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The UV irradiation of N-benzyl-2-phen yl-1,2-dihydropyridin-3-one furnished trans-1-benzyl-4-phenyl-
3-vinylazetidin-2-one, a structural isomer, as the main produc t. A novel tandem mechanism involving 
a [4+2] photocycloreversion followed by a Staudinger cycloaddition reaction is proposed, and is sup- 
ported with the trapping of the purported vinylketene intermediate by other imines. This process pre- 
dominates in the presence of ethylene, precluding the formation of an inter molecular [2+2] 
cyclobutane add uct.

� 2013 Elsevier Ltd. All rights reserved.
Dihydropy ridin-2-ones and dihydropyridin -4-ones have occu- 
pied a significant place in heterocyclic chemistry for many years.1

Although less studied, their structura l isomers of the dihydropyri- 
din-3-one family are also useful intermedi ates in the synthesis of
natural products.2 As enones, they are potential partners for photo- 
chemical [2+2] cycloaddition reaction with alkenes,3 and the pres- 
ence of the heteroatom is an asset for targeting diversely- 
functional molecular systems through such reactions.4 In the liter- 
ature however, there are only two reports of photocycloadd ition 
reactions involving dihydropy ridin-3-ones (Scheme 1). Hanaoka 
irradiated a selection of N-functionalized derivatives with vinyl 
acetate, and isolated the corresponding cyclobutane adducts as
mixtures of stereo- and regio-isome rs.5 Margaretha studied the 
photochemical reaction of a carbamate derivative of 6,6-dimethyl 
dihydropyrid in-3-one with tetramethyl ethylene, and found that 
this sterically challenging reaction provided the cyclobutane ad- 
duct in low yield, accompani ed by several other products, resulting 
from rearrangem ents of the biradical intermediate (Scheme 1).6

Recently , we develope d an efficient synthesis of 2-substituted 
dihydropyrid in-3-ones from a-aminoacids .7 We decided to investi- 
gate the photoche mical behavior of such materials when irradiated 
in the presence of an alkene.

A selection of N-substituted 2-phenyldihydr opyridin-3-ones 
was prepared from commercially available (R)-phenylglycine 1
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(Scheme 2). Esterification then N-allylati on gave intermediate 2,
which was then treated with the appropriate electrophile to pre- 
pare tosylami de 3a, benzyl and t-butyl carbamates 3b and 3c,
and benzylamine 3d. Cyclopropanat ion of the N-allyl esters 3a–d
using Kulinkov ich conditions 8 gave the corresponding 3-
azabicycl o[3.1.0]hexanol s 4a–d as non-separat ed mixtures of
diastereomer s. Finally, Saegusa oxidation 9 provided the target 3-
dihydropy ridinones 5a–d in reasonable overall yields (Scheme 2).
Scheme 1.
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Each of the 3-dihydropyrid inones 5a–d was irradiated in solu- 
tion in acetone for 3 h (400 W Hg lamp, Pyrex filter) while ethylene 
was bubbled through the mixture. After the reaction time, the sol- 
vent was evaporated and the crude mixture was examine d by tlc 
and NMR spectroscopy . From compounds 5a–c, a plethora of prod- 
ucts was formed, and the anticipated cyclobutane adducts 6a–c
were not in evidence. After preparative chromatography , 2-phenyl 
pyridine-3- ol 7 was isolated in low yield (around 10%), evidently 
the result of nitrogen- function cleavage followed by aromatization.
This product had previously been encountered in the palladium 
catalyzed hydrogenation of dihydropyridin one 5d.2 Use of other 
solvents (acetonitrile, dichlorometha ne) or a different alkene (vinyl
acetate instead of ethylene) did not simplify the reaction profile,
and the reaction mixtures remained largely intractable. In contrast,
when 3-dihydropyrid inone 5d was irradiate d in acetone solution 
as described above, one major product was obtained. Analysis of
spectroscopi c data led us to deduce that this product was not the 
anticipated cyclobutane adduct 6d (which we could not detect at
all), but was in fact the trans 2-azetidino ne (b-lactam) 8, isolated 
in 65% yield (Scheme 3).

To explain the formation of lactam 8, we postulate that the exci- 
tation of the enone chromop hore is followed by a vinylogous 
homolytic cleavage . The biradical intermediate then fragments to
give two discreet species, the imine 9 and vinylketene 10. A related 
two-step photoche mically-induced formal retro-[4+2] process was 
suggested by Zimmermann to explain ring fission of 4,4-diph- 
enyldihydrop yridin-2-ones,10 and a similar ring opening process 
was suggested by Margaretha to occur during the irradiation of di- 
hydrothiin- 3-one S-oxides.11 The subsequent reaction pathways 
deviated in the above-cited studies, but here it seems likely that 
Scheme 3.
the two new products 9 and 10 should combine in a Staudinger 
cycloaddi tion reaction to afford the correspondi ng b-lactam.12

The exclusively trans stereochemistry of 8 was attested by NMR 
spectroscop y, notably the observation of a coupling constant of
about 2 Hz (J H(C3)–H(C4)) and NOESY correlations between H(C4)

and H(CH@CH2), and is consisten t with the results of Staudinger reac- 
tions of imines and ketenes conducted in photochemical condi- 
tions reported independen tly by Podlech 13 and Xu.14 Compound
8 was optically inactive, consistent with the suggested mechanis m
for its formation (Scheme 4).

The proposed mechanism for the formation of 8 suggests that 
the presence of ethylene is superfluous, so we irradiated an ace- 
tone solution containing only 5d as solute for 3 h. As anticipat ed,
work-up provided 8 in 69% isolated yield. A further postulate based 
on the mechanism is that if an imine other than 9 were present in
the reaction medium it should be able to trap the proposed vinyl- 
ketene intermediate. We therefore irradiated an acetone solution 
of 5d in the presence of 10 equiv of either N-benzylidene- 2-meth- 
oxyethanam ine 15 (11a) or methyl N-benzylidenegly cinate 16 (11b)
for 3 h. As predicted, a new trans-disubstituted b-lactam (12a or
12b, respectively ) was obtained as the major product in each case 
(Scheme 5). These observations are in agreement with the mecha- 
nism suggested in Scheme 4.

The intramolecu lar [2+2] cycloadditio n of 2-pyridones to give 
bicyclic b-lactams was first discovered by Corey and Streith,17

and these strained intermedi ates have been used to make cis-divi-
nyl b-lactams through ring-openi ng cross metathesis.18 Photorear-
rangement of dihydrothiin- 3-ones to thietan-3- ones has been 
described , again via a strained bicyclic intermedi ate (a sulfura- 
nyl-alkyl biradical).19 However , the photoisome rization of dihy- 
dropyrid in-3-ones via the tandem [4+2]-cyc loreversion/[2+ 2]
cycloaddi tion process described here is, to the best of our knowl- 
edge, unprecedented for heterocyclic systems.20
Scheme 5.
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