
Tetrahedron Letters 51 (2010) 4689–4692
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Concise preparation of novel tricyclic chemotypes: fused
hydantoin–benzodiazepines

Steven Gunawan a, Gary S. Nichol b, Shashi Chappeta a, Justin Dietrich a, Christopher Hulme a,*

a The Southwest Comprehensive Center for Drug Discovery and Development, College of Pharmacy, Department of Pharmacology/Toxicology, The University of Arizona,
Tucson, AZ 85721, USA
b Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
a r t i c l e i n f o

Article history:
Received 18 June 2010
Revised 26 June 2010
Accepted 28 June 2010
Available online 8 July 2010
0040-4039/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.tetlet.2010.06.131

* Corresponding author.
E-mail address: hulme@pharmacy.arizona.edu (C.
a b s t r a c t

The following article describes a concise synthesis of a collection of 4,5-dihydro-1H-benzo[e][1,4]diaze-
pines fused to a hydantoin ring. Molecular complexity and biological relevance are high and structures
are generated in a mere three steps, employing the Ugi reaction to assemble diversity reagents. The pro-
tocol represents a novel UDC (Ugi-deprotect-cyclize) strategy employed in the Ugi-5-component CO2-
mediated condensation, followed by further cyclization under basic conditions, to afford the fused hydan-
toin. Mechanistic caveats, dependent on the aldehydes of choice will be revealed and a facile oxidation of
the final products to imidazolidenetriones is briefly discussed.

� 2010 Elsevier Ltd. All rights reserved.
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Scheme 1. 5-Component CO2 modified Ugi reaction.
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Operationally friendly protocols to produce libraries of novel
small molecules of high molecular complexity are in huge demand
for the interrogation of biological systems.1 As such, development
of new MCRs (multi-component reactions) and functional group
modification of MCR products have proven fruitful tools in the
quest for new molecular probes and their expedited progression
along the drug discovery value chain.2 Such products with high-
iterative-efficiency potential2 have found their way into numerous
corporate compound collections and examples exist of hit to clinic
campaigns were final drugs resided in the virtual diversity space of
the original hit generation library.3 This communication describes
the development of a concise three step synthesis of novel tricyclic
4,5-dihydro-1H-benzo[e][1,4]diazepines fused to an hydantoin
ring and employs the rarely used 5-component Ugi reaction
(U-5-CR), Scheme 1. Essentially, CO2 in MeOH produces carbonic
acid and the reaction follows the widely accepted classical Ugi
mechanism, even though the condensation product differs in that
a urethane is now encapsulated within the final skeleton 1. Prior
reports on applications of this reaction are scarce4, although our
planned strategy builds on an early report from this laboratory
which employed the amidic NH of U-5-CR as an internal nucleo-
phile to afford fully functionalized libraries of hydantoins in a mere
two steps.4a

A summary of the generic scaffolds 2 and 3 made accessible and
introduced in this article is shown in Figure 1. Thus, construction of
the desired Ugi precursor 6 is achieved via condensation of ortho-
N-Boc benzylamines 4, phenylglyoxaldehydes 5, isonitriles and a
saturated solution of CO2 in methanol, Scheme 2. Note that 4
ll rights reserved.

Hulme).
was prepared in three steps from the commercially available 2-
aminobenzylamine as portrayed in Scheme 3 according to the ref-
erenced procedure.5 The purified Ugi product is subsequently trea-
ted with trifluoroacetic acid promoting amine deprotection and
2
2 3

Figure 1. Generic scaffolds of 4,5-dihydro-1H-benzo[e][1,4]diazepines fused to a
hydantoin ring 2 and imidazolidenetriones 3.
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Scheme 2. Preparation of fused benzodiazepine–hydantoins.

