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Two new monoterpenoid oxindole alkaloids, gelsevanillidine (1) having an additional vanillin residue on
gelsenicine-type alkaloid and gelseoxazolidinine (2) possessing an unusual oxazolidine ring, were iso-
lated from Gelsemium elegans. To confirm their structures, the chemical transformation of a humante-
nine-type alkaloid into gelsevanillidine (1) and the deacetoxy derivative of gelseoxazolidinine was
performed.

� 2009 Elsevier Ltd. All rights reserved.
Gelsemium elegans Benth. (Loganiaceae) is a toxic plant that is
widely distributed in Southeast Asia. Gelsemium plants are a rich
source of indole alkaloids: more than 70 alkaloids have been iso-
lated to this day, and they are classified into six types on the basis
of their chemical structures.1–3 G. elegans has been used in tradi-
tional Chinese medicine, and is the origin of ‘Yakatsu’, one of the
ancient medicines stored in the Shosoin repository in Japan.4 A
number of pharmacological activities, including analgesic,5 anti-
inflammatory,5 cytotoxic,6,7 and antitumor8 activities, of G. elegans
alkaloids have been reported.

In our continuing chemical studies on the Gelsemium alka-
loids,6,9 we were able to isolate two novel gelsedine-related alka-
loids, gelsevanillidine (1) and gelseoxazolidinine (2), from G.
elegans. Gelsevanillidine (1) possesses a side chain with a vanillin
residue, which is the first example of a monoterpenoid indole alka-
loid. Gelseoxazolidinine (2) consists of a hexacyclic skeleton with
an unprecedented oxazolidine ring. To confirm their unique struc-
tures, the chemical transformation of a known humantenine-type
Gelsemium alkaloid, rankinidine (4), into new alkaloid 1 and the
14-deacetoxy derivative of new alkaloid 2 was performed
(Fig. 1). In this Letter, we report the structure elucidation of these
two new alkaloids 1 and 2 by means of spectroscopic analyses and
chemical transformation.
ll rights reserved.

ayama).
New alkaloid 1,10 named gelsevanillidine,11 was found to have
the molecular formula C27H28N2O5 from HRFABMS [m/z 461.2075
(MH+)]. UV spectroscopy (384, 314, 296 (sh), 247 (sh), 207 nm)
suggested the presence of a long conjugated system. 1H and 13C
NMR spectra (Table 1) showed readily assignable signals due to
the gelsenicine (5) part, including signals of four aromatic protons
[d 7.58 (d, H-9), d 7.30 (ddd, H-11), d 7.12 (ddd, H-10), d 6.96 (d, H-
12)], an Na-methoxy group [d 3.89 (3H, s)], and oxygenated protons
[d 4.38 (br dd, H-17), d 4.35 (dd, H-17), d 3.70 (overlapped, H-3)],
and confirmed the presence of a trisubstituted olefin group [dH

7.18 (br s, H-21), dC 130.9 (C-19), dC 139.6 (C-21)]. These spectral
data were very similar to those of gelsecrotonidine,9a the exception
being the existence of a 1,2,4-trisubstituted benzene ring system
[dH 7.10 (br d, H-23), dH 7.01 (br dd, H-27), dH 6.85 (d, H-26), dC

148.7 (C-24), dC 148.3 (C-25), dC 129.8 (C-22), dC 124.8 (C-27), dC

116.2 (C-26), dC 114.6 (C-23)] instead of a methyl carboxylate
group in gelsecrotonidine. Based on the allylic coupling of H-18
and H-21 as confirmed by 1H–1H COSY and the lack of H-19 pro-
tons, the olefin group was elucidated to be at C-19 position. Fur-
thermore, the trisubstituted olefin group and the trisubstituted
benzene ring system could be connected by HMBCs from the pro-
ton at d 7.18 (H-21) to the carbons at d 114.6 (C-23) and d 124.8 (C-
27) (Fig. 2). The substitution pattern of the benzene ring was pre-
sumed on the basis of NOE correlations (Fig. 2) from the proton at d
7.18 (H-21) to the two protons at d 7.10 (H-23) and d 7.01 (H-27),
and from the aromatic methoxy protons at d 3.90 to the proton at d
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Figure 1. Structures of new alkaloids (1 and 2) and the 14-deacetoxy derivative of 2 (3).

