Asymmetric Catalysis

Direct Enantioselective Three-Component Synthesis of Optically Active Propargylamines in Water

Mutsuyo Ohara, Yoshichika Hara, Tohru Ohnuki, and Shuichi Nakamura*^[a]

Abstract: An enantioselective three-component reaction of aldehydes, amines, and alkynes in water by using a bis(i-midazoline)–Cu¹ catalysts having a hydrophobic substituent and sodium dodecyl sulfate as a surfactant was developed. The reaction was applied to a broad range of aldehydes and alkynes to give optically active propargylamines with excellent yields (up to 99%) and enantiomeric excesses (up to 99% *ee*).

Optically active propargylamines and their derivatives have been proven to be useful building blocks for the preparation of various natural products^[1] and biologically active compounds.^[2] Their broad utility has prompted considerable interest in developing asymmetric methods for their preparation under environmentally friendly conditions. In this context, the enantioselective three-component reaction of a carbonyl compound, an amine, and an alkyne is one of the most straightforward approaches for the synthesis of chiral propargylamines.^[3,4] Water is a desirable solvent for organic synthesis due to its safety, low cost, and environmentally benign character.^[5] To date, only little attention has been paid to performing enantioselective three-component reactions of carbonyl compounds, amines, and alkynes in water.^[6,7] The reaction includes an equilibrium to produce the product and water as a by-product; therefore, it is difficult to carry out the propargylamine synthesis in water by using the three-component reaction. The best results for this reaction were described by Li and co-workers who reported that the conversion of preprepared imines and phenylacetylene by using a pybox–Cu^l catalyst and stearic acid as a surfactant in water gave the desired products with moderate to high enantioselectivities (35-97% ee).^[6c] Despite this impressive progress, the alkyne substrate was restricted to aryl-substituted alkynes. Therefore, it is desirable to extend the scope of the reaction to aliphatic alkynes in water. Recently, we developed a copper-bis(imidazoline)-catalyzed three-component synthesis of optically active propargylamines from aldehydes, amines and aliphatic alkynes in organic solvents.^[8,9]

 [a] M. Ohara, Y. Hara, Prof. Dr. T. Ohnuki, Prof. Dr. S. Nakamura Department of Frontier Materials, Graduate School of Engineering Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 (Japan) Fax: (+ 81) 52-735-5245 E-mail: snakamur@nitech.ac.jp
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201402384. We expect that the highly tunable bis(imidazoline) structure can be applied to an enantioselective reaction in water. Herein, we report a highly enantioselective direct three-component reaction of aldehydes, amines, and aliphatic alkynes by using a chiral bis(imidazoline)–Cu^I catalyst in water.

We first examined the reaction of benzaldehyde, *p*-anisidine (1.2 equiv) and 4-phenylbutyne (1.5 equiv) by using chiral bis(i-midazoline)s **1a**-**f** and a metal salt. The results are shown in Table 1.

[a]CuOIf-1/2 toluene was used. [b] **1 f** (5 mol%) and CuOIf-1/2 toluene (5 mol%) was used. [c] SDS = sodium dodecyl sulfate. [d] Reaction performed in CH_2Cl_2 .

The reaction in water by using 10 mol% of a *N*-benzoyl 1,3bis(imidazolin-2-ly)pyridine (*N*-Bz-pybim, **1**a)–CuOTf-1/2 toluene complex gave product **2** in a low yield with moderate enantioselectivity (entry 1). During the reaction process, the reactants were insoluble in water. Therefore, we assumed that the reaction could be accelerated by using a surfactant, which forms a colloidal dispersion with the substrates and the catalyst. Ini-

Chem. Eur. J. 2014, 20, 8848-8851

Wiley Online Library

CHEMISTRY A European Journal Communication

tially, sodium dodecyl sulfate (SDS) was used as a surfactant for the reaction, and after its addition the reaction mixture was homogenized (Figure 1).

PhCHO + PMPNH₂ + alkyne + **1f** + CuOTf·1/2 toluene in water

PhCHO + PMPNH₂ + alkyne + **1f** + CuOTf·1/2 toluene + SDS in water

Figure 1. Homogenized reaction mixture after the addition of SDS.