NH2

NH2

NH2

NHCbz

NHBoc

NHCbz

NHBoc

NH2Boc2O, DIPEA
DCM
96%

H2, Pd
MeOH
99%

Cbz-Cl, Et3N
DCM
90%

44a 4b

Scheme 3. Synthesis of Boc-2-aminobenzylamine 4.

Figure 3. X-ray crystal structure of 9.
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cyclization to the 4,5-dihydro-1H-benzo[e][1,4]diazepine, 7 typi-
cally in good yield (>90%). Note that this transformation extends
the repertoire of available chemotypes from UDC (Ugi/DeBoc/Cy-
clize) methodology and libraries of this benzodiazepine should
now be readily accessible. Final ring construction was achieved
by treatment of 7 with KOH, thus promoting cyclization and fusion
of a hydantoin-like ring while simultaneously initiating a 1,3-H
shift to give the tricyclic chemotype 8 in good yield. As such, the
methodology represents an example of a post-condensation Ugi
modification4a that employs two internal nucleophiles in distinct
operations, generating a novel scaffold of high complexity in a suc-
cinct 3 functional operations.

With a satisfactory protocol to the generic structure 8 in place,6

a small collection of these molecules were prepared to demon-
strate the generality of the reaction sequence, Figure 2. Diversifica-
tion was based on the commercial availability of different
isonitriles and substituted phenylglyoxaldehydes. Reported per-
cent yields represent conversions of the two combined steps from
the Ugi product 6 to scaffold 8. In essence, scaffold 7 did not re-
quire purification, thus simplifying the production protocol.
Unequivocal evidence for the structure of this chemotype was pro-
vided by X-ray crystallography for 9, Figure 3.7
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Figure 2. Example analogs (x% = Ugi yield, x% = yield of 8 from 6).
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Scheme 4. Aerobic chemical transformations of 8 on standing in CDCl3.
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Scheme 5. Proposed mechanism involving (i) aromatic substitution, (ii) tautomerization–rearomatization and (iii) oxidation to the imine.
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Interestingly, the tri-cyclic scaffolds 8 underwent a chemical
oxidative transformation to the pharmacologically relevant imi-
dazolidinetriones8 3 (Scheme 4) on standing in CDCl3. One partic-
ular example 9 showed 75% conversion to its imidazolidinetrione
congener after 10 days in CDCl3. Oxidative carbon–carbon double
bond cleavage of similar hydantoin derivatives has been previously
reported9 and compound 9 was successfully proven to undergo
such oxidation upon treatment with KMnO4.10 Encouragingly for
future screening efforts the fused hydantoin compounds are stable
in DMSO and other solvents, with no oxidation detected over pro-
longed periods in solution. As supported by a previous study,11 this
finding exemplifies the phenomenon of air oxidation in chloro-
form, suggested to be far more facile than in other regularly used
solvents. Oxidative rate acceleration of 9 by light suggests a singlet
oxygen mechanism may be involved in this process.

Note an exception was found with compound 16, an analog
derived from 2-methoxyphenylglyoxaldehyde. Interestingly, a
second product was also observed during exposure to CDCl3

(16a:16b = 1:4.5). Tentatively, the following mechanism,
Scheme 5, is proposed that involves aromatic substitution with
water, tautomerization/rearomatization, and oxidation to the
imine, 16b. Evidence for this structure was provided by detailed
NMR studies.

In summary, a concise three-step synthesis of a collection of
fused 4,5-dihydro-1H-benzo[e][1,4]diazepines-hydantoins has
been successfully developed that utilizes the scarcely employed
5-component CO2-modified Ugi reaction as the diversity generat-
ing event followed by two subsequent cyclization transformations.
The first transformation occurs under acidic conditions to con-
struct the benzodiazepine ring and is followed by a second cycliza-
tion under basic conditions to afford the fused hydantoin. Because
of the uniqueness of these scaffolds, the desirable drug-like prop-
erties of the molecules generated, and the ease of synthesis, this
methodology represents a viable strategy for future enrichment
of small molecule compound libraries.
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