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ABSTRACT 

Tryptophan 2,3-dioxygenase 2 (TDO2) catalyzes the conversion of tryptophan to the immunosuppressive metabolite kynurenine.  

TDO2 over-expression has been observed in a number of cancers; therefore, TDO inhibition may be a useful therapeutic 

intervention for cancers.  We identified an aminoisoxazole series as potent TDO2 inhibitors from a high-throughput screen (HTS). 

An extensive medicinal chemistry effort revealed that both the amino group and the isoxazole moiety are important for TDO2 

inhibitory activity. Computational modeling yielded a binding hypothesis and provided insight into the observed structure-activity 

relationships. The optimized compound 21 is a potent TDO2 inhibitor with modest selectivity over indolamine 2,3-dioxygenase 1 

(IDO1) and with improved human whole blood stability. 

INTRODUCTION 

 One of the critical functions of the immune system is 

to detect and eliminate malignant cells as they arise and 

develop antigenic mutations.  For tumor cells to survive, the 

host immune system must be rendered functionally tolerant to 

otherwise immunogenic tumor-associated antigens.  To 

accomplish this, tumors have been shown to enlist an array of 

endogenous host regulatory pathways. 1   One of these 

pathways is mediated by catabolism of the essential amino 

acid tryptophan (Trp) into kynurenine (Kyn), a process driven 

by the rate-limiting enzymes indoleamine-2,3-dioxygenase 1 

(IDO1) and Trp-2,3-dioxygenase 2 (TDO2).2 These enzymes 

catalyze the oxidation of L-tryptophan (Trp) to N-formyl 

kynurenine (NFK), which rapidly converts to kynurenine 

(Kyn).   Over-expression of these enzymes has been observed 

in several cancers and is thought to mitigate the immune 

response towards these tumors.3, 4 

The enzymatic functions of IDO1 and TDO2 lead to 

multiple immune-related responses.  IDO1-mediated Trp 

depletion activates GCN2 kinase, 5  which in turn 

phosphorylates and inactivates the transcription factor eIF2α 

leading to the blockade of protein translation and inhibition of 

cell proliferation.  Kyn accumulation on the other hand 

activates the aryl hydrocarbon receptor (AhR),6 a transcription 

factor implicated in cancer progression, invasion and immune 

suppression.
2
 The overall result of IDO1 activity is induction 

of the regulatory T cell (Treg) compartment of the immune 

system, with concomitant inhibition of the effector T cell 

(Teff) compartment.  IDO1-deficiency (gene ablation or small 

molecule inhibition) has been shown to boost Teff and 

decrease Treg function in several autoimmunity and in vivo 

tumor models.7
, 8, 9 

The physiological function of TDO2 includes the regulation 

of systemic Trp levels as well as liver Kyn levels.  In vitro and 

in vivo studies suggest that TDO2 plays a role in promoting 

tumor cell survival and motility, and that TDO2-expressing 

tumors have a lower degree of T cell infiltrate that allows 

them to escape immune rejection.
6, 10   Genetic knockout or 

treatment of mice with a tool enzymatic inhibitor of TDO2 

activity resulted in increased sensitivity of mice to endotoxin-

induced shock, consistent with a role for TDO2 in suppressing 

inflammation and maintaining immune homeostasis. 11   In 

tumors, TDO2 activity is highly expressed in liver cancer and 

glioblastoma and upregulated in several other cancers.
6, 12 

Thus IDO1 and TDO2 inhibitors may represent a useful 

therapeutic intervention that restores the immune response 

against tumors, especially when combined with immune 

checkpoint inhibitors. Indeed, nonclinical data demonstrates 

that IDO1 and anti-PD-L1 dual inhibition shows markedly 

greater efficacy in activating the immune system and 

inhibiting tumor growth than either treatment alone, with a 

response associated with more pronounced activation of 

intratumoral CD8+ T cells, including proliferation and 

cytokine production.13 , 14  
  Preliminary data of a phase I/II 

clinical trial in melanoma where the IDO1 inhibitor 
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epacadostat is being tested in combination with anti-PD1 has 

shown promising results in terms of response rates and depth 

of responses, compared to anti-PD-1 data.15   

While several classes of IDO1 inhibitors have been 

disclosed in the literature, 16 , 17 , 18 , 19 , 20 , at the onset of our 

program, TDO2 inhibitors had been explored to a far lesser 

extent.21  Several patent applications describing either TDO-

selective or IDO/TDO dual inhibitors have appeared 

since.22,23,24,25,26  TDO2 inhibition alone or in combination with 

IDO1 inhibition may allow fuller suppression of the 

kynurenine pathway across a range of tumor types. Here we 

report our efforts in identifying and optimizing 

aminoisoxazole-based TDO2 inhibitors.  