Using SDS improved the chemical yield and enantioselectivity of the product (entry 1 vs. 2). When the reaction was complete, the addition of NaCl to the reaction mixture easily caused a phase separation to the aqueous and organic phase by a salting-out effect. Next, optimization experiments for the fine-tuning of the N-substituents of the imidazoline ligands were carried out, and a pivaloyl group was found to be the best substituent to give product 2 in a high yield with high enantioselectivity (entries 2-7). In the presence of ligand 1 f, other cationic, neutral, or anionic surfactants, such as cetyltrimethylammonium bromide (CTAB), polyoxyethylene p-(1,1,3,3tetramethylbutyl)phenyl ether (Triton-X100), and sodium laurate, did not give good results (entries 7-10). Although the reaction by using Cu(OTf)₂ instead of the CuOTf-1/2 toluene complex afforded 2 in a good yield with high enantioselectivity, pmethoxylnitrobenzene was formed as a by-product as well, which was obtained from the oxidation of *p*-anisidine by Cu(OTf)₂, which then in turn was reduced to the copper(I) species (entry 11).^[10] The catalyst loading was successfully reduced to 5 mol% without any loss in enantioselectivity (entry 12). When using Cu(OSO₃C₁₂H₂₅) as a copper species without SDS, the reaction mixture formed a colloidal dispersion to afford the desired product 2 in high yield with high enantioselectivity (entry 13). On the other hand, performing the reaction in CH_2CI_2 by using **1 f**-Cu¹ gave **2** with the same enantiomeric excess but in a low yield (entry 14).

Encouraged by these results, we then studied the scope and limitations of the bis(imidazoline) **1 f**-catalyzed three-component reaction of various aldehydes and alkynes by using SDS in aqueous micellar solutions. The results are summarized in Table 2. The reaction of various substituted alkynes with benzaldehyde afforded products **2–13** in high yields with high enantioselectivity (entries 1–12). In the reaction with phenylacetylene, both electron-rich and -poor aldehydes performed

R ¹ CHO + R^2									
Entry	Aldehyde [R ¹]	Alkyne [R ²]	Product	Time [h]	Yield [%]	ee [%]			
1	Ph	CH_2CH_2Ph	2	18	99	98			
2	Ph	$CH_2CH_2CH_3$	3	36	80	97			
3	Ph	$(CH_2)_3CH_3$	4	48	93	97			
4	Ph	$(CH_2)_5CH_3$	5	24	87	99			
5	Ph	$(CH_2)_7 CH_3$	6	48	93	97			
6 ^[a]	Ph	cyclopropyl	7	96	90	95			
7	Ph	cyclopentyl	8	66	91	95			
8	Ph	cyclohexyl	9	66	76	98			
9	Ph	CH_2CH_2Br	10	66	62	98			
10	Ph	CH_2CH_2OH	11	72	77	96			
11	Ph	C(CH ₂) ₂ OH	12	72	60	90			
12	Ph	Ph	13	48	99	98			
13	2-MeOC ₆ H ₄	CH_2CH_2Ph	14	24	85	90			
14	2-CIC ₆ H ₄	CH_2CH_2Ph	15	24	95	98			
15	3-MeOC ₆ H ₄	CH_2CH_2Ph	16	24	86	99			
16	3-CIC ₆ H ₄	CH_2CH_2Ph	17	48	80	99			
17	$4-MeOC_6H_4$	CH_2CH_2Ph	18	72	67	86			
18 ^[b]	4-CIC ₆ H ₄	CH_2CH_2Ph	19	48	80	98			
19	1-naphthyl	CH_2CH_2Ph	20	96	91	92			
20	cyclohexyl	CH_2CH_2Ph	21	48	66	98			
[a] Alkyne (3.0 equiv) was used. [b] Reaction was carried out at 40 $^\circ\text{C}.$									

 Table 2. Enantioselective three-component reaction of various aldehydes

well, giving the desired products **14–20** with 86–99% *ee* (entries 13–19). A maximum of 99% *ee* was obtained in the reaction with *m*-methoxy- or *m*-chlorobenzaldehyde (Table 2, entries 15 and 16). The chemical yield was excellent in most cases. With cyclohexanecarboxaldehyde, the desired product **21** was obtained in a good yield with high enantioselectivity (entry 20), whereas the reaction in CH_2Cl_2 by using **1a**–CuOTf gave **21** in 13% yield with 72% *ee*.

