT and acetylium ion Ac⁺ via the protonate 3-AcFTH⁺ and the σ -complex 3 σ -AcFTH⁺, followed by acetylation at the 8-position to give 8-AcFT via the σ -complex 8 σ -AcFTH⁺ and the protonate 8-AcFTH⁺.

According to the Hammond–Leffler postulate [46], the relative energies of the transitions states for the formation of the σ -complexes, resemble the relative energies of the σ -complexes. In the case of mono-acetylfluoranthenes, both the ketone 8-AcFT and the *O*-protonate 8-AcFTH⁺ are lower in relative energies than their respective 3-substituted constitutional isomers (Tables 7 and 8). However, the energy barrier

Table 7 Relative Gibbs-free energies of acetylfluoranthenes and theirtorsion angles (τ)

		ΔG_{298} (kJ/mol)	τ (deg)
(Z)-3-AcFT	C_s	11.25	0
(<i>E</i>)-3-AcFT	C_1	21.17	158
(Z)-8-AcFT	C_s	0.00	0
(E)-8-AcFT	C_s	0.85	180
(Z)-3-AcFTH ⁺	C_s	14.71	0
(E)-3-AcFTH ⁺	C_1	24.49	169
(Z)-8-AcFTH ⁺	C_1	1.24	0
(E)-8-AcFTH ⁺	C_s	0.00	180
3σ -AcFTH ⁺	C_1	74.02	-85
8σ-AcFTH ⁺	C_1	78.37	-177

Table 8Relative Gibbs-free energies of diacetyl
fluoranthenes and their torsion angles (τ)

		ΔG_{298} (kJ/mol)	τ_3 (deg)	$ au_8/ au_9$ (deg)
(Z,Z)-3,8-Ac ₂ FT	C_s	0.41	0	0
(<i>Z</i> , <i>E</i>)-3,8-Ac ₂ FT	C_s	0.00	0	180
(<i>Z</i> , <i>Z</i>)-3,9-Ac ₂ FT	C_s	0.90	0	0
(<i>Z</i> , <i>E</i>)-3,9-Ac ₂ FT	C_s	1.54	0	180
(<i>Z</i> , <i>Z</i>)-3H,8-Ac ₂ FTH ⁺	C_1	6.15	2	0
(<i>Z</i> , <i>Z</i>)-3H,9-Ac ₂ FTH ⁺	C_s	2.03	0	0
(<i>Z</i> , <i>Z</i>)-3,8H–Ac ₂ FTH ⁺	C_1	3.36	0	0
(<i>Z</i> , <i>Z</i>)-3,9H–Ac ₂ FTH ⁺	C_s	0.00	0	0
(Z)-3,8σ-Ac ₂ FTH ⁺	C_1	89.88	18	-178
(Z)-3,9σ-Ac ₂ FTH ⁺	C_1	83.46	-1	168
(<i>Z</i> , <i>Z</i>)-3,8-Ac ₂ FTH ₂ ⁺⁺	C_1	10.89	2	0
(<i>Z</i> , <i>Z</i>)-3,9-Ac ₂ FTH ₂ ⁺⁺	C_1	0.00	2	0
(<i>Z</i>)-3H,8σ-Ac ₂ FTH ₂ ⁺⁺	C_1	117.38	5	177
(Z) -3H,9 σ -Ac ₂ FTH ₂ ⁺⁺	C_1	99.00	-3	172

for the formation of the σ -complex 3σ -AcFTH⁺ is lower than the respective energy barrier leading to 8σ -AcFTH⁺. The experimental results of the PPA-mediated Friedel–Crafts acyl rearrangements of acetylfluoranthenes demonstrated that 3-AcFT undergoes transformation into 8-AcFT and 3-BzFT gives 8-BzFT, but both 8-AcFT and 8-BzFT yield only FT under the same conditions. Thus, the Friedel–Crafts acyl rearrangements 3-AcFT \rightarrow 8-AcFT and 3-BzFT \rightarrow 8-BzFT are thermodynamically controlled processes. Accordingly, 3-AcFT is the kinetically-controlled product, whereas 8-AcFT is the thermodynamically-controlled product. Consistently, deacylation of 3,9-Ac₂FT in PPA gave the more stable isomer 8-AcFT and

Scheme 3 Possible mechanisms of 3-AcFT \rightarrow 8-AcFT acyl rearrangement

FT (in addition to the rearrangement product 3-MeBcdFT), whereas 3-AcFT was not identified among the products.