 

RESULTS 

A high-throughput screen of the Genentech compound 

library identified a number of related aminoisoxazoles as 

inhibitors of TDO2. Inhibitory potency was measured in both 

biochemical and cellular assays of IDO1 and TDO2.   In the 

biochemical assays, inhibitors were incubated with 

recombinant enzymes in the presence of the substrate 

tryptophan. The production of the N-formylkynurenine (NFK) 

was detected either in a fluorescence- or mass spec-based 

assay and inhibitory potency was expressed as IC50 values. In 

the cellular assays, inhibitors were incubated with either 

SW48 cells (in which endogenous TDO2 is highly expressed) 

or A172 cells (in which IDO1 is highly expressed upon 

induction by IFNγ). The production of NFK released from 

cells into the media was detected by a fluorescence-based 

assay and the inhibitory potency was expressed as EC50 

values.  The cytotoxicity of compounds was also measured for 

the same treated cells with a luminescence-based assay 

detecting cellular ATP levels. Since TDO2 biochemical 

potency was poorly predictive of cellular potency for the 

aminoisoxazole compounds (see Figure S1 in supplemental 

material), our medicinal chemistry designs were consequently 

guided by cellular potency. As a counter screen to identify 

inhibition as a result of cytotoxicity, we assessed cell viability 

of SW48 and A172 cells by measuring intracellular ATP 

concentration. We found that the aminoisoxazoles generally 

do not affect intracellular ATP concentrations up to 25 µM 

inhibitor concentration in a cell viability assay, indicating that 

the cellular potency was not caused by cytotoxicity of the 

inhibitors. 

Aminoisoxazole 1 was the most potent hit found hit 

(cellular EC50 of 85 nM, Table 1). We first investigated the 

importance of the amino group on the isoxazole moiety. 

Removal of the amino group (2) resulted in complete loss of 

potency. Addition of a methyl group on the nitrogen atom (3) 

resulted in a modest ~8-fold reduction of potency. 

Replacement with a primary amide (4), secondary amide (5), 

hydroxymethyl group (6), or addition of a methyl group to the 

isoxazole 3-position (7) all resulted in significant reduction of 

TDO2 inhibitory potency.  

 

 

Table 1 TDO2 cellular and biochemical potencies of the 

aminoisoxazole modifications 

 

 

 

Compound R
1
 TDO2  

EC50 

(µM)
a
 

TDO2 

IC50 

(µM)
b
 

1 

 

 

0.085 0.14 

2 

 

 

>25 >25 

3 

 

 

0.67 0.19 

4 

 

 

>25 >25 

5 

 

 

>25 >25 

6 

 

 

18 4.4 

7 

 

9.7 25 

aCellular potency. bBiochemical potency.  IC50 and EC50 values 

are the averages of at least 2 independent experiments. 

  

We next investigated substitution and replacement of the 

phenyl moiety of compound 1.  Introduction of p-Cl (8), p-F 

(9), m-Cl (10), or m-methoxy (11) on the phenyl ring reduced 

TDO2 cell potency (Table 2).  Replacing the phenyl group 

with a cyclopentyl (12) resulted in ~4-fold reduction of 

potency while a cyclohexyl (13) reduced the potency by 18-

fold. Since more hydrophilic compounds tend to have better 

metabolic stability, we were interested in introducing groups 

that are more polar than the phenyl group. Pyridyl analogs (14 

and 15) resulted in more than 10-fold reduction of potency. 

