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Abstract 

A room temperature procedure using saccharin as catalyst has been described for the 

cyclocondensation of different 1,2-arylenediamines with various 1,2-dicarbonyl 

compounds, yielding either quinoxalines or pyrido[2,3-b]pyrazines. The reactions 

proceed in very short reaction times in methanol, and the target heterocycles are isolated 

in quantitative yields after addition of water, filtration and drying. Substituted pyrido[2,3-

b]pyrazines can also be reached regioselectively by reacting α-ketoaldehydes with 2,3-

diaminopyridine. 

[Supplementary materials are available for this article. Go to the publisher’s online 

edition of Synthetic Communications® for the following free supplemental resource(s): 

Full experimental and spectral details.] 
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INTRODUCTION 

Quinoxalines and pyrido[2,3-b]pyrazines are polynitrogen heterocyclic compounds 

possessing interesting biological activities and used as therapeutics, for example acting as 

antimicrobial,[1a] antiinflammatory,[2] antimalarial,[3] anticancer,[1b] and antidepressant.[4] 

Their skeleton is also present in various organic dyes,[5] efficient electroluminescent 

materials,[6] and organic semiconductors.[7] 

 

The most common synthetic route to reach these scaffolds is the condensation of 1,2-

diketones with 1,2-arylenediamines in refluxing ethanol or acetic acid (Scheme 1).[8] 

 

In the last decade many methods were investigated for the preparation of quinoxalines, 

and different catalysts and solvents were evaluated in order to improve the yield of this 

cyclocondensation. Among the different systems used for this purpose, we can cite 

sulfamic acid in methanol,[9] molecular iodine,[10] 2-iodoxybenzoic acid,[11] 

Montmorillonite K-10,[12] polyaniline sulfate,[13] heteropolyacids,[14] and citric acid,[15] as 

well as metal precursors such as cerium(IV) ammonium nitrate,[16] Zn/L-proline,[17] 

nickel nanoparticles,[18] zirconium tetrakis(dodecyl sulfate),[19] gallium(III) triflate,[20] and 

carbon-doped MoO3–TiO2.[21] 
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Most of the traditional processes suffer from several disadvantages such as pollution, 

waste treatment, high cost, poor chemical yields, long reaction times, and tedious workup 

procedures, which limit their use. Despite remarkable efforts, the development of 

environmentally benign processes and effective method for the synthesis of quinoxalines 

is still an important challenge. Keeping these aspects in mind, efforts were focused to 

develop green chemistry for quinoxaline synthesis in both solvent and catalyst respects. 

 

To the best of our knowledge, the acidic form of saccharin (1,1-dioxo-1,2-benzothiazol-

3-one, Figure 1), cheaply available benign (edible) chemical, with mild acidity (pKa 1.9), 

hydrolytic stability, and absence of volatibility or corrosivity has never been used as a 

Brønsted acid to catalyse the synthesis of quinoxaline derivatives. 

 

Herein, we wish to report an efficient and facile methodology for high purity quinazoline 

synthesis using saccharin as a white crystalline solid catalyst at room temperature in 

different solvents. 

 

RESULTS AND DISCUSSION 

In order to determine the optimum conditions, we screened the impact of both solvent 

and catalyst to substrate ratio on the course of the reaction using as model condensation 

the reaction between 1,2-phenylenediamine (1a) and benzil (2a).  

 

Initially, the reaction in the presence of saccharin (10 mol%) was carried out using five 

polar solvents: methanol, ethanol, isopropanol, water and acetonitrile (Table 1). This 
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evaluation showed reactions in quantitative yields within 5 min using polar organic 

solvents methanol and acetonitrile (Table 1, entries 1 and 5) while ethanol and 

isopropanol gave lower yields under the same reaction conditions (Table 1, entries 2 and 

3). In pure water, and even after 1 h reaction time, the compound 3a was obtained in only 

60 % yield (Table 1, entry 4). 

 

Ethyl acetate, dichloromethane, diethyl ether and toluene were also screened and afforded 

the product in excellent yields. Using dichloromethane, the reaction was finished after 5 

min (Table 1, entry 7) whereas 10 min were necessary using ethyl acetate and diethyl 

ether (Table 1, entries 6 and 8), and 15 min using toluene (Table 1, entry 9). 

 

This study shows that methanol, acetonitrile and dichloromethane are better solvents as 

regards short reaction times than ethanol, which leads to a lower 90% yield after 5 min 

reaction time. Compared with acetonitrile and dichloromethane, methanol is a solvent 

more in accordance with sustainable chemistry, and it was thus considered as the best 

solvent for further studies. 