Table 1
1H (600 MHz) and 13C (150 MHz) NMR data for gelsevanillidine (1) in CD3OD

Position 1

dH dC

2 173.2
3 3.70 (overlapped) 76.3
5 4.56 (m) 73.2
6 2.59 (dd, 15.7, 4.8) 38.4

2.20 (dd, 15.7, 1.9)
7 57.6
8 133.3
9 7.58 (d, 7.7) 126.0

10 7.12 (ddd, 7.7, 7.7, 1.1) 124.7
11 7.30 (ddd, 7.7, 7.7, 1.1) 129.4
12 6.96 (d, 7.7) 107.8
13 139.1
14 2.39 (2H, overlapped) 29.6
15 3.70 (overlapped) 40.5
16 2.72 (m) 40.6
17 4.38 (br dd, 11.3, 1.4) 62.6

4.35 (dd, 11.3, 3.0)
18 2.32 (3H, br s) 15.1
19 130.9
20 184.2
21 7.18 (br s) 139.6
22 129.8
23 7.10 (br d,1.5) 114.6
24 148.7
25 148.3
26 6.85 (d, 8.2) 116.2
27 7.01 (br dd, 8.2, 1.5) 124.8
Na–OMe 3.89 (3H, s) 63.9
24-OMe 3.90 (3H, s) 56.4
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Figure 2. Selected HMBC and NOE correlation of gelsevanillidine (1).
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7.10 (H-23), as well as of the HMBCs depicted in Figure 2. Consid-
ering all these factors as well as the chemical shifts, we proposed
the presence of a p-hydroxy-m-methoxy-substituted benzene ring
system. The double bond between C-19 and C-21 was elucidated to
have the E-configuration based on the NOE correlation of the olefin
proton (H-21) to the proton at d 3.70 (overlapped, H-15). From
these data, the structure of gelsevanillidine was deduced to be that
shown as formula 1.

To confirm the structure inferred from the spectroscopic analy-
sis above, we attempted to synthesize 1 from the known humant-
enine-type alkaloid rankinidine (4),12 which is one of the major
alkaloids in Gelsemium rankinii (Scheme 1). At the start of the syn-
thesis, rankinidine (4) was treated with 2,2,2-trichloroethyl chloro-
formate (TrocCl) in the presence of triethylamine in CH2Cl2 to give
carbamate 6 in 98% yield. Then, the double bond migration from C-
19–C-20 position to C-20–C-21 position was achieved in a quanti-
tative yield by using TMSCl and NaI13 in CH3CN to afford enamine-
carbamate 7. Enamine-carbamate 7 was then treated with m-CPBA
(3 equiv) in CH2Cl2 to afford keto-carbamate 8 in 31% yield, which
would be formed via oxidatively cleaved product Nb-formyl-carba-
mate 9,14 together with a mixture of aminal 10 and aldehyde 11 in
59% yield. The mixture of 10 and 11 could be converted into keto-
carbamate 8 by NaBH4 reduction (94% yield) followed by oxidative
cleavage of resulting diol 12 with NaIO4 in MeOH in 67% yield. Re-
moval of the Nb-carbamate in 8 with Zn and ammonium chloride in
MeOH gave a secondary amine that was spontaneously converted
into gelsenicine (5)13,15 in 69% yield. Condensation of gelsenicine
(5) and vanillin acetate (13) under acidic conditions with TiCl4 in
(CH2Cl)2 afforded 14 in 97% yield E-selectively to avoid the steric
hindrance between a bulky aromatic ring and the gelsenicine part.
Finally, removal of the acetyl group in 14 (K2CO3, MeOH) gave gels-
evanillidine (1) in 99% yield. Synthetic 1 was completely identical
in all respects with the natural one, thereby establishing its struc-
ture including its absolute configuration {natural: ½a�22

D � 79:9
(c 0.24, MeOH), synthetic: ½a�22

D � 81:8 (c 0.12, MeOH)}.
New alkaloid 2,10 named gelseoxazolidinine,16 was shown to

have the molecular formula C23H28N2O6 from HREIMS [m/z
428.1937 (M+)]. UV and NMR spectra indicated the presence of
the characteristic Na-methoxyoxindole chromophore. 1H and 13C
NMR data (Table 2) revealed the presence of a nonsubstituted A
ring of the oxindole system, an Na-methoxy group (dH 4.04, dC

63.5), an oxymethine group (dH 3.61, dC 76.7, C-3), a methine group
bearing nitrogen (dH 3.46, dC 69.8, C-5), two oxymethylene groups
(dH 4.32, 4.26, dC 62.9, C-17 and dH 3.62, 3.41 dC 75.4, C-21), and an
oxymethine group (dH 6.08, dC 67.7, C-14) to which an acetoxy
group [dH 2.00 (3H, s), dC 170.2, 21.1] is attached. 1H–1H COSY cor-
relation between the H-3 oxymethine proton at d 3.61 and the low-
field methine proton at d 6.08 indicated that an acetoxy group was
attached to C-14. This inference was confirmed on the basis of the
HMBC between the proton at d 6.08 (H-14) and the acetoxy car-
bonyl carbon at d 170.2 (Fig. 3). The configuration of the acetoxy
group at C-14 was shown to be b from the coupling constant of
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Table 2
1H (400 MHz) and 13C (125 MHz) NMR data for gelseoxazolidinine (2) in CDCl3

Position 2

dH dC

2 171.5
3 3.61 (d, 1.8) 76.7
5 3.46 (m) 69.8
6 2.19 (dd, 15.7, 2.8) 37.4

2.14 (dd, 15.7, 4.2)
7 53.6
8 131.2
9 7.34 (d, 7.5) 125.0

10 7.08 (ddd, 7.5, 7.5, 1.1) 123.1
11 7.28 (ddd, 7.5, 7.5, 1.1) 128.3
12 6.93 (d, 7.5) 106.8
13 138.5
14 6.08 (br s) 67.7
15 2.44 (br d, 6.4) 45.8
16 2.66 (m) 35.7
17 4.32 (dd, 10.8, 4.2) 62.9

