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Abstract: A formal [3+2] cycloaddition between aziridines and al-
kenes to give the corresponding pyrrolidines was successfully car-
ried out in the presence of a cationic manganese porphyrin catalyst.
The use of the porphyrin catalyst allowed, for the first time, styrene
derivatives to react with aziridines.
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Aziridines are three-membered nitrogen-containing het-
erocyclic compounds that are stable but inherently reac-
tive, because of their ring-strain energy.! As a result,
aziridines have attracted considerable attention as syn-
thetic building blocks and, through ring opening, they
have been used as 1,3-dipoles in formal [34+2] cycloaddi-
tion reactions with unsaturated compounds or carbonyl
compounds to form five-membered heterocyclic scaf-
folds, such as pyrrolidines, imidazolines, and oxazoli-
dines.”> In this context, Lewis acids have been
demonstrated to activate aziridines efficiently, generating
1,3-dipoles by ring opening, thereby effecting stereo- and
regioselective [3+2] cycloadditions. The related Lewis
acid catalyzed reaction in which aziridines are catalytical-
ly activated in situ to generate 1,3-dipoles for [3+2] cyclo-
addition is of great significance in heterocycle synthesis;
however, such catalytic reactions have been successful
only with a limited range of co-reactants, such as vinyl

ethers and allylsilanes.® Here, we report a [3+2] cyclo-
addition of aziridines with alkenes in the presence of a cat-
ionic manganese porphyrin catalyst to afford pyrrolidines.
The use of the cationic manganese porphyrin catalyst al-
lows, for the first time, styrene derivatives to react with
aziridines.

We initially surmised that N-sulfonylated aziridines might
be activated by a cationic manganese porphyrin complex
to generate a zwitterionic 1,3-dipole precursor that would
undergo formal [3+2] cycloaddition with alkenes to give
pyrrolidines (Scheme 1).”"'? Indeed, the cycloaddition of
2-(4-tolyl)-1-tosylaziridine (1a) with styrene (2a) in
the presence of cationic 5,10,15,20-tetraphenylporphyrin
(TPP) manganese hexafluoroantimonate catalyst (5
mol%) in 1,2-dichloroethane at 100 °C for twelve hours
gave the corresponding pyrrolidine 3aa in 75% yield as a
diastereomeric mixture (Table 1, entry 1).!* In attempts to
optimize the counteranion of the manganese porphyrin
catalyst, pyrrolidine 3aa was obtained in 65% and 54%
yield when triflate and tetrafluoroborate ions, respective-
ly, were introduced as counteranions (entries 2 and 3);
however, the reaction was retarded when a chloride ligand
was present in the manganese porphyrin catalyst (entry 4).
Other solvents, such as toluene, 1,4-dioxane, or acetoni-
trile, gave reduced yields of 3aa (entries 5-7), as did the
use of silver hexafluoroantimonate instead of the cationic
manganese porphyrin catalyst (entry 8). Note that the use

i SbFg™ -
Ts
I N
d= N Ph 2a
m —_— -
/@/m Ph
1a : Ph O
Mn(lll)* Lewis acid :
3aa
TS\N P Ph
ok
[
1
TS\N/\(H

zwitterionic 1,3-dipole

Scheme 1 Manganese porphyrin catalyzed [3+2] cycloaddition of aziridines and alkenes
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of a stoichiometric amount of boron trifluoride etherate
instead of the manganese catalyst for the reaction of 1a
with 2a at —78 °C resulted in the formation of 3aa in 20%
yield. In other words, the use of a conventional Lewis acid
catalyst resulted in polymerization of 2a in preference to
[3+2] cycloaddition with 1a, even at low temperatures.

Table 1 Manganese-Catalyzed Cycloaddition of 1a and 2a.

Ts
-,L—S catalyst (5 mol%) " o
+ P
/(j/A 2a  solvent, 100 °C, 12 h
1a

3aa
Entry Catalyst Solvent Yield (%)*
1 [Mn(TPP)]SbF, DCE 75
2 [Mn(TPP)]JOTf DCE 60
3 [Mn(TPP)]BF, DCE 54
4 [Mn(TPP)]Cl1 DCE <1
5 [Mn(TPP)]SbF toluene 45
6 [Mn(TPP)]SbF, 1,4-dioxane 38
7 [Mn(TPP)]SbF, MeCN <1
8 AgSbF, DCE 39

2Yield determined by NMR spectroscopy; mixture of two diastereo-
mers.