 

Different catalyst loadings (1 mol%, 5 mol% and 10 mol% of saccharin) were next tested 

using methanol as solvent. All these reactions afforded 3a in a quantitative yield after 5 

min reaction time (Table 2, entries 2-4) whereas the reaction proved much slower without 

catalyst (Table 2, entry 1).  
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Using 5 mol% of saccharin, the scope of the present method was then further determined 

by condensation of different 1,2-arylenediamines with various 1,2-dicarbonyl compounds 

(Table 3). 

 

As regards the 1,2-arylenediamine, extended reaction times for the reaction with benzil 

(2a) were logically noted in the case of π-deficient 2,3-diaminopyridine (1c, entry 3, 3 h 

reaction time) and, above all, using 4-nitro-1,2-phenylenediamine (1d, entry 4, 4 h 

reaction time) against 5 min for 1,2-phenylenediamine (1a, entry 1) and its 4-methyl 

derivative (1b, entry 2). Nevertheless, all the products were still obtained in excellent 

yields. 

 

Concerning the 1,2-dicarbonyl compounds, 1,2-diketones such as pyruvophenone (2b, 

entry 5), 1,2-indanedione (2c, entry 6) and 2,3-butanedione (2d, entry 7), as well as aryl 

glyoxal hydrates such as both phenyl and 2-thienyl derivatives (2e and 2f, entries 8 and 9) 

also reacted with 1,2-phenylenediamine (1a) with success in short reaction times. 

 

The reaction between 2, 3-diaminopyridine (1c) and 2-thienyl glyoxal hydrate (2f) can 

theoretically lead to two regioisomeric thienyl-substituted pyrido[2,3-b]pyrazines. 

Besides a total conversion under the same reaction conditions, the predominant formation 

of the regioisomer 3j (isolated by chromatography over silica gel in 95% yield) was 

surprisingly noticed (entry 10). The structures of 3j and 3j’ were unequivocally identified 

on the basis of NMR experiments. The crude reaction mixture containing 3j and the other 

regioisomer 3j' showed two singlet peaks at 9.26 and 9.45 ppm, respectively 
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corresponding to their H2 and H3 protons. In addition, there is possible correlation 

between H2 and Ca in 3j, and between H3 and Cb (which is more deshielded than Ca) in 

3j' (see Figure 2). The HMBC NMR experiment performed on each compound 3j and 3j’ 

showed that the proton at 9.26 ppm correlates with the less deshielded Ca (136.5 ppm, 

withdrawing effect of only one nitrogen) of 3j (main product) and that the proton at 9.45 

ppm correlates with the more deshielded Cb (150.2 ppm, withdrawing effect of two 

nitrogens) of 3j' (minor product). Such a regioselectivity could result from a favoured 

reaction between the stronger nucleophile site of 2,3-diaminopyridine (1c) at its 3 

position and the stronger electrophilic site of 2-thienyl glyoxal hydrate (2f) which is the 

aldehyde function. Finally, using aryl glyoxal hydrates as 1,2-dicarbonyl compound led 

to shorter reaction times than using 1,2-diketones, as evidenced for example by the 

reaction of 2,3-diaminopyridine (1c) with 2-thienyl glyoxal hydrate (2f) and benzyl (2a) 

in respectively 15 min (entry 10) and 3 h (entry 3). 

 

In order to strengthen the novelty of present method, we have compared our results with 

some reported procedures using conventional methods to prepare the compound 3a. The 

results are summarized in Table 4.  

 

As we can see, saccharin gave quantitative yields after short reaction times. Furthermore, 

according to the optimized procedure, we evaluated the reusability of saccharin as 

follows. To 1,2-phenylenediamine (10 mmol) in methanol (10 mL) were added saccharin 

(0.5 mmol) and benzil (10 mmol). After 5 min reaction time, the mixture was cooled 
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using an ice bath, the solid was filtered, and the filtrate was used for the next run with 

fresh reactants within five cycles without noticeably decreasing catalytic activity. 

 

CONCLUSION 

In summary, we have developed a safe and economical process for the catalytic synthesis 

of quinoxaline and pyrido[2,3-b]pyrazine derivatives from 1,2-arylenediamines and 1,2-

dicarbonyl compounds at room temperature. The reusability of saccharin, a catalyst easy 

to handle, its availability and commercial low cost, its environmental acceptability and 

absence of toxicity, the mild reaction conditions, the simple work-up procedure, and the 

short reaction times are the strong practical points of the presented method. 