4.26 (br d, 10.8)
18 0.85 (3H, dd, 7.2, 7.2) 8.9
19 2.80 (dq, 14.1, 7.2) 26.6

1.66 (dq, 14.1, 7.2)
20 a

21 3.62 (d, 8.3) 75.4
3.41 (d, 8.3)

22 4.56 (d, 7.2) 89.3
4.35 (d, 7.2)

Na–OMe 4.04 (3H, s) 63.5
14-OCOMe 170.2
14-OCOMe 2.00 (3H, s) 21.1

a Under CDCl3 signal.
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the proton at C-14 (J3,14 = 1.8 Hz), as in the case of other com-
pounds having a hydroxyl or an acetoxy group at C-14.7,9a,e,h Fur-
thermore, low-field methylene proton (d 4.56, 4.35) and carbon
signals (d 89.3) were observed in the 1H and 13C NMR spectra,
respectively, suggesting the existence of an hemiaminal methylene
group (C-22). HMBCs between the hemiaminal protons and the
oxymethylene carbon at d 75.4 (C-21) and carbons bearing nitro-
gen (C-5 and C-20) implied the existence of an oxazolidine ring
consisting of N-4, C-20, C-21, O, and C-22 positions. The NOE cor-
relation of H-14 to H-19 revealed the b-ethyl configuration at C-
20. Therefore, the structure of gelseoxazolidinine was deduced to
be that shown as formula 2.

As this kind of hexacyclic framework that includes an oxazoli-
dine ring is the first instance of a natural product, we attempted
to prepare the skeleton and to compare spectroscopic data. From
a biogenetic point of view, gelseoxazolidinine (2) would be formed
from 14-acetoxygelselegine (17)6 by adding a C1 unit between Nb

and C-21 primary alcohol. With compound 12 as the synthetic
intermediate for gelsevanillidine (Scheme 1) in hand, we utilized
it to construct the basic skeleton of gelseoxazolidinine, that is,
the 14-deacetoxy derivative of gelseoxazolidinine. According to
our previous study,13 diol 12 was converted into epoxide 15 via
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the modified Mitsunobu reaction [N,N,N0,N0-tetramethylazodicarb-
oxamide (TMAD), n-Bu3P, DMF] in 81% yield (Scheme 2). Removal
of the Nb-Troc group (Zn, AcOH) afforded a primary amine, which
was gradually cyclized at C-20 position to generate gelselegine
(16).17 Compound 16 was then treated with formalin in the pres-
ence of a catalytic amount of p-TsOH in benzene at 45 �C for
2.5 h to afford target molecule 318 in 86% yield. The 1H and 13C
NMR data and the CD spectral data of 3 resembled those of gels-
eoxazolidinine (2) well, except for the signals around C-14 position
bearing a b-acetoxy group. Thus, we propose that the structure of
gelseoxazolidinine is as shown in formula 2.

In conclusion, the novel structures of two gelsedine-related
oxindole alkaloids, gelsevanillidine (1) and gelseoxazolidinine (2),
isolated from G. elegans were elucidated by spectroscopic and
chemical methods. Gelsevanillidine is the first example of a mono-
terpenoid indole alkaloid with an additional vanillin residue, and
gelseoxazolidinine is a novel skeletal type alkaloid consisting of a
hexacyclic structure with an oxazolidine ring.
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3.1 Hz, H-6), 2.11 (1H, dd, J = 15.8, 4.2 Hz, H-6), 2.04 (1H, ddd, J = 15.5, 11.2,
6.4 Hz, H-14), 1.60 (1H, dq, J = 14.4, 7.5 Hz, H-19), 0.87 (3H, dd, J = 7.5, 7.5 Hz,
H3-18); 13C NMR (125 MHz, CDCl3) d 172.4 (C-2), 138.1 (C-13), 132.3 (C-8),
127.9 (C-11), 125.4 (C-9), 123.2 (C-10), 106.6 (C-12), 89.4 (C-22), 77.7 (C-20),
75.7 (C-21), 74.2 (C-3), 70.9 (C-5), 63.3 (Na–OMe, C-17), 55.9 (C-7), 38.4 (C-15),
37.6 (C-16), 37.5 (C-6), 26.7 (C-19), 23.0 (C-14), 9.2 (C-18); UV (MeOH) kmax nm
(loge) 257 (3.66), 208 (4.24); EIMS m/z (%) 370 (M+, 33), 340 (95), 309 (100);
HREIMS m/z 370.1892 (M+, calcd for C21H26N2O4, 370.1892); CD (c 0.351 mmol/
L, MeOH, 24 �C) De (k nm) 0 (300), �1.46 (278), �5.73 (262), 0 (250), +11.08
(234), 0 (223), �19.82 (212).
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