Between the two thiophenyl regio-isomers, cellular potency of 

3-thiophenyl 17 was much better than 2-thiophenyl 16.  The 

unsubstituted pyrazole (18) was ~2.6-fold less potent than the 

corresponding phenyl analog 1, while addition of a methyl 

group at either the C3- or C4- of the pyrazole (19 and 20) 

resulted in further erosion of TDO2 potency. However, 

introduction of a fluorine substituent at C4 of the pyrazole led 
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to the most potent TDO2 inhibitor 21 within the 

aminoisoxazole series, with a cellular EC50 of 77 nM.  

  

Table 2 TDO2 cellular and biochemical potencies of phenyl ring 

substitution or replacements 

 

 

 

Compound R
2
 TDO2 

EC50 

(µM)
a
 

TDO2 

IC50 

(µM)
 b

 

8 

 

 

0.95 0.83 

9 

 

 

0.21 0.58 

10 

 

 

0.25 0.50 

11 

 

 

1.5 3.1 

12 

 

 

0.36 0.64 

13 

 

 

1.5 7.8 

14 

 

 

1.4 2.3 

15 

 

 

0.82 1.7 

16 

 

 

0.81 0.029 

17 

 

 

0.099 0.028 

18 

 

 

0.23 0.29 

19 

 

 

0.81 1.6 

20 

 

 

0.34 1.6 

21 

 

 

0.077 0.34 

aCellular potency. bBiochemical potency. IC50 and EC50 values 

are the averages of at least 2 independent experiments.   

 

Because the isoxazole core was found to exhibit poor 

stability in whole blood (vide infra), we investigated 

replacement of the 5-aminoisoxazole moiety with alternate 

heterocycles. Given that the amino group is required in the 5-

aminoisoxazole for TDO2 potency (Table 1), the amino group 

was retained in all the designed heterocyclic targets. However, 

all azoles tested, including 4-aminoisoxazole (22), 3-

aminopyrazoles (23 and 24), 3-amino-1,2,4-triazole (25), 4-

amino-1,2,3-triazole (26), 4-aminoisothiazole (27), 5-

aminoisothiazole (28), 5-amino-1,2,3-thiadiazole (29) and 4-

amino-1,2,3-thiadiazole (30) were inactive against TDO2 

(Table 3). We concluded that the 5-aminoisoxazole is a 

structurally unique core that is required for TDO2 inhibition.  
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Table 3. TDO2 cellular and biochemical potencies of 

isoxazole replacement 

 

 

Compound R
3
 TDO2 

EC50 

(µM)
 a
 

TDO2 

IC50 

(µM)
 b

 

1 

 

 

0.085 0.14 

22 

 

 

>25 >25 

23 

 

 

>25 >25 

24 

 

 

>25 >25 

25 

 

 

>25 >25 

26 

 

 

>25 >25 

27 

 

 

>25 >25 

28 

 

 

>25 18 

29 

 

 

>25 >25 

30 

 
 

>25 0.27 

aCellular potency. bBiochemical potency.  IC50 and EC50 values 

are the averages of at least 2 independent experiments. 

 

To better understand the structure-activity relationships and 

develop a binding mode hypothesis, we constructed a model 

of 21 bound to human TDO2 (Figure 1) using the X-ray 

crystal structure, PDB 5TI9.27  Our model predicts a binding 

mode with interactions similar to those of tryptophan. The 

primary amine, isoxazole ring nitrogen and fluoropyrazole 

moiety in 21 correspond with the ammonium, carboxylate, and 

indole ring of tryptophan, respectively.  In addition, the 

internal strain energy in this pose was found to be at the global 

energy minimum using quantum mechanical calculations 

(supplemental material Figure S2).  The strong interaction 

between the primary amine and the heme propionic acid in the 

model of 21 could explain the requirement for a primary or 

secondary amine as observed in Table 1.   Small, hydrophobic 

replacements of the 4-fluoropyrazole in 21 would fit in the 

pocket (Table 2) while larger substituents such as the methoxy 

group in 11 would extend further than the tryptophan indole to 

experience a steric clash, thus explaining the increase in both 

IC50 and EC50 of 11.  Finally, the model predicts important 

interactions between the isoxazole heteroatoms and Arg144 

which could explain the general loss of potency when either of 

these atoms were replaced with hydrogen-bond donors or were 

methylated as in 22-24 and 26-27.  The predicted interactions 

with Arg144 may also explain the measurable biochemical 

activities in thiazole 28 or thiadiazole 30.  Triazole 25 

maintained the two hydrogen bond acceptors of the isoxazole 

but the nitrogen-linked ring was predicted to adopt an alternate 

low-energy conformation (Figure S2) compared to 1 or 21.  