In the cases of diacetylfluoranthenes, ketones (Z,E)-3,8-Ac₂FT and (Z,Z)-3,9-Ac₂FT have very similar relative energies, whereas 3,9-disubstituted O-protonates and σ -complexes have lower relative energies than their respective 3,8-disubstituted constitutional isomers (Tables 7 and 8). The lower relative energies of 3,9disubstituted diacetylfluoranthenes as compared to 3,8disubstituted diacetylfluoranthenes are even more pronounced for the di-O-protonates and for the mono-Oprotonated σ -complexes. The experimental results of the AlCl₃-mediated Friedel-Crafts acetylation of acetylfluoranthenes demonstrated that both 3-AcFT and 8-AcFT yield only 3,9-Ac₂FT. Thus, both kinetic control and thermodynamic control of the Friedel-Crafts acetylations of 3-AcFT and 8-AcFT favor the formation of the constitutional isomer 3,9-Ac₂FT.

Conclusions

Friedel-Crafts acetylation and benzoylation of fluoranthene gave 3-, 8-, and 3,9-acetyl, benzoyl and 4fluorobenzoylfluoranthene. Friedel-Crafts mono- and diacylation of FT and of acylfluoranthenes and Friedel-Crafts acyl rearrangements of acylfluoranthenes and diacylfluoranthene in PPA proved to be regioselective. Noteworthy is the regioselectivity of acylation of 3acylfluoranthenes to give 3,9-diacylfluoranthenes, not 3,8-acylfluoranthenes. The acyl rearrangements of monoacylfluoranthenes were not reversible: the kinetically controlled 3-AcFT/3-BzFT rearranged to the thermodynamically controlled 8-AcFT/8-BzFT, whereas the latter did not rearrange to the former. The values of the carbonyl torsion angles of mono- and diacylfluoranthenes derived from the X-ray study, correspond well with their ability to undergo Friedel-Crafts acyl rearrangements. The order of decreasing torsion angles between the carbonyl and the fluoranthene ring system τ is: 7,10-Ac₂FT > 3-BzFT > 3-(4-FBz)FT > 8- $BzFT > 3.9-Ac_{2}FT > 8-AcFT$. The regioselectivity and the win of kinetic control over thermodynamic control were supported by the results of the DFT calculations. Furthermore, 3,9-Ac₂FT, 3,9-Bz₂FT, and 3,9-(4-FBz)₂FT underwent deacylation in PPA to give 8-AcFT, 8-BzFT, and 8-(4-FBz)FT, respectively. 3-Acylfluoranthenes were not isolated among the acyl rearrangement products of 3,9diacylfluoranthenes. However, the deacetylation of 3,9-Ac₂FT in PPA gave also the rearrangement product 3-MeBcdFT, indicating the formation of 3-AcFT as an intermediate, which then underwent an aldol condensation followed by a Friedel-Crafts cyclization and dehydration. The rich Friedel-Crafts chemistry in PPA in the fluoranthene series is indicated also in the formation of bis(8-fluoranthenyl) ketone from 3-AcFT and 8-AcFT.