Tap water and seawater are attractive and environmentally friendly reaction media for organic synthesis.^[11] Therefore, we also examined the reaction in tap water or seawater that was taken directly from the Pacific Ocean (Scheme 1). In these aqueous solutions, the reaction proceeded well, affording product **2** in high yield with high enantioselectivity.

After the reaction, most of catalyst **1 f** could be recovered by column chromatography and reused without further purifi-

Scheme 1. Enantioselective three-component reaction in tap water and seawater.

Chem	Fur	1	2014	20	8848 - 8851	
Chem.	Lui.	э.	2014,	20,	0040 - 0001	

www.chemeurj.org

cation. The reaction by using recovered **1 f** afforded product **2** in 83% yield with 98% *ee*.

The reaction of benzaldehyde, *p*-anisidine, and 4-phenylbutyne by using Cu(OSO₃C₁₂H₂₅) afforded almost the same result as the reaction by using CuOTf and SDS (Table 1, entry 7 vs. 13). Therefore, the three-component reaction could be activated by **1 f**–Cu(OSO₃C₁₂H₂₅) complexes.^[12] Furthermore, the substituent on the nitrogen atom of the imidazoline ligand dramatically influenced the yield of the product and the reactivity of the reaction. These results show that the hydrophobic effects of the substituent on the imidazoline ligand and the copper salt are important for the formation of a colloidal dispersion and the enhancement of their reactivity (Figure 2).

Figure 2. Three-component reaction in water by using a hydrophobic chiral catalyst.

There are several reports on the reaction mechanism for the enantioselective alkynylation of imines by using a copper(I) salt^[13] in which the copper salt forms a pentacoordinated (distorted trigonal bipyramid) complex. On the basis of these considerations, the assumed transition states for the enantioselective alkynylation of imines by using 1 f-Cu¹ are shown in Figure 3. The copper–acetylide attacks the imine from the *Si* face of the imine to provide the (*R*)-propargylamine. Further studies are required to fully elucidate the mechanistic details of the alkynylation.

Figure 3. Proposed transition state for the alkynylation of an imine by using 1 f–Cu $^{\rm l}$

In conclusion, we have developed an enantioselective threecomponent reaction of aldehydes, amines, and alkynes by using a bis(imidazoline)–Cu¹ catalysts having a hydrophobic substituent and SDS as a surfactant. The reaction was screened for a broad range of aldehydes and alkynes. This process offers a simple and environmentally friendly route to optically active propargylamines. Further experiments to study the scope of this process and potential applications of the bis(imidazoline) catalyst in other reactions are in progress.

Experimental Section

General procedure for the enantioselective three-component reaction of aldehydes, amines, and alkynes by using 1 f-Cu¹

A solution of bis(imidazoline) **1 f** (0.025 mmol, 10 mol%), CuOTf-1/ 2 toluene (0.025 mmol, 10 mol%) and SDS (0.05 mmol, 20 mol%) in ultra-pure water (0.6 mL) was stirred for 1 h at room temperature (23–25 °C). Ultra-pure water (0.8 mL), an aldehyde (0.25 mmol), *p*anisidine (0.30 mmol) and an alkyne (0.37 mmol) were added, and the whole reaction mixture was stirred at room temperature. After completion of the reaction monitored by TLC, NaCl (100 mg) was added. Water was removed by decantation then the organic phase was purified over silica gel by column chromatography (CH₂Cl₂/ hexane) to give propargylamines.

Acknowledgements

This work was partly supported by the Kurata Memorial Hitachi Science and Technology Foundation and the Hori Science and Arts Foundation. We thank Prof. Norio Shibata at Nagoya Institute of Technology for unrestricted access to analytical facilities.