Next, we examined the cycloaddition of various aziridines
1 with styrene (2a); the results are summarized in Table 2.
The reactions of styrene with 2-arylaziridines containing
electron-donating or electron-withdrawing substituents
gave the corresponding pyrrolidines 3ba—fa in good to
moderate yields (entries 1-5). 2-(1-Naphthyl)-1-tosyl-
aziridine (1g) similarly reacted with styrene (2a) to give
pyrrolidine 3ga (entry 6). However, 2-alkylaziridines
such as 2-hexylaziridine or 2-cyclohexylaziridine did not
undergo cycloaddition with styrene. Furthermore, neither
N-alkylated aziridines nor N-tert-butoxycarbonyl aziridi-
ne reacted with styrene. These results suggest that the sul-
fonamide moiety is necessary to generate a zwitterionic
intermediate, because of the greater stability of the nitro-
gen-centered anion.

Next, we examined the cationic manganese porphyrin-
catalyzed formal [3+2] cycloaddition of aziridine 1a with
various alkenes 2 (Table 3). The reaction of aziridine 1a
with halostyrenes 2b and 2c¢, gave the corresponding sub-
stituted pyrrolidines 3ab and 3ac in 71% and 69% yield,
respectively (entries 1 and 2). Likewise, the trimethylsilyl
styrene derivative 2d reacted with aziridine 1a to give
pyrrolidine 3ad in 72% yield (entry 3). 1,1-Disubstituted
styrene derivatives such as a-methylstyrenes 2e—g reacted
with aziridine 1a to give the corresponding polysubstitut-
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ed pyrrolidines 3 in good yields as diastereomeric mix-
tures (entries 4—6). Furthermore, the cycloaddition of
aziridine 1a with (1-cyclopropylvinyl)benzene (2h) gave
pyrrolidine 3ah in 70% yield (entry 7); no side-reaction
involving cleavage of the cyclopropane ring was ob-
served. Even exocyclic alkenes, such as 1-methylene-
1,2,3,4-tetrahydronaphthalene (2i) or methylenecyclo-
heptane (2j) reacted with aziridine 1a to give the corre-
sponding bicyclic pyrrolidines 3ai and 3aj (entries 8 and
9).

Table 2 Manganese-Catalyzed Cycloaddition of Aziridines 1b—g
with Styrene (2a)

Ts [Mn(TPP)]SbFg Ts
N (5 mol%) N Ph
LN+ Zpn
R 2a DCE
100°C,12h
1 R1
3
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Table 2 Manganese-Catalyzed Cycloaddition of Aziridines 1b—g
with Styrene (2a) (continued)

Ts [Mn(TPP)]SbFg Ts
N (5 mol%) N Ph
AN -
R! 2a I?CE
; 100°C, 12h i
3
Entry Aziridine Product Yield (%)?
Ts
Ts N.__Ph
N
5 72
TIPSO
1if TIPSO
3fa

Ts
Ts
| N
O N Ph
® CO ”
1g

? Isolated yield of mixture of two diastereomers.

Table 3 Manganese-Catalyzed Cycloaddition of Aziridine 1a and
Alkenes 2b—j
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Table 3 Manganese-Catalyzed Cycloaddition of Aziridine 1a and
Alkenes 2b—j (continued)
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Table 3 Manganese-Catalyzed Cycloaddition of Aziridine 1a and 9 Ts 6 Ts
—j i [Mn(TPP)]SbFg i
Alkenes 2b—j (continued) I\Il (5 moi%) i
Ts AN ¥
T N R Ph DCE
1 R’ MR(TPP)}SbFs re  1b(99%ee) 2] 100°C,5h PH
N R (6 mot%) 3bj; 37% (<1%ee)
, boE 1b; 45% (27%ee)
100 °C, 12 h
racemization (1) C-N bond cleavage (3) cyclization
1a
3
- M M
Entry Alkene Product Yield i 2j R
0/\a _ + — e s
(%) Ay TN
zwitterionic 1,3-dipole
TS 4 5 Ph
N . (2) nucleophilic addition of alkene
EN Scheme 2 [3+2] Cycloaddition of chiral aziridine 1b with methy-
8 86 ;
O lenecycloheptane (2j)
. ies to elucidate the mechanism underlying the unique
2i .. .. .
reactivity of the cationic metalloporphyrin catalyst and ef-
3ai forts to improve the diastereoselectivity of the cycloaddi-
Ts tion are underway.
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To gain further insight into the manganese porphyrin-cat-
alyzed cycloaddition, we examined the reaction of a chiral
aziridine 1b with an alkene (Scheme 2). The reaction of
1b (99% ee) with methylenecycloheptane (2j) in the pres-
ence of the cationic manganese porphyrin gave cycload-
duct 3bj in 37% yield as a racemate; unreacted aziridine
1b was recovered in 45% yield and 27% ee. The enantio-
meric excess of the starting aziridine 1b therefore de-
creased from 99% to 27% under the reaction conditions.
These results suggest that the cycloaddition proceeds by a
stepwise pathway that involves (1) the formation of the
zwitterionic 1,3-dipole intermediate 4 through C—N bond
cleavage of aziridine 1 by the cationic manganese porphy-
rin catalyst with loss of chirality, (2) nucleophilic addition
of the m-bond of alkene 2j to the positively charged ben-
zylic position of intermediate 4 to give intermediate 5, and
(3) cyclization to afford cycloadduct 3bj with regenera-
tion of the active cationic manganese porphyrin catalyst.