 

EXPERIMENTAL 

Column chromatography was performed using silica gel 60 (230–400 mesh). Melting 

points were measured on a Kofler apparatus and are uncorrected. 1H and 13C nuclear 

magnetic resonance (NMR) spectra were recorded on a Bruker Avance III spectrometer 

at 300 and 75 MHz, respectively. 1H chemical shifts (δ) are given in ppm relative to the 

solvent residual peak, and 13C chemical shifts relative to the central peak of the solvent 

signal.[30] High- resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF 

Q II instrument. 1,2-Diketones, 1,2-arylenediamines, acetophenone, 2-acetylthiophene, 

phenyl glyoxal hydrate (2e), 1,2-indanedione (2c) were purchased from Aldrich and 2-

thienyl glyoxal hydrate (2f) from Alfa Aesar.  

 

General Procedure For The Quinoxalines And Pyrido[2,3-B]Pyrazines Synthesis 
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To the required 1,2-dicarbonyl compound 2 (10 mmol) in methanol (10 mL) were 

successively added saccharin (92 mg, 0.5 mmol) and the required 1,2-arylenediamine 1 

(10 mmol). The mixture was stirred for the appropriate time at room temperature 

(reaction monitored by TLC), and poured into water (10 mL). The solid was collected by 

filtration and dried to afford the product 3. The isomers 3j and 3j’ were separated by 

chromatography over silica gel (CH2Cl2-AcOEt 8:2). All products were characterized by 

1H NMR, and 13C NMR and were identified by comparison of the spectral data and 

melting points with those reported in literature (supporting information).  

Spectral (1H NMR, and 13C NMR) and HRMS data of new compounds are given. 

 

11H-Indeno[1,2-B]Quinoxaline (3f) 

White solid, mp 160 °C. 1H NMR (300 MHz, CDCl3), δ (ppm): 4.06 (s, 2H), 7.47-7.70 

(m, 5H), 8.02-8.20 (m, 3H). 13C NMR (75 MHz, CDCl3), δ (ppm): 36.0, 122.7, 125.8, 

128.0, 128.8, 129.0, 129.1, 129.2, 131.1, 138.0, 141.2, 142.0, 143.5, 154.6, 159.4. HRMS 

(ESI) m/z calcd for C15H12N2: 219.0922 [M+H]+; found: 219.0926. 

 

3-(2-Thiophenyl)Pyrido[2,3-B]Pyrazine (3j) 

Yellow crystals, mp 160 °C. 1H NMR (300 MHz, CDCl3), δ (ppm): 7.16 (dd, 1H, J = 3.8 

and 5.0), 7.56 (dd, 1H, J = 1.1 and 5.0), 7.59 (dd, 1H, J = 4.2 and 8.3), 7.93 (dd, 1H, J = 

1.1 and 3.8), 8.35 (dd, 1H, J = 1.9 and 8.3), 9.07 (dd, 1H, J = 1.9 and 4.2), 9.26 (s, 1H). 

13C NMR (75 MHz, CDCl3), δ (ppm): 124.4, 128.6, 128.7, 131.6, 136.5, 138.1, 141.4, 

143.3, 150.3, 150.7, 154.4. HRMS (ESI) m/z calcd for C11H9N3S: 214.0439 [M+H]+; 

found 214.0440. 
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2-(2-Thiophenyl)Pyrido[2,3-B]Pyrazine (3j’) 

Pale yellow solid, mp 172 °C. 1H NMR (300 MHz, CDCl3), δ (ppm): 7.23 (dd, 1H, J = 

3.8 and 5.0), 7.59 (dd, 1H, J = 1.0 and 5.0), 7.71 (dd, 1H, J = 4.2 and 8.4), 7.91 (dd, 1H, J 

= 1.0 and 3.8), 8.43 (dd, 1H, J = 1.9 and 8.4), 9.08 (dd, 1H, J = 1.9 and 4.2), 9.45 (s, 1H). 

13C NMR (75 MHz, CDCl3), δ (ppm): 125.9, 128.2, 128.9, 131.1, 137.7, 138.4, 141.3, 

145.3, 148.7, 150.0, 152.7. HRMS (ESI) m/z calcd for C11H9N3S: 214.0439 [M+H]+; 

found: 214.0436. 