Keywords: alkynylation • enantioselectivity • propargylamines • three-component reaction • water

- a) M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G. D. VanDuyne, J. Clardy, J. Am. Chem. Soc. 1990, 112, 3715–3716; b) B. M. Trost, C. K. Chung, A. B. Pinkerton, Angew. Chem. 2004, 116, 4427–4429; Angew. Chem. Int. Ed. 2004, 43, 4327–4329; c) M. H. Davidson, F. E. McDonald, Org. Lett. 2004, 6, 1601–1603.
- [2] a) M. A. Huffman, N. Yasuda, A. E. DeCamp, E. J. J. Grabowski, J. Org. Chem. 1995, 60, 1590-1594; b) G. S. Kauffman, G. D. Harris, R. L. Dorow, B. P. R. Stone, R. L. Parsons, Jr., J. A. Pesti, N. A. Magnus, J. M. Fortunak, P. N. Confalone, W. A. Nugent, Org. Lett. 2000, 2, 3119-3121; c) A. Monleón, G. Blay, L. R. Domingo, M. C. Muñoz, J. R. Pedro, Chem. Eur. J. 2013, 19, 14852-14860.
- [3] For reviews on the enantioselective synthesis of propargylamines, see:
 a) B. M. Trost, A. H. Weiss, Adv. Synth. Catal. 2009, 351, 963–983; b) L. Zani, C. Bolm, Chem. Commun. 2006, 4263–4275; c) C. Wei, G. Li, C.-J. Li, Synlett 2004, 1472–1483; d) P. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 2004, 4095–4105; e) W.-J. Yoo, L. Zhao, C.-J. Li, Aldrichimica Acta 2011, 44, 43–51.
- [4] For reviews on multicomponent reactions, see: a) D. J. Ramón, M. Yus, Angew. Chem. 2005, 117, 1628–1661; Angew. Chem. Int. Ed. 2005, 44, 1602–1634; b) G. Guillena, G. D. J. Ramón, M. Yus, Tetrahedron: Asymmetry 2007, 18, 693–700; c) D. Enders, M. R. M. Hüttl, C. Grondal, G. Raabe, Nature 2006, 441, 861–863; d) A. Dondoni, A. Massi, Acc. Chem. Res. 2006, 39, 451–463; see also: e) L. Zani, T. Eichhorn, C. Bolm, Chem. Eur. J. 2007, 13, 2587–2600.
- [5] For reviews, see: a) Organic Synthesis in Water (Ed.: P. A. Grieco), Blackie Academic & Professional, London, 1998; b) U. M. Lindström, Chem. Rev. 2002, 102, 2751–2772; c) S. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 209–217; d) C.-J. Li, Chem. Rev. 2005, 105, 3095–3166; e) J. Mlynarski, J. Paradowska, Chem. Soc. Rev. 2008, 37, 1502–1511; f) J. Paradowska, M. Stodulski, J. Mlynarski, Angew. Chem. 2009, 121, 4352–4362; Angew. Chem. Int. Ed. 2009, 48, 4288–4297; g) M. Raj, V. K. Singh, Chem. Commun. 2009, 6687–6703; h) S. Bhowmick, K. C. Bhowmick, Tet-

rahedron: Asymmetry 2011, 22, 1945–1979; i) T. Kitanosono, S. Kobayashi, Adv. Synth. Catal. 2013, 355, 3095–3118.