The complete loss of cell potency of all isoxazole substitutions 

cannot be fully explained by the model. However, this model 

is consistent with our observation that the aminoisoxazole did 

not cause perturbation of the maximal UV absorption 

wavelength when incubated with IDO1 or TDO2 (data not 

shown), suggesting that it does not bind the heme iron 

directly. In addition, TDO2 biochemical IC50 values increased 

when a higher tryptophan concentration was used, suggesting 

that isoxazoles are competitive with the tryptophan substrate. 

For example, biochemical IC50 of compound 8 shifted from 

0.83 µM to 4.21 µM when tryptophan concentration was 

increased from 0.2 mM to 1 mM. IC50 of compound 10 shifted 

from 0.50 µM to 2.94 µM when tryptophan concentration was 

increased from 0.2 mM to 1 mM. 

 

 

Figure 1. Binding mode hypothesis for compound 21.  X-ray 

structure (PDB: 5TI9) of human TDO2 (purple) is shown with 

heme (gray), Tryptophan substrate (gray), and O2 (red).  A 

putative bound conformation for compound 21 (orange) was then 

modeled (see methods in the supplement for details).  Distances 

are in angstroms. 

R
3
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Selected compounds were also tested in an IDO1 cell-based 

assay. As shown in Table 4, the compounds showed modest 

TDO2 selectivity over IDO1, ranging from 6- to 14-fold.  

 

 

Table 4. TDO2 selectivity over IDO1 

Compound TDO2 selectivity
a
 

(fold) 

1 

 

13x 

3 

 

12x 

17 

 

14x 

21 

 

6x 

 
aCalculated as IDO1 EC50/TDO2 EC50. 

As TDO2 is a heme-containing enzyme, we tested the 

compounds in cytochrome P450 (CYP) inhibition assays and 

found that the 4-aminoisoxazole analogs did not inhibit 

common drug-metabolizing CYP enzymes. For instance, the 

most potent compounds 1, 17, 18 and 21 all had IC50’s greater 

than 10 uM for all the CYP isoforms that were tested 

(CYP3A4, CYP1A2, CYP2D6, CYP2C9 and CYP2C19).   

We also investigated the stability of select compounds in 

whole blood to predict the in vivo stability (Table 5). The 

original HTS hit 1, the N-methylated analog 3 and thiophene 

17 demonstrated poor stability in rat, dog and human whole 

blood.  The 3-methylisoxazole analog 7 showed improved 

whole blood stability but with significantly reduced TDO2 

potency.  However, pyrazole analog 21 demonstrated 

improved human whole blood stability while maintaining 

TDO2 potency. The cause of the observed whole blood 

instability is not well understood at this time.28 

 

Table 5. Whole blood stabilitya 

Compound % 

remaining 

% 

remaining 

% 

remaining 

 rat dog human 

1 

 

0 0 0 

3 

 

0.1 0.1 0.3 

17
b
 

 

3 3 NT 

7 

 

50 65 84 

21 

 

NT NT 91 

a
Compounds (2 uL, 0.5 mM) were incubated in 100 µL of 

fresh blood for 2 hours unless otherwise stated. Parent 

remaining is analyzed by LC-MS/MS and reported as a 

percentage. NT: not tested. 
b
Incubated for 30 minutes. 

CONCLUSION 

In summary, high-throughput screening identified a series 

of 5-aminoisoxazole compounds as potent TDO2 inhibitors. 

Medicinal chemistry investigations revealed that both the 

amino group and the isoxazole moiety were important for 

TDO2 inhibitory activity, and a hypothetical binding mode 

was developed through molecular modeling, providing insight 

into the observed SAR. Optimized compound 21 is a potent 

TDO2 inhibitor with modest selectivity over IDO1, no 

observed CYP inhibition, and improved human whole blood 

stability over the original HTS hit. However, the mechanism 

of whole blood instability for this series, and relationship with 

structure, remained unclear. As a result, this series was 

deprioritized for further optimization in light of alternative 

more promising chemical matters.  
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