References

- Wang Z (2009) Friedel–Crafts acylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(248):1126–1130
- Wang Z (2009) Friedel–Crafts alkylations. In: Comprehensive organic name reactions and reagents. Wiley-Interscience, New York. 1(249):1131–1136
- Olah GA (1973) Friedel–Crafts chemistry. Wiley Intersceince, New York
- 4. Norman ROC, Taylor R (1965) Electrophilic substitution in benzenoid compounds; Elsevier, London; chapter 6, p. 174
- Buehler CA, Pearson DE (1970) Friedel–Crafts and related acylations. In: Survey of organic synthesis. Wiley Interscience, New York. (11):653
- 6. Pearson DE, Buehler CA (1971) Synthesis 1971:445-477
- 7. Gore PH (1974) Chem Ind 1974:727–731
- 8. Gore PH (1955) Chem Rev 55:229-281
- Gore PH (1964) Aromatic ketone synthesis. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley Interscience, New York. 3(31):1–381
- 10. Agranat I, Shih Y-S, Bentor Y (1974) J Am Chem Soc 96:1259
- 11. Agranat I, Shih Y-S (1974) Synth Commun 4:119-126
- Heaney H (1991) The intramolecular aromatic Friedel–Crafts reaction. In: Trost BM, Flemins I, Heathcock CH (eds) Comprehensive organic synthesis. Pergamon Press, New York. 2 (3.3):753–768
- 13. Agranat I, Shih Y-S (1974) Synthesis 1974:865-867
- Agranat I, Bentor Y, Shih Y-S (1977) J Am Chem Soc 99:7068– 7070
- Frangopol M, Genunche A, Frangopol PT, Balaban AT (1964) Tetrahedron 20:1881–1888
- Nenitzescu CD, Balaban AT (1964) Aliphatic acylations. In: Olah GA (ed) Friedel–Crafts and related reactions. Wiley-Interscience, New York. 3(37):1033–1152
- Balaban AT (1966) Omagiu Raluca Ripan. 1966:103–109. CAN67:63429. Chem Abstr 1967, 67, 63429a
- Mala'bi T, Pogodin S, Agranat I (2011) Tetrahedron Lett 52: 1854–1857
- Mala'bi T, Pogodin S, Cohen S, Agranat I (2013) RSC Adv 3: 21797–21810
- Pogodin S, Cohen S, Mala'bi T, Agranat I (2011) Polycyclic aromatic ketones—a crystallographic and theoretical study of acetyl anthracenes. In: Chandrasekaran A (ed) Current trends in X-ray crystallography. InTech, New York; vol. 1, Chapter 1, pp. 3–42
- Okamoto A, Yonezawa N (2015) J Synt Org Chem Japan 73:339– 360
- Harris RK, Becker ED, Cabral De Meezes SN, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84
- 23. MiTeGen; LLC P.O. Box 3867 Ithaca, NY 14852
- 24. SMART-NT V5.6, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany

- 25. SAINT-NT V5.0, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany
- 26. SHELXTL-NT V6.1, BRUKER AXS GMBH, D-76181 (2002) Karlsruhe, Germany
- 27 Gaussian 09, Rev. D.01 (2013) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K. Rendell A. Burant JC. Ivengar SS. Tomasi J. Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc., Wallingford CT
- 28. Becke AD (1993) J Chem Phys 98:5648-5652
- 29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-789
- 30. Miertus S, Tomasi J (1982) Chem Phys 65:239-245
- Campbell N, Leadill WK, Wilshire JFK (1951) J Chem Soc 1951: 1404–1406
- 32. Campbell N, Easton WW (1949) J Chem Soc 1949:340-345
- Compton RG, Northing RJ, Waller AM, Fleet GWJ, Son JC, Bashyal BP (1988) J Electroanal Chem Interfac 244:203–219
- Albrecht WL, Fleming RW, Horgan SW, Kihm JC, Mayer GD (1974) J Med Chem 17:886–889
- 35. Gutman I (2010) Z Naturforsch 65a:473-476
- Dewar MJS, Dennington II RD (1989) J Am Chem Soc 111: 3804–3808
- Campbell N, Easton WW, Rayment JL, Wilshire JFK (1950) J Chem Soc 1950:2784–2787
- Stoddart MW, Brownie JH, Baird MC, Schmider HL (2005) J Organomet Chem 690:3440–3450
- Scott LT, Cheng PC, Hashemi MM, Bratcher MS, Meyer DT, Warren HB (1997) J Am Chem Soc 119:10963–10968
- CCDC 1474883 (8-AcFT), 1474884 (8-BzFT), 1507272 (3-BzFT), 1474886 (3-(4-FBz)FT), 1474887 (3,9-Ac₂FT) and 1474888 (7,10-Ac₂FT) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc. cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK
- 41. Campbell N, Wilson NH (1970) Chem Ind 1970:1114-1115
- 42. Zefirov YV (1997) Kristallografiya 42:122–128
- Nakasuji K, Nakamura T, Murata I (1978) Tetrahedron Lett 19: 1539–1542
- Liljenberg M, Brinck T, Herschend B, Rein T, Rockwell G, Svensson M (2010) J Org Chem 75:4696–4705
- 45. For the use of quantum chemistry mechanistic analysis of related electrophilic aromatic substitutions, see: Brinck T, Liljenberg M (2016) In: Mortier J (ed) Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Wiley, New York. (4):83– 105
- Muller P (1994) Glossary of terms used in physical organic chemistry (IUPAC recommendations 1994). Pure Appl Chem 66:1077– 1184