 

SUPPLEMENTARY MATERIAL 

Supporting information: general procedures, characterization data, and 1H and 13C NMR 

spectra. This material can be found via the “Supplementary Content” section of this 

article’s webpage. 
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Table 1. Synthesis of the quinoxaline 3a at r.t. using saccharin (10 mol%) in solvents of 

different polarities.

Ph
Ph

O

O

NH2

NH2 N

N Ph

Ph
+

saccharin (10 mol%)

solvent, r.t.

1a 2a 3a  

Entry Solvent Reaction time (min) Yielda (%) 
1 Methanol   5 >99 
2 Ethanol   5   90 
3 Isopropanol   5   85 
4 Water  60   60 
5 Acetonitrile   5 >99 
6 Ethyl acetate 10   97 
7 Dichloromethane   5 >99 
8 Diethyl ether 10   95 
9 Toluene 15   80 
aIsolated yield. 
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Table 2. Synthesis of the quinoxaline 3a at r.t. in methanol using different saccharin 

loadings.

Ph
Ph

O

O

NH2

NH2 N

N Ph

Ph
+

saccharin (x mol%)

MeOH, r.t.

1a 2a 3a  

Entry x (mol%) Reaction time (min) Yielda (%) 
1   0 60   50 
2   1   5 >99 
3   5   5 >99 
4 10   5 >99 
aIsolated yield. 
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Table 3. Extension to the synthesis of various quinoxaline and pyrido[2,3-b]pyrazine 

derivatives.

R2 R1
O

O

X NH2

NH2

X

N

N R2

R1
+

saccharin (5 mol%)

MeOH, r.t.

1 2 3

R R

 

Entry 1,2-Arylenediamine 1,2-Dicarbonyl compound Product 3 Reaction time (min) Yield (%)a 

  1 NH2

NH2
1a  

Ph
Ph

O

O2a  
N

N Ph

Ph
3a

5 >99 

  2 NH2

NH21b  
Ph

Ph
O

O2a
N

N Ph

3b
Ph

5 >99 

  3 N

NH2

NH2

1c  

Ph
Ph

O

O2a  

N

N

N Ph

3c
Ph

180 95

  4 NH2

NH2
1d

O2N

 

Ph
Ph

O

O2a  
N

N Ph

Ph
3d

O2N 240 96 

  5 NH2

NH2
1a  

Ph

O

O2b  
N

N Ph

3e

10 97 

  6 NH2

NH2
1a  

O

O
2c  N

N

3f

5 92 

  7 NH2

NH2
1a  

O

O2d  
N

N

3g

10 92 

  8 NH2

NH2
1a  

Ph CHO, H2O

O

2e  
N

N Ph

3h

15 >99 

  9 NH2

NH2
1a  

CHO, H2O

O

2fS  N

N
S

3i

15 94 

10 N

NH2

NH2

1c  

CHO, H2O

O

2fS  

N

N

N
S

3j

15 95b 

   N

N

N

3j'
S

15 5b 

aIsolated yield. 
b Regioisomers isolated by chromatography over silica gel (eluent: 80/20 CH2Cl2-
AcOEt). 
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Table 4. Conventional quinoxaline (3a) preparations using different catalysts/solvents at 
r.t. 

Entry Catalyst  Mol% Solvent Time 
(min) 

Yield Ref. 

  1 Cerium(IV) ammonium 
nitrate  

  5 H2O   10   98 [16] 

  2 Iodine 10 MeCN     5   95 [10] 
  3 2-Iodoxybenzoic acid   1 AcOH   15   98 [11] 
  4 Montmorillonite K-10 10 H2O 150 >99 [12] 
  5 Zn[(L)-proline]  10 AcOH     5   96 [17] 
  6 Poly-aniline sulfate salt   5 Cl(CH2)2Cl   15   92 [13] 
  7 Sulfamic acid    5 MeOH     5 >99 [9] 
  8 CuSO4, 5H2O  10 MeOH/H2O     5   97 [22] 
  9 H4SiW12O40    5 H2O   60   96 [14] 
10 Gallium(III) triflate    5 EtOH     5 >99 [20] 
11 APTS/NaPTS    5 H2O     7   96 [31] 
12 Citric acid    3 EtOH   <1   94 [15] 
13 Saccharin 1 or 5 MeOH     5 >99 This 

study 
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Scheme 1. Most common synthetic route to reach quinoxalines. 
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Figure 1. Saccharin as its acidic form. 
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Figure 2. Identification of regioisomers 3j and 3j’ by NMR HMBC experiment. 
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