- [6] a) C. Wei, C.-J. Li, J. Am. Chem. Soc. 2002, 124, 5638-5639; b) C. Wei, J. T. Mague, C.-J. Li, Proc. Natl. Acad. Sci. USA 2004, 101, 5749-5754; c) J. Liu, B. Liu, X. Jia, X. Li, A. S. C. Chan, Tetrahedron: Asymmetry 2007, 18, 396-399; for the racemic synthesis of propargylamines by a three-component synthesis in water, see: d) C. Wei, C.-J. Li, J. Am. Chem. Soc. 2003, 125, 9584-9585; e) C. Wei, Z. Li, C.-J. Li, Org. Lett. 2003, 5, 4473-4475; f) L. Shi, Y.-Q. Tu, M. Wang, F.-M. Zhang, C.-A. Fan, Org. Lett. 2004, 6, 1001-1003; g) B. Sreedhar, P. S. Reddy, C. S. V. Krishna, P. V. Babu, Tetrahedron Lett. 2007, 48, 7882-7886; h) B. Huang, X. Yao, C.-J. Li, Adv. Synth. Catal. 2006, 348, 1528-1532; j) C.-J. Li, C. Wei, Chem. Commun. 2002, 268-269; k) B. Sreedhar, P. S. Reddy, B. V. Prakash, A. Ravindra, Tetrahedron Lett. 2005, 46, 7019-7022.
- [7] For selected examples of enantioselective multicomponent reactions in water, see: a) L. Cheng, X. Wu, Y. Lu, Org. Biomol. Chem. 2007, 5, 1018–1020; b) Y. Hayashi, T. Urushima, S. Aratake, T. Okano, K. Obi, Org. Lett. 2008, 10, 21–24; c) Y.-C. Teo, J.-J. Lau, M.-C. Wu, Tetrahedron: Asymmetry 2008, 19, 186–190; d) F. Cruz-Acosta, P. de Armas, F. García-Tellado, Chem. Eur. J. 2013, 19, 16550–16554; e) P. B. Thorat, S. V. Goswami, R. L. Magar, B. R. Patil, S. R. Bhusare, Eur. J. Org. Chem. 2013, 5509–5516; see also a review on enantioselective multicomponent reactions: f) C. M. Marson, Chem. Soc. Rev. 2012, 41, 7712–7722; g) C. de Graaff, E. Ruijter, R. V. A. Orru, Chem. Soc. Rev. 2012, 41, 3969–4009.
- [8] a) S. Nakamura, M. Ohara, Y. Nakamura, N. Shibata, T. Toru, *Chem. Eur. J.* 2010, *16*, 2360–2362; for related recent studies on bis(imidazoline)s from our group, see: b) S. Nakamura, K. Hyodo, Y. Nakamura, N. Shibata, T. Toru, *Adv. Synth. Catal.* 2008, *350*, 1443–1448; c) M. Ohara, S. Nakamura, N. Shibata, *Adv. Synth. Catal.* 2011, *353*, 3285–3289; d) K. Hyodo, S. Nakamura, K. Tsuji, T. Ogawa, Y. Funahashi, N. Shibata, *Adv. Synth. Catal.* 2011, *353*, 3385–3390; e) K. Hyodo, S. Nakamura, N. Shibata, *Adv. Synth. Catal.* 2012, *124*, 10483–10487; *Angew. Chem. Int. Ed.* 2012, *51*, 10337–10341; f) K. Hyodo, M. Kondo, Y. Funahashi, S. Nakamura, *Chem. Eur. J.* 2013, *19*, 4128–4134; g) S. Nakamura, K. Hyodo, M. Nakamura, D. Nakane, H. Masuda, *Chem. Eur. J.* 2013, *19*, 7304–7309.
- [9] For bis(imidazoline) ligands, see the following review: a) H. Liu, D.-M. Du, Adv. Synth. Catal. 2009, 351, 489–519, and references therein; for selected examples, see: b) T. Arai, T. Mizukami, A. Yanagisawa, Org. Lett. 2007, 9, 1145–1147; c) S. Jautze, P. Seiler, R. Peters, Chem. Eur. J. 2008, 14, 1430–1444; d) H. Huang, R. Peters, Angew. Chem. 2009, 121, 612–615; Angew. Chem. Int. Ed. 2009, 48, 604–606; e) S. Jautze, S. Diethelm, W. Frey, R. Peters, Organometallics 2009, 28, 2001–2004; f) L. Cheng, J. Dong, J. You, G. Gao, J. Lan, Chem. Eur. J. 2010, 16, 6761–6765; g) M. Weber, S. Jautze, W. Frey, R. Peters, J. Am. Chem. Soc. 2010, 132, 12222–12225; h) H. Liu, D.-M. Du, Adv. Synth. Catal. 2010, 352, 1113–1118; i) D. C. Braddock, T. Cailleau, G. Cansell, S. A. Hermitage, R. H. Pouwer, J. M. Redmond, A. J. P. White, Tetrahedron: Asymmetry 2010, 21, 2911–