In summary, we have demonstrated a cationic manganese
porphyrin catalyzed [3+2] cycloaddition of aziridines
with alkenes to afford pyrrolidines. The readily available
metalloporphyrin complex, which contains a Lewis acidic
cationic manganese center and a large n-conjugated pla-
nar aromatic structure, effectively catalyzed the reaction
and promoted the generation of the zwitterionic 1,3-dipole
precursor, thus realizing, for the first time, the cycloaddi-
tion of aziridines with styrene derivatives. Detailed stud-
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Manganese Porphyrin Catalyzed [3+2] Cycloaddition of
Aziridines and Alkenes; General Procedure

A screw-cap vial was charged sequentially with
[Mn(TPP)][SbF] (0.02 mmol, 19 mg), aziridine 1 (0.2
mmol), alkene 2 (0.6 mmol), and anhyd DCE (0.8 mL) in a
dry box. The vial was sealed and the mixture was stirred at
100 °C for 12 h. The mixture was then diluted with 10:1
hexane—EtOAc (3 mL) and passed through a short pad of
silica gel, which was washed with 1:1 hexane-EtOAc

(2 x 10 mL). The mixture was then concentrated in vacuo
to give a crude product that was purified by flash column
chromatography [silica gel, (20 g, 2 x 15 cm), hexane—
EtOAc (5:1)].

2-Phenyl-4-(4-tolyl)-1-tosylpyrrolidine (3aa)

Colorless oil; yield: 58 mg (75%); TLC: R,= 0.40 (hexane—
EtOAc, 5:1). IR (neat): 3028, 2954, 2923, 2870, 1599, 1494,
1348, 1338,1182, 1027, 814, 662 cm™'. 'TH NMR (500 MHz,
CDCly): 6 =17.74-7.73 (m, 1.8 H) 7.65-7.64 (m, 2 H), 7.42—
7.24 (m, 13.3 H), 7.11-7.02 (m, 5.8 H), 6.93-6.92 (m, 1.8
H), 5.06 (d,/=8.0Hz,0.9H),4.81 (dd,J=6.5, 10 Hz, 1 H),
4.17-4.14 (m, 1 H), 4.02 (dd, J=17.5,9.0 Hz, 0.9 Hz), 3.52—
3.41 (m, 1.9H),3.28 (dd,/=9.5,10.5Hz, 0.9 H), 2.97-2.89
(m, 1 H), 2.69-2.65 (m, 1 H), 2.46 (s, 2.7 H), 2.44 (s, 3 H),
2.32(s,3H),2.30(s,2.7H),2.18-2.14 (m, 0.9 H), 2.11-2.00
(m, 1.9 H). *C NMR (125.7 MHz, CDCLl,): § =143.4,143.2,
142.9, 142.6, 136.7, 136.6, 136.5, 135.9, 135.8, 134.8,
129.6, 129.5, 129.3, 129.2, 128.4, 128.3, 127.6, 127 .4,
127.2,127.1, 126.8, 126.8, 126.4, 126.1, 64.5, 63.0, 55.9,
55.1,44.4,43.3,42.1,41.0,21.5,21.4,20.9,20.9. HRMS
(ESTY): m/z [M + H]" caled for C,,H,,NO,S: 392.1679;
found: 392.1663.
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