2919; j) S.-m. Kim, K. Choi, Eur. J. Org. Chem. 2011, 4747-4750; k) X. Du, H. Liu, D.-M. Du, Eur. J. Org. Chem. 2011, 786-793; I) T. Wang, X.-Q. Hao, J.-J. Huang, J.-L. Niu, J.-F. Gong, M.-P. Song, J. Org. Chem. 2013, 78, 8712-8721; for tris(imdazorine)s, see: m) K. Murai, S. Fukushima, S. Hayashi, Y. Takahara, H. Fujioka, Org. Lett. 2010, 12, 964-966; n) K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura, H. Fujioka, Angew. Chem. 2010, 122, 9360-9363; Angew. Chem. Int. Ed. 2010, 49, 9174-9177; o) K. Murai, S. Fukushima, A. Nakamura, M. Shimura, H. Fujioka, Tetrahedron 2011, 67, 4862-4868; p) T. Arai, K. Sakagami, Eur. J. Org. Chem. 2012, 1097-1100; q) K. Murai, A. Nakamura, T. Matsushita, M. Shimura, H. Fujioka, Chem. Eur. J. 2012, 18, 8448-8453; r) K. Murai, T. Matsushita, A. Nakamura, N. Hyogo, J. Nakajima, H. Fujioka, Org. Lett. 2013, 15, 2526-2529; for recent reviews on pincer-type transitionmetal catalysts including bis(oxazolyl)phenyl ligands (Phebox), see: s) H. Nishiyama, Chem. Soc. Rev. 2007, 36, 1133-1141; t) H. Nishiyama, J. Ito, Chem. Rec. 2007, 7, 159-166; u) H. Nishiyama, J. Ito, Chem. Commun. 2010, 46, 203-212.

- [10] Catalytically active copper(I) species could be generated in situ upon the reaction of copper(II) with alkynes, see: a) M.-C. Ye, J. Zhou, Y. Tang, J. Org. Chem. 2006, 71, 3576–3582; b) Z. Chen, L. Lin, M. Wang, X. Liu, X. Feng, Chem. Eur. J. 2013, 19, 7561–7567; for the reduction of copper(II) to copper(I) species in the presence of sodium ascorbate; see: c) T. F. Knöpfel, E. M. Carreira, J. Am. Chem. Soc. 2003, 125, 6054–6055; for enantioselective alkynylations using copper(II) salts, see: d) K. Balaraman, R. Vasanthan, V. Kesavan, Tetrahedron Lett. 2013, 54, 3613–3616; e) A. Bisai, V. K. Singh, Org. Lett. 2006, 8, 2405–2408; f) Z. Shao, X. Pu, X. Li, B. Fan, A. S. C. Chan, Tetrahedron: Asymmetry 2009, 20, 225–229.
- [11] Selected examples for enantioselective reaction in seawater, see: a) N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas III, J. Am. Chem. Soc. 2006, 128, 4966–4967; b) D.-Q. Xu, A.-B. Xia, S.-P. Luo, J. Tang, S. Zhang, J.-R. Jiang, Z.-Y. Xu, Angew. Chem. 2009, 121, 3879–3882; Angew. Chem. Int. Ed. 2009, 48, 3821–3824.
- Selected examples for chiral Lewis acids-surfactant combination catalysts, see: a) S. Azoulay, K. Manabe, S. Kobayashi, Org. Lett. 2005, 7, 4593–4595; b) C. Ogawa, N. Wang, M. Boudou, S. Azoulay, K. Manabe, S. Kobayashi, Heterocycles 2007, 72, 589–598; c) S. Bonollo, F. Fringuelli, F. Pizzo, L. Vaccaro, Synlett 2008, 1574–1578.
- [13] a) C. Koradin, K. Polborn, P. Knochel, Angew. Chem. 2002, 114, 2651–2654; Angew. Chem. Int. Ed. 2002, 41, 2535–2538; b) J.-X. Ji, J. Wu, A. S. C. Chan, Proc. Natl. Acad. Sci. USA 2005, 102, 11196–11200; c) A. Bisai, V. K. Singh, Tetrahedron 2012, 68, 3480–3486; d) N. Gommermann, C. Koradin, K. Polborn, P. Knochel, Angew. Chem. 2003, 115, 5941–5944; Angew. Chem. Int. Ed. 2003, 42, 5763–5766. See also ref. 11e.

Received: February 26, 2014 Published online on June 